

Matrix Calculations: Inverse and Basis Transformation

J. van de Wetering (and A. Kissinger)

Institute for Computing and Information Sciences Radboud University Nijmegen

spring 2017

Radboud University Nijmegen

Outline

Matrix inverse

Existence and uniqueness of inverse

Determinants

Basis transformations

Solving equations the old fashioned way...

• We now know that systems of equations look like this:

$$\boldsymbol{A} \cdot \boldsymbol{x} = \boldsymbol{b}$$

- The goal is to solve for *x*, in terms of *A* and *b*.
- Here comes some more wishful thinking:

$$oldsymbol{x} = rac{1}{oldsymbol{A}} \cdot oldsymbol{b}$$

 Well, we can't really *divide* by a matrix, but if we are lucky, we can find another matrix called A⁻¹ which acts like ¹/_A.

Radboud University Nijmegen

Inverse

Definition

The *inverse* of a matrix **A** is another matrix \mathbf{A}^{-1} such that:

$$\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$$

 Not all matrices have inverses, but when they do, we are happy, because:

So, how do we compute the inverse of a matrix?

Remember me?

Gaussian elimination as matrix multiplication

• Each step of Gaussian elimination can be represented by a matrix multiplication:

$$oldsymbol{A} \Rightarrow oldsymbol{A}' \qquad oldsymbol{A}' := oldsymbol{G} \cdot oldsymbol{A}$$

• For instance, multiplying the *i*-th row by *c* is given by:

$$\boldsymbol{G}_{(R_i:=cR_i)}\cdot \boldsymbol{A}$$

where $\boldsymbol{G}_{(R_i:=cR_i)}$ is just like the identity matrix, but $g_{ii} = c$.

• Exercise. What are the other Gaussian elimination matrices?

$$\boldsymbol{G}_{(R_i\leftrightarrow R_j)} \qquad \quad \boldsymbol{G}_{(R_i:=R_i+cR_j)}$$

Reduction to Echelon form

- The idea: treat **A** as a coefficient matrix, and compute its reduced Echelon form
- If the Echelon form of **A** has *n* pivots, then its reduced Echelon form is the identity matrix:

$$oldsymbol{A} \Rightarrow oldsymbol{A}_1 \Rightarrow oldsymbol{A}_2 \Rightarrow \cdots \Rightarrow oldsymbol{A}_p = oldsymbol{I}$$

Now, we can use our Gauss matrices to remember what we did:

$$A_1 := G_1 \cdot A$$

$$A_2 := G_2 \cdot G_1 \cdot A$$
...
$$A_n := G_n \cdots G_1 \cdot A =$$

Radboud University Nijmegen

Computing the inverse

• A ha!

$$\boldsymbol{G}_p \cdots \boldsymbol{G}_1 \cdot \boldsymbol{A} = \boldsymbol{I} \qquad \Longrightarrow \qquad \boldsymbol{A}^{-1} = \boldsymbol{G}_p \cdots \boldsymbol{G}_1$$

- So all we have to do is construct p different matrices and multiply them all together!
- Since I already have plans for this afternoon, lets take a shortcut:

Theorem

For C a matrix and (A|B) an augmented matrix:

$$\boldsymbol{C} \cdot (\boldsymbol{A} | \boldsymbol{B}) = (\boldsymbol{C} \cdot \boldsymbol{A} \mid \boldsymbol{C} \cdot \boldsymbol{B})$$

Radboud University Nijmegen

Computing the inverse

• Since Gaussian elimination is just multiplying by a certain matrix on the left...

$$oldsymbol{A} \Rightarrow oldsymbol{G} \cdot oldsymbol{A}$$

 ...doing Gaussian elimination (for A) on an augmented matrix applies G to both parts:

$$(oldsymbol{A}|oldsymbol{B}) \Rightarrow (oldsymbol{G}\cdotoldsymbol{A}\midoldsymbol{G}\cdotoldsymbol{B})$$

• So, if $G = A^{-1}$:

$$(\boldsymbol{A}|\boldsymbol{B}) \Rightarrow (\boldsymbol{A}^{-1}\cdot\boldsymbol{A} \mid \boldsymbol{A}^{-1}\cdot\boldsymbol{B}) = (\boldsymbol{I}\mid \boldsymbol{A}^{-1}\cdot\boldsymbol{B})$$

Radboud University Nijmegen

Computing the inverse

• We already (secretly) used this trick to solve:

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b} \qquad \Longrightarrow \qquad \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$$

- Here, we are only interested in the vector $m{A}^{-1}\cdotm{b}$
- Which is exactly what Gaussian elimination on the augmented matrix gives us:

$$(oldsymbol{A}|oldsymbol{b}) \Rightarrow (oldsymbol{I} \mid oldsymbol{A}^{-1} \cdot oldsymbol{b})$$

- To get the entire matrix, we just need to choose something clever to the right of the line
- Like this:

$$(\boldsymbol{A}|\boldsymbol{I}) \Rightarrow (\boldsymbol{I}| \ \boldsymbol{A}^{-1} \cdot \boldsymbol{I}) = (\boldsymbol{I}| \ \boldsymbol{A}^{-1})$$

Radboud University Nijmegen

Computing the inverse: example

For example, we compute the inverse of:

$$\boldsymbol{A} := \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

as follows:

$$\begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 1 & 2 & | & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 0 & 1 & | & -1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & | & 2 & -1 \\ 0 & 1 & | & -1 & 1 \end{pmatrix}$$

So:
$$\boldsymbol{A}^{-1} := \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

Computing the inverse: non-example

Unlike transpose, not every matrix has an inverse. For example, if we try to compute the inverse for:

B :=	(1	1
	(1	1)

we have:

$$\left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array} \right) \Rightarrow \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{array} \right)$$

We don't have enough pivots to continue reducing. So \boldsymbol{B} does not have an inverse.

When does a matrix have an inverse?

Theorem (Existence of inverses)

An $n \times n$ matrix has an inverse (or: is invertible) if and only if it has n pivots in its echelon form.

Soon, we will introduce another criterion for a matrix to be invertible, using determinants.

Radboud University Nijmegen

Uniqueness of the inverse

Note

Matrix multiplication is not commutative, so it could (*a priori*) be the case that:

- **A** has a right inverse: a **B** such that $\mathbf{A} \cdot \mathbf{B} = \mathbf{I}$ and
- **A** has a (different) left inverse: a **C** such that $\mathbf{C} \cdot \mathbf{A} = \mathbf{I}$.

However, this doesn't happen.

Radboud University Nijmegen

Uniqueness of the inverse

Theorem

If a matrix **A** has a left inverse and a right inverse, then they are equal. If $\mathbf{A} \cdot \mathbf{B} = \mathbf{I}$ and $\mathbf{C} \cdot \mathbf{A} = \mathbf{I}$, then $\mathbf{B} = \mathbf{C}$.

Proof. Multiply both sides of the first equation by **C**:

$$\mathbf{C} \cdot \mathbf{A} \cdot \mathbf{B} = \mathbf{C} \cdot \mathbf{I} \implies \mathbf{B} = \mathbf{C}$$

Corollary

If a matrix **A** has an inverse, it is unique.

Explicitly computing the inverse, part I

- Suppose we wish to find \mathbf{A}^{-1} for $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
- We need to find x, y, u, v with: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x & y \\ u & v \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- Multiplying the matrices on the LHS:

$$\begin{pmatrix} ax + bu & cx + du \\ ay + bv & cy + dv \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

...gives a system of 4 equations:

$$\begin{cases} ax + bu = 1\\ cx + du = 0\\ ay + bv = 0\\ cy + dv = 1 \end{cases}$$

Computing the inverse: the 2×2 case, part II

- Splitting this into two systems:
 - $\begin{cases} ax + bu = 1 \\ cx + du = 0 \end{cases} \quad \text{and} \quad \begin{cases} ay + bv = 0 \\ cy + dv = 1 \end{cases}$
- Solving the first system for (u, x) and the second system for (v, y) gives:

$$u = \frac{-c}{ad-bc}$$
 $x = \frac{d}{ad-bc}$ and $v = \frac{a}{ad-bc}$ $y = \frac{-b}{ad-bc}$

(assuming $bc - ad \neq 0$). Then:

$$\mathbf{A}^{-1} = \begin{pmatrix} x & y \\ u & v \end{pmatrix} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$$

• Conclusion:
$$\mathbf{A}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

 (learn this formula by heart

Computing the inverse: the 2×2 case, part III

Summarizing:

Theorem (Existence of an inverse of a 2×2 matrix)

A 2 \times 2 matrix

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

has an inverse (or: is invertible) if and only if $ad - bc \neq 0$, in which case its inverse is

$$\mathbf{A}^{-1} = rac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Radboud University Nijmegen

Example

• Let
$$\mathbf{P} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}$$
, so $a = \frac{8}{10}, b = \frac{1}{10}, c = \frac{2}{10}, d = \frac{9}{10}$
• $ad - bc = \frac{72}{100} - \frac{2}{100} = \frac{70}{100} = \frac{7}{10} \neq 0$ so the inverse exists!
• Thus:

$$P^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$= \frac{10}{7} \begin{pmatrix} 0.9 & -0.1 \\ -0.2 & 0.8 \end{pmatrix}$$

• Then indeed:

$$\frac{10}{7} \begin{pmatrix} 0.9 & -0.1 \\ -0.2 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} = \frac{10}{7} \begin{pmatrix} 0.7 & 0 \\ 0 & 0.7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Radboud University Nijmegen

Determinants

What a determinant does

For a square matrix A, the determinant det(A) is a number (in \mathbb{R}) It satisfies:

$$det(\mathbf{A}) = 0 \iff \mathbf{A} \text{ is not invertible}$$
$$\iff \mathbf{A}^{-1} \text{ does not exist}$$
$$\iff \mathbf{A} \text{ has } < n \text{ pivots in its echolon form}$$

Determinants have useful properties, but calculating determinants involves some work.

Radboud University Nijmegen

Determinant of a 2×2 matrix

• Assume
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

• Recall that the inverse \mathbf{A}^{-1} exists if and only if $ad - bc \neq 0$, and in that case is:

$$\boldsymbol{A}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

• In this 2×2 -case we define:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

• Thus, indeed: $det(\mathbf{A}) = 0 \iff \mathbf{A}^{-1}$ does not exist.

Determinant of a 2×2 matrix: example

• Recall the political transisition matrix

$$\boldsymbol{P} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 8 & 1 \\ 2 & 9 \end{pmatrix}$$

Then:

$$det(\boldsymbol{P}) = \frac{8}{10} \cdot \frac{9}{10} - \frac{1}{10} \cdot \frac{2}{10} \\ = \frac{72}{100} - \frac{2}{100} \\ = \frac{70}{100} = \frac{7}{10}$$

 We have already seen that *P*⁻¹ exists, so the determinant must be non-zero.

Radboud University Nijmegen

Determinant of a 3×3 matrix

• Assume
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

• Then one defines:

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= +a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

- Methodology:
 - take entries a_{i1} from first column, with alternating signs (+, -)
 - take determinant from square submatrix obtained by deleting the first column and the *i*-th row

Radboud University Nijmegen

Determinant of a 3×3 matrix, example

$$\begin{vmatrix} 1 & 2 & -1 \\ 5 & 3 & 4 \\ -2 & 0 & 1 \end{vmatrix} = 1 \begin{vmatrix} 3 & 4 \\ 0 & 1 \end{vmatrix} - 5 \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} + -2 \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix}$$
$$= (3-0) - 5(2-0) - 2(8+3)$$
$$= 3 - 10 - 22$$
$$= -29$$

Radboud University Nijmegen

The general, $n \times n$ case

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = +a_{11} \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & \cdots & a_{1n} \\ a_{32} & \cdots & a_{3n} \\ \vdots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + a_{31} \begin{vmatrix} \cdots \\ \cdots \\ \cdots \end{vmatrix} + \cdots \pm a_{n1} \begin{vmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{(n-1)2} & \cdots & a_{(n-1)n} \end{vmatrix}$$

(where the last sign \pm is + if *n* is odd and - if *n* is even)

Then, each of the smaller determinants is computed recursively.

(A lot of work! But there are smarter ways...)

J. van de Wetering

Some properties of determinants

Theorem

For **A** and **B** two $n \times n$ matrices,

$$\det(\boldsymbol{A}\cdot\boldsymbol{B}) = \det(\boldsymbol{A})\cdot\det(\boldsymbol{B}).$$

The following are corollaries of the Theorem:

- $det(\boldsymbol{A} \cdot \boldsymbol{B}) = det(\boldsymbol{B} \cdot \boldsymbol{A}).$
- If **A** has an inverse, then $det(\mathbf{A}^{-1}) = \frac{1}{det(\mathbf{A})}$.

•
$$\det(\boldsymbol{A}^k) = (\det(\boldsymbol{A}))^k$$
, for any $k \in \mathbb{N}$.

Proofs of the first two:

 det(A · B) = det(A) · det(B) = det(B) · det(A) = det(B · A). (Note that det(A) and det(B) are simply numbers).

• If
$$\boldsymbol{A}$$
 has an inverse \boldsymbol{A}^{-1} then
 $\det(\boldsymbol{A}) \cdot \det(\boldsymbol{A}^{-1}) = \det(\boldsymbol{A} \cdot \boldsymbol{A}^{-1}) = \det(\boldsymbol{I}) = 1$, so
 $\det(\boldsymbol{A}^{-1}) = \frac{1}{\det(\boldsymbol{A})}$.

Radboud University Nijmegen

Applications

- Determinants detect when a matrix is invertible
- Though we showed an inefficient way to compute determinants, there is an efficient algorithm using, you guessed it...Gaussian elimination!
- Solutions to non-homogeneous systems can be expressed directly in terms of determinants using *Cramer's rule* (wiki it!)
- Most importantly: determinants will be used to calculate *eigenvalues* in the next lecture

Radboud University Nijmegen

Vectors in a basis

Recall: a basis for a vector space V is a set of vectors $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ in V such that:

1 They **uniquely** span V, i.e. for all $v \in V$, there exist **unique** a_i such that:

$$\mathbf{v} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n$$

Because of this, we use a special notation for this linear combination:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}_{\mathcal{B}} := a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n$$

Radboud University Nijmegen

Same vector, different outfits

The *same vector* can look different, depending on the choice of basis:

$$\binom{100\cdot(a+b)}{b}_{\mathcal{S}} = \binom{a}{b}_{\mathcal{B}}$$

Examples:

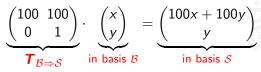
$$\begin{pmatrix} 100\\0 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} 1\\0 \end{pmatrix}_{\mathcal{B}} \qquad \qquad \begin{pmatrix} 300\\1 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} 2\\1 \end{pmatrix}_{\mathcal{B}}$$
$$\begin{pmatrix} 1\\0 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} \frac{1}{100}\\0 \end{pmatrix}_{\mathcal{B}} \qquad \qquad \begin{pmatrix} 0\\1 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} -1\\1 \end{pmatrix}_{\mathcal{B}}$$

Transforming bases, part I

• **Problem:** given a vector written in $\mathcal{B} = \{(100, 0), (100, 1)\}$, how can we write it in the standard basis? Just use the definition:

$$\binom{x}{y}_{\mathcal{B}} = x \cdot \binom{100}{0} + y \cdot \binom{100}{1} = \binom{100x + 100y}{y}_{\mathcal{B}}$$

• Or, as matrix multiplication:



Let *T*_{B⇒S} be the matrix whose *columns* are the basis vectors
 B. Then *T*_{B⇒S} *transforms* a vector written in B into a vector written in S.

Transforming bases, part II

- How do we transform back? Need *T*_{S⇒B} which undoes the matrix *T*_{B⇒S}.
- Solution: use the inverse! $\boldsymbol{T}_{\mathcal{S}\Rightarrow\mathcal{B}}:=(\boldsymbol{T}_{\mathcal{B}\Rightarrow\mathcal{S}})^{-1}$
- Example:

$$(\boldsymbol{T}_{\mathcal{B}\Rightarrow\mathcal{S}})^{-1} = \begin{pmatrix} 100 & 100 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{100} & -1 \\ 0 & 1 \end{pmatrix}$$

• ...which indeed gives:

$$\begin{pmatrix} \frac{1}{100} & -1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = \begin{pmatrix} \frac{\mathsf{a}-100\mathsf{b}}{100} \\ \mathsf{b} \end{pmatrix}$$

Transforming bases, part IV

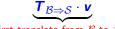
• How about two non-standard bases?

$$\mathcal{B} = \{ \begin{pmatrix} 100\\ 0 \end{pmatrix}, \begin{pmatrix} 100\\ 1 \end{pmatrix} \} \qquad \mathcal{C} = \{ \begin{pmatrix} -1\\ 2 \end{pmatrix}, \begin{pmatrix} 1\\ 2 \end{pmatrix} \}$$

• Problem: translate a vector from

$$m \begin{pmatrix} a \\ b \end{pmatrix}_{\mathcal{B}} to \begin{pmatrix} a' \\ b' \end{pmatrix}_{\mathcal{C}}$$

• Solution: do this in two steps:



first translate from ${\mathcal B}$ to ${\mathcal S}...$

$$\underbrace{\boldsymbol{\mathcal{T}}_{\mathcal{S} \Rightarrow \mathcal{C}} \cdot \boldsymbol{\mathcal{T}}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{v}}_{\mathcal{S} \Rightarrow \mathcal{C}} = (\boldsymbol{\mathcal{T}}_{\mathcal{C} \Rightarrow \mathcal{S}})^{-1} \cdot \boldsymbol{\mathcal{T}}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \boldsymbol{v}$$

...then translate from ${\mathcal S}$ to ${\mathcal C}$

Radboud University Nijmegen

Transforming bases, example

• For bases:

$$\mathcal{B} = \left\{ \begin{pmatrix} 100\\0 \end{pmatrix}, \begin{pmatrix} 100\\1 \end{pmatrix} \right\} \qquad \mathcal{C} = \left\{ \begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix} \right\}$$

...we need to find a' and b' such that

$$\begin{pmatrix} a'\\b'\end{pmatrix}_{\!\mathcal{C}} = \begin{pmatrix} a\\b\end{pmatrix}_{\!\mathcal{B}}$$

Translating both sides to the standard basis gives:

$$\begin{pmatrix} -1 & 1 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} 100 & 100 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}$$

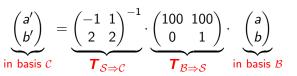
• This we can solve using the matrix-inverse:

$$\binom{a'}{b'} = \binom{-1}{2} \binom{1}{2} \frac{1}{2} \cdot \binom{100}{0} \frac{100}{10} \cdot \binom{a}{b}$$

Radboud University Nijmegen

Transforming bases, example

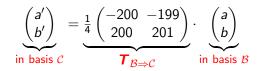
For:



we compute

$$\begin{pmatrix} -1 & 1 \\ 2 & 2 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 100 & 100 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} 100 & 100 \\ 0 & 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -200 & -199 \\ 200 & 201 \end{pmatrix}$$

which gives:



Radboud University Nijmegen

Basis transformation theorem

Theorem

Let S be the standard basis for \mathbb{R}^n and let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $\mathcal{C} = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ be other bases.

 Then there is an invertible n × n basis transformation matrix *T*_{B⇒C} such that:

$$\begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix} = \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{C}} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \quad \text{with} \quad \begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix}_{\mathcal{C}} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}_{\mathcal{B}}$$

Q T_{B⇒S} is the matrix which has the vectors in B as columns, and

$${\boldsymbol{\mathcal{T}}}_{\mathcal{B}\Rightarrow\mathcal{C}}:=({\boldsymbol{\mathcal{T}}}_{\mathcal{C}\Rightarrow\mathcal{S}})^{-1}\cdot{\boldsymbol{\mathcal{T}}}_{\mathcal{B}\Rightarrow\mathcal{S}}$$

$$\mathbf{3} \quad \mathbf{T}_{\mathcal{C} \Rightarrow \mathcal{B}} = (\mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{C}})^{-1}$$

Radboud University Nijmegen

Matrices in other bases

- Since *vectors* can be written with respect to different bases, so too can *matrices*.
- For example, let g be the linear map defined by:

$$g(\begin{pmatrix}1\\0\end{pmatrix}_{\mathcal{S}}) = \begin{pmatrix}0\\1\end{pmatrix}_{\mathcal{S}} \qquad g(\begin{pmatrix}0\\1\end{pmatrix}_{\mathcal{S}}) = \begin{pmatrix}1\\0\end{pmatrix}_{\mathcal{S}}$$

• Then, naturally, we would represent g using the matrix:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{\mathcal{S}}$$

• Because indeed:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Radboud University Nijmegen

On the other hand...

• Lets look at what g does to another basis:

$$\mathcal{B} = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \}$$

• First
$$(1,1) \in \mathcal{B}$$
:

$$g(\begin{pmatrix}1\\0\end{pmatrix}_{\mathcal{B}}) = g(\begin{pmatrix}1\\1\end{pmatrix}) = g(\begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}) =$$

• Then, by linearity:

$$\ldots = g\left(\begin{array}{c} 1\\ 0 \end{array} \right) + g\left(\begin{array}{c} 0\\ 1 \end{array} \right) = \begin{pmatrix} 0\\ 1 \end{pmatrix} + \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix}_{\mathcal{B}}$$

. . .

Radboud University Nijmegen

On the other hand...

$$\mathcal{B} = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \}$$

• Similarly $(1, -1) \in \mathcal{B}$:

$$g(\begin{pmatrix} 0\\1 \end{pmatrix}_{\mathcal{B}}) = g(\begin{pmatrix} 1\\-1 \end{pmatrix}) = g(\begin{pmatrix} 1\\0 \end{pmatrix} - \begin{pmatrix} 0\\1 \end{pmatrix}) =$$

• Then, by linearity:

$$\ldots = g\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) - g\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = - \begin{pmatrix} 0 \\ 1 \end{pmatrix}_{\mathcal{B}}$$

Radboud University Nijmegen

A new matrix

• From this:

$$g(\begin{pmatrix} 1\\0 \end{pmatrix}_{\mathcal{B}}) = \begin{pmatrix} 1\\0 \end{pmatrix}_{\mathcal{B}} \qquad g(\begin{pmatrix} 0\\1 \end{pmatrix}_{\mathcal{B}}) = -\begin{pmatrix} 0\\1 \end{pmatrix}_{\mathcal{B}}$$

It follows that we should instead use *this* matrix to represent g:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}_{\mathcal{B}}$$

Because indeed:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = - \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Radboud University Nijmegen

A new matrix

• So on different bases, g acts in a totally different way!

$$g(\begin{pmatrix}1\\0\end{pmatrix}_{\mathcal{S}}) = \begin{pmatrix}0\\1\end{pmatrix}_{\mathcal{S}} \qquad g(\begin{pmatrix}0\\1\end{pmatrix}_{\mathcal{S}}) = \begin{pmatrix}1\\0\end{pmatrix}_{\mathcal{S}}$$

$$g(\begin{pmatrix} 1\\ 0 \end{pmatrix}_{\mathcal{B}}) = \begin{pmatrix} 1\\ 0 \end{pmatrix}_{\mathcal{B}} \qquad g(\begin{pmatrix} 0\\ 1 \end{pmatrix}_{\mathcal{B}}) = -\begin{pmatrix} 0\\ 1 \end{pmatrix}_{\mathcal{B}}$$

• ...and hence gets a totally different matrix:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{\mathcal{S}} \qquad \text{vs.} \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}_{\mathcal{B}}$$

Transforming bases, part II

Theorem

Assume again we have two bases \mathcal{B}, \mathcal{C} for \mathbb{R}^n .

If a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$ has matrix **A** w.r.t. to basis \mathcal{B} , then, w.r.t. to basis \mathcal{C} , f has matrix **A**' :

$$\mathbf{A}' = \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{C}} \cdot \mathbf{A} \cdot \mathbf{T}_{\mathcal{C} \Rightarrow \mathcal{B}}$$

Thus, via $T_{\mathcal{B}\Rightarrow C}$ and $T_{\mathcal{C}\Rightarrow \mathcal{B}}$ one tranforms \mathcal{B} -matrices into \mathcal{C} -matrices. In particular, a matrix can be translated from the standard basis to basis \mathcal{B} via:

$$\mathbf{A}' = \mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \mathbf{A} \cdot \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$$

Example basis transformation, part I

- Consider the standard basis $S = \{(1,0), (0,1)\}$ for \mathbb{R}^2 , and as alternative basis $\mathcal{B} = \{(-1,1), (0,2)\}$
- Let the linear map $f : \mathbb{R}^2 \to \mathbb{R}^2$, w.r.t. the standard basis S, be given by the matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$

- What is the representation \mathbf{A}' of f w.r.t. basis \mathcal{B} ?
- Since S is the standard basis, $T_{B \Rightarrow S} = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$ contains the B-vectors as its columns