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Solving equations the old fashioned way...

• We now know that systems of equations look like this:

A · x = b

• The goal is to solve for x , in terms of A and b.

• Here comes some more wishful thinking:

x =
1

A
· b

• Well, we can’t really divide by a matrix, but if we are lucky,
we can find another matrix called A−1 which acts like 1

A .
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Inverse

Definition

The inverse of a matrix A is another matrix A−1 such that:

A−1 · A = A · A−1 = I

• Not all matrices have inverses, but when they do, we are
happy, because:

A · x = b =⇒ A−1 · A · x = A−1 · b
=⇒ x = A−1 · b

• So, how do we compute the inverse of a matrix?
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Remember me?

J. van de Wetering spring 2017 Matrix Calculations 6 / 46



Matrix inverse
Existence and uniqueness of inverse

Determinants
Basis transformations

Radboud University Nijmegen

Gaussian elimination as matrix multiplication

• Each step of Gaussian elimination can be represented by a
matrix multiplication:

A⇒ A′ A′ := G · A

• For instance, multiplying the i-th row by c is given by:

G (Ri :=cRi ) · A

where G (Ri :=cRi ) is just like the identity matrix, but gii = c .

• Exercise. What are the other Gaussian elimination matrices?

G (Ri↔Rj ) G (Ri :=Ri+cRj )
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Reduction to Echelon form

• The idea: treat A as a coefficient matrix, and compute its
reduced Echelon form

• If the Echelon form of A has n pivots, then its reduced
Echelon form is the identity matrix:

A⇒ A1 ⇒ A2 ⇒ · · · ⇒ Ap = I

• Now, we can use our Gauss matrices to remember what we
did:

A1 := G 1 · A
A2 := G 2 · G 1 · A
· · ·

Ap := Gp · · ·G 1 · A = I
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Computing the inverse

• A ha!

Gp · · ·G 1 · A = I =⇒ A−1 = Gp · · ·G 1

• So all we have to do is construct p different matrices and
multiply them all together!

• Since I already have plans for this afternoon, lets take a
shortcut:

Theorem

For C a matrix and (A|B) an augmented matrix:

C · (A|B) = (C · A | C · B)
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Computing the inverse

• Since Gaussian elimination is just multiplying by a certain
matrix on the left...

A⇒ G · A

• ...doing Gaussian elimination (for A) on an augmented matrix
applies G to both parts:

(A|B)⇒ (G · A | G · B)

• So, if G = A−1:

(A|B)⇒ (A−1 · A | A−1 · B) = (I | A−1 · B)
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Computing the inverse

• We already (secretly) used this trick to solve:

A · x = b =⇒ x = A−1 · b

• Here, we are only interested in the vector A−1 · b
• Which is exactly what Gaussian elimination on the augmented

matrix gives us:
(A|b)⇒ (I | A−1 · b)

• To get the entire matrix, we just need to choose something
clever to the right of the line

• Like this:
(A|I )⇒ (I | A−1 · I ) = (I | A−1)
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Computing the inverse: example

For example, we compute the inverse of:

A :=

(
1 1
1 2

)
as follows:(

1 1 1 0
1 2 0 1

)
⇒
(

1 1 1 0
0 1 −1 1

)
⇒
(

1 0 2 −1
0 1 −1 1

)
So:

A−1 :=

(
2 −1
−1 1

)
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Computing the inverse: non-example

Unlike transpose, not every matrix has an inverse.
For example, if we try to compute the inverse for:

B :=

(
1 1
1 1

)
we have: (

1 1 1 0
1 1 0 1

)
⇒
(

1 1 1 0
0 0 −1 1

)

We don’t have enough pivots to continue reducing. So B does not
have an inverse.
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When does a matrix have an inverse?

Theorem (Existence of inverses)

An n × n matrix has an inverse (or: is invertible) if and only if it
has n pivots in its echelon form.

Soon, we will introduce another criterion for a matrix to be
invertible, using determinants.
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Uniqueness of the inverse

Note

Matrix multiplication is not commutative, so it could (a priori) be
the case that:

• A has a right inverse: a B such that A · B = I and

• A has a (different) left inverse: a C such that C · A = I .

However, this doesn’t happen.
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Uniqueness of the inverse

Theorem

If a matrix A has a left inverse and a right inverse, then they are
equal. If A · B = I and C · A = I , then B = C .

Proof. Multiply both sides of the first equation by C :

C · A · B = C · I =⇒ B = C

-

Corollary

If a matrix A has an inverse, it is unique.
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Explicitly computing the inverse, part I

• Suppose we wish to find A−1 for A =

(
a b
c d

)
• We need to find x , y , u, v with:(

a b
c d

)
·
(
x y
u v

)
=

(
1 0
0 1

)
• Multiplying the matrices on the LHS:(

ax + bu cx + du
ay + bv cy + dv

)
=

(
1 0
0 1

)
• ...gives a system of 4 equations:

ax + bu = 1
cx + du = 0
ay + bv = 0
cy + dv = 1
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Computing the inverse: the 2× 2 case, part II

• Splitting this into two systems:{
ax + bu = 1
cx + du = 0

and

{
ay + bv = 0
cy + dv = 1

• Solving the first system for (u, x) and the second system for
(v , y) gives:

u = −c
ad−bc x = d

ad−bc and v = a
ad−bc y = −b

ad−bc

(assuming bc − ad 6= 0). Then:

A−1 =

(
x y
u v

)
=

( d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)

• Conclusion: A−1 = 1
ad−bc

(
d −b
−c a

)
X

�



�
	learn this for-

mula by heart
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Computing the inverse: the 2× 2 case, part III

Summarizing:

Theorem (Existence of an inverse of a 2× 2 matrix)

A 2× 2 matrix

A =

(
a b
c d

)
has an inverse (or: is invertible) if and only if ad − bc 6= 0, in
which case its inverse is

A−1 =
1

ad − bc

(
d −b
−c a

)
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Example

• Let P =

(
0.8 0.1
0.2 0.9

)
, so a = 8

10 , b = 1
10 , c = 2

10 , d = 9
10

• ad − bc = 72
100 −

2
100 = 70

100 = 7
10 6= 0 so the inverse exists!

• Thus:
P−1 = 1

ad−bc

(
d −b
−c a

)
= 10

7

(
0.9 −0.1

−0.2 0.8

)
• Then indeed:

10
7

(
0.9 −0.1
−0.2 0.8

)
·
(

0.8 0.1
0.2 0.9

)
= 10

7

(
0.7 0
0 0.7

)
=

(
1 0
0 1

)
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Determinants

What a determinant does

For a square matrix A, the determinant det(A) is a number (in R)

It satisfies:

det(A) = 0 ⇐⇒ A is not invertible
⇐⇒ A−1 does not exist
⇐⇒ A has < n pivots in its echolon form

Determinants have useful properties, but calculating determinants
involves some work.
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Determinant of a 2× 2 matrix

• Assume A =

(
a b
c d

)
• Recall that the inverse A−1 exists if and only if ad − bc 6= 0,

and in that case is:

A−1 = 1
ad−bc

(
d −b
−c a

)
• In this 2× 2-case we define:

det

(
a b
c d

)
=

∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc

• Thus, indeed: det(A) = 0⇐⇒ A−1 does not exist.
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Determinant of a 2× 2 matrix: example

• Recall the political transisition matrix

P =

(
0.8 0.1
0.2 0.9

)
= 1

10

(
8 1
2 9

)
• Then:

det(P) = 8
10 ·

9
10 −

1
10 ·

2
10

= 72
100 −

2
100

= 70
100 = 7

10

• We have already seen that P−1 exists, so the determinant
must be non-zero.
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Determinant of a 3× 3 matrix

• Assume A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


• Then one defines:

det A =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= +a11 ·

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21 ·
∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a31 ·
∣∣∣∣ a12 a13

a22 a23

∣∣∣∣
• Methodology:

• take entries ai1 from first column, with alternating signs (+, -)
• take determinant from square submatrix obtained by deleting

the first column and the i-th row
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Determinant of a 3× 3 matrix, example

∣∣∣∣∣∣
1 2 −1
5 3 4
−2 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣ 3 4
0 1

∣∣∣∣ − 5

∣∣∣∣ 2 −1
0 1

∣∣∣∣ +−2

∣∣∣∣ 2 −1
3 4

∣∣∣∣
=
(

3− 0
)
− 5
(

2− 0
)
− 2
(

8 + 3
)

= 3− 10− 22

= −29
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The general, n × n case

∣∣∣∣∣∣∣
a11 · · · a1n

...
...

an1 . . . ann

∣∣∣∣∣∣∣ = +a11 ·

∣∣∣∣∣∣∣
a22 · · · a2n

...
...

an2 . . . ann

∣∣∣∣∣∣∣ − a21 ·

∣∣∣∣∣∣∣∣∣
a12 · · · a1n

a32 · · · a3n

...
...

an2 . . . ann

∣∣∣∣∣∣∣∣∣
+ a31

∣∣∣∣∣∣
· · ·
· · ·
· · ·

∣∣∣∣∣∣ · · · ± an1

∣∣∣∣∣∣∣
a12 · · · a1n

...
...

a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣
(where the last sign ± is + if n is odd and - if n is even)

Then, each of the smaller determinants is computed recursively.

(A lot of work! But there are smarter ways...)
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Some properties of determinants

Theorem

For A and B two n × n matrices,

det(A · B) = det(A) · det(B).

The following are corollaries of the Theorem:
• det(A · B) = det(B · A).
• If A has an inverse, then det(A−1) = 1

det(A) .

• det(Ak) = (det(A))k , for any k ∈ N.

Proofs of the first two:
• det(A · B) = det(A) · det(B) = det(B) · det(A) = det(B · A).

(Note that det(A) and det(B) are simply numbers).
• If A has an inverse A−1 then

det(A) · det(A−1) = det(A · A−1) = det(I ) = 1, so
det(A−1) = 1

det(A) .
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Applications

• Determinants detect when a matrix is invertible

• Though we showed an inefficient way to compute
determinants, there is an efficient algorithm using, you
guessed it...Gaussian elimination!

• Solutions to non-homogeneous systems can be expressed
directly in terms of determinants using Cramer’s rule (wiki it!)

• Most importantly: determinants will be used to calculate
eigenvalues in the next lecture
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Vectors in a basis

Recall: a basis for a vector space V is a set of vectors
B = {v1, . . . , vn} in V such that:

1 They uniquely span V , i.e. for all v ∈ V , there exist unique
ai such that:

v = a1v1 + . . . + anvn

Because of this, we use a special notation for this linear
combination: a1

...
an


B

:= a1v1 + . . . + anvn
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Same vector, different outfits

The same vector can look different, depending on the choice of
basis: (

100 · (a + b)
b

)
S

=

(
a
b

)
B

Examples: (
100

0

)
S

=

(
1
0

)
B

(
300

1

)
S

=

(
2
1

)
B(

1
0

)
S

=

(
1

100
0

)
B

(
0
1

)
S

=

(
−1
1

)
B
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Transforming bases, part I

• Problem: given a vector written in B = {(100, 0), (100, 1)},
how can we write it in the standard basis? Just use the
definition:(

x
y

)
B

= x ·
(

100
0

)
+ y ·

(
100

1

)
=

(
100x + 100y

y

)
S

• Or, as matrix multiplication:(
100 100

0 1

)
︸ ︷︷ ︸

TB⇒S

·
(
x
y

)
︸︷︷︸

in basis B

=

(
100x + 100y

y

)
︸ ︷︷ ︸

in basis S

• Let TB⇒S be the matrix whose columns are the basis vectors
B. Then TB⇒S transforms a vector written in B into a vector
written in S.
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Transforming bases, part II

• How do we transform back? Need TS⇒B which undoes the
matrix TB⇒S .

• Solution: use the inverse! TS⇒B := (TB⇒S)−1

• Example:

(TB⇒S)−1 =

(
100 100

0 1

)−1

=

(
1

100 −1
0 1

)

• ...which indeed gives:(
1

100 −1
0 1

)
·
(
a
b

)
=

(
a−100b

100
b

)
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Transforming bases, part IV

• How about two non-standard bases?

B = {
(

100
0

)
,

(
100

1

)
} C = {

(
−1
2

)
,

(
1
2

)
}

• Problem: translate a vector from

(
a
b

)
B

to

(
a′

b′

)
C

• Solution: do this in two steps:

TB⇒S · v︸ ︷︷ ︸
first translate from B to S...

TS⇒C · TB⇒S · v︸ ︷︷ ︸
...then translate from S to C

= (T C⇒S)−1 · TB⇒S · v
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Transforming bases, example

• For bases:

B = {
(

100
0

)
,

(
100

1

)
} C = {

(
−1
2

)
,

(
1
2

)
}

• ...we need to find a′ and b′ such that(
a′

b′

)
C

=

(
a
b

)
B

• Translating both sides to the standard basis gives:(
−1 1
2 2

)
·
(
a′

b′

)
=

(
100 100

0 1

)
·
(
a
b

)
• This we can solve using the matrix-inverse:(

a′

b′

)
=

(
−1 1
2 2

)−1

·
(

100 100
0 1

)
·
(
a
b

)
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Transforming bases, example

For: (
a′

b′

)
︸ ︷︷ ︸

in basis C

=

(
−1 1
2 2

)−1

︸ ︷︷ ︸
TS⇒C

·
(

100 100
0 1

)
︸ ︷︷ ︸

TB⇒S

·
(
a
b

)
︸︷︷︸

in basis B

we compute(
−1 1
2 2

)−1

·
(

100 100
0 1

)
=

(
− 1

2
1
4

1
2

1
4

)
·
(

100 100
0 1

)
= 1

4

(
−200 −199
200 201

)

which gives: (
a′

b′

)
︸ ︷︷ ︸

in basis C

= 1
4

(
−200 −199
200 201

)
︸ ︷︷ ︸

TB⇒C

·
(
a
b

)
︸︷︷︸

in basis B
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Basis transformation theorem

Theorem

Let S be the standard basis for Rn and let B = {v1, . . . , vn} and
C = {w1, . . . ,wn} be other bases.

1 Then there is an invertible n × n basis transformation matrix
TB⇒C such that:a′1...

a′n

 = TB⇒C ·

a1
...
an

 with

a′1...
a′n


C

=

a1
...
an


B

2 TB⇒S is the matrix which has the vectors in B as columns,
and

TB⇒C := (T C⇒S)−1 · TB⇒S

3 T C⇒B = (TB⇒C)−1
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Matrices in other bases

• Since vectors can be written with respect to different bases,
so too can matrices.

• For example, let g be the linear map defined by:

g(

(
1
0

)
S

) =

(
0
1

)
S

g(

(
0
1

)
S

) =

(
1
0

)
S

• Then, naturally, we would represent g using the matrix:(
0 1
1 0

)
S

• Because indeed:(
0 1
1 0

)
·
(

1
0

)
=

(
0
1

)
and

(
0 1
1 0

)
·
(

0
1

)
=

(
1
0

)
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On the other hand...

• Lets look at what g does to another basis:

B = {
(

1
1

)
,

(
1
−1

)
}

• First (1, 1) ∈ B:

g(

(
1
0

)
B

) = g(

(
1
1

)
) = g(

(
1
0

)
+

(
0
1

)
) = . . .

• Then, by linearity:

. . . = g(

(
1
0

)
) + g(

(
0
1

)
) =

(
0
1

)
+

(
1
0

)
=

(
1
1

)
=

(
1
0

)
B
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On the other hand...

B = {
(

1
1

)
,

(
1
−1

)
}

• Similarly (1,−1) ∈ B:

g(

(
0
1

)
B

) = g(

(
1
−1

)
) = g(

(
1
0

)
−
(

0
1

)
) = . . .

• Then, by linearity:

. . . = g(

(
1
0

)
)−g(

(
0
1

)
) =

(
0
1

)
−
(

1
0

)
=

(
−1
1

)
= −

(
0
1

)
B
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A new matrix

• From this:

g(

(
1
0

)
B

) =

(
1
0

)
B

g(

(
0
1

)
B

) = −
(

0
1

)
B

• It follows that we should instead use this matrix to represent
g : (

1 0
0 −1

)
B

• Because indeed:(
1 0
0 −1

)
·
(

1
0

)
=

(
1
0

)
and

(
1 0
0 −1

)
·
(

0
1

)
= −

(
0
1

)
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A new matrix

• So on different bases, g acts in a totally different way!

g(

(
1
0

)
S

) =

(
0
1

)
S

g(

(
0
1

)
S

) =

(
1
0

)
S

g(

(
1
0

)
B

) =

(
1
0

)
B

g(

(
0
1

)
B

) = −
(

0
1

)
B

• ...and hence gets a totally different matrix:(
0 1
1 0

)
S

vs.

(
1 0
0 −1

)
B
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Transforming bases, part II

Theorem

Assume again we have two bases B, C for Rn.

If a linear map f : Rn → Rn has matrix A w.r.t. to basis B, then,
w.r.t. to basis C, f has matrix A′ :

A′ = TB⇒C · A · T C⇒B

Thus, via TB⇒C and TC⇒B one tranforms B-matrices into
C-matrices. In particular, a matrix can be translated from the
standard basis to basis B via:

A′ = TS⇒B · A · TB⇒S
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Example basis transformation, part I

• Consider the standard basis S = {(1, 0), (0, 1)} for R2, and as
alternative basis B = {(−1, 1), (0, 2)}

• Let the linear map f : R2 → R2, w.r.t. the standard basis S,
be given by the matrix:

A =

(
1 −1
2 3

)
• What is the representation A′ of f w.r.t. basis B?

• Since S is the standard basis, TB⇒S =

(
−1 0
1 2

)
contains the

B-vectors as its columns
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