Matrix Calculations: Eigenvalues and Eigenvectors

A. Kissinger
Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2017

Outline

Eigenvalues and Eigenvectors

Applications

Example: political swingers, part I

- We take an extremely crude view on politics and distinguish only left and right wing political supporters
- We study changes in political views, per year
- Suppose we observe, for each year:
- 80% of lefties remain lefties and 20% become righties
- 90% of righties remain righties, and 10% become lefties

Questions

- start with a population $L=100, R=150$, and compute the number of lefties and righties after one year;
- similarly, after 2 years, and 3 years, ...
- We can represent these computations conveniently using matrix multiplication.

Political swingers, part II

- So if we start with a population $L=100, R=150$, then after one year we have:
- lefties: $0.8 \cdot 100+0.1 \cdot 150=80+15=95$
- righties: $0.2 \cdot 100+0.9 \cdot 150=20+135=155$
- If $\binom{L}{R}=\binom{100}{150}$, then after one year we have:

$$
\boldsymbol{P} \cdot\binom{100}{150}=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\binom{100}{150}=\binom{95}{155}
$$

- After two years we have:

$$
\boldsymbol{P} \cdot\binom{95}{155}=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\binom{95}{155}=\binom{91.5}{158.5}
$$

Political swingers, part IV

The situation after two years is obtained as:

$$
\begin{aligned}
\boldsymbol{P} \cdot \boldsymbol{P} \cdot\binom{L}{R} & =\underbrace{\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)}_{\text {do this multiplication first }} \cdot\binom{L}{R} \\
& =\left(\begin{array}{ll}
0.66 & 0.17 \\
0.34 & 0.83
\end{array}\right) \cdot\binom{L}{R}
\end{aligned}
$$

The situation after n years is described by the n-fold iterated matrix:

$$
\boldsymbol{P}^{n}=\underbrace{\boldsymbol{P} \cdot \boldsymbol{P} \cdots \boldsymbol{P}}_{n \text { times }}
$$

Etc. It looks like \boldsymbol{P}^{100} (or worse, $\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}$) is going to be a real pain to calculate. ...or is it?

Diagonal matrices

- Multiplying matrices is hard $):$
- But multiplying diagonal matrices is easy!

$$
\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right) \cdot\left(\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right)=\left(\begin{array}{cccc}
a w & 0 & 0 & 0 \\
0 & b x & 0 & 0 \\
0 & 0 & c y & 0 \\
0 & 0 & 0 & d z
\end{array}\right)
$$

- Strategy: find a basis \mathcal{B} where our matrix \boldsymbol{P} is diagonal:

$$
\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)_{\mathcal{S}} \leadsto\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right)_{\mathcal{B}}
$$

- So transform to \mathcal{B}, multiply, and (if we need to) transform back:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right)_{\mathcal{B}}^{100}=\left(\begin{array}{cc}
1^{100} & 0 \\
0 & (0.7)^{100}
\end{array}\right)_{\mathcal{B}} \approx\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)_{\mathcal{B}} \leadsto \frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)_{\mathcal{S}}
$$

Eigenvectors and eigenvalues

This magical basis \mathcal{B} consists of eigenvectors of a matrix.

Definition

Assume an $n \times n$ matrix \boldsymbol{A}.
An eigenvector for \boldsymbol{A} is a non-zero vector $\boldsymbol{v} \neq 0$ for which there is an eigenvalue $\lambda \in \mathbb{R}$ with:

$$
\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \cdot \boldsymbol{v}
$$

Example
 $\binom{1}{2}$ is an eigenvector for $\boldsymbol{P}=\frac{1}{10}\left(\begin{array}{ll}8 & 1 \\ 2 & 9\end{array}\right)$ with eigenvalue $\lambda=1$.

Two basic results

Lemma

An eigenvector has at most one eigenvalue
Proof: Assume $\boldsymbol{A} \cdot \boldsymbol{v}=\lambda_{1} \boldsymbol{v}$ and $\boldsymbol{A} \cdot \boldsymbol{v}=\lambda_{2} \boldsymbol{v}$. Then:

$$
0=\boldsymbol{A} \cdot \boldsymbol{v}-\boldsymbol{A} \cdot \boldsymbol{v}=\lambda_{1} \boldsymbol{v}-\lambda_{2} \boldsymbol{v}=\left(\lambda_{1}-\lambda_{2}\right) \boldsymbol{v}
$$

Since $\boldsymbol{v} \neq 0$ we must have $\lambda_{1}-\lambda_{2}=0$, and thus $\lambda_{1}=\lambda_{2}$.

Lemma

If \boldsymbol{v} is an eigenvector, then so is $a \cdot \boldsymbol{v}$, for each $a \neq 0$.

Proof: If $\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \boldsymbol{v}$, then:

$$
\begin{align*}
\boldsymbol{A} \cdot(a \boldsymbol{v}) & =a(\boldsymbol{A} \cdot \boldsymbol{v}) \quad \text { since matrix application is linear } \\
& =a(\lambda \boldsymbol{v})=(a \lambda) \boldsymbol{v}=(\lambda a) \boldsymbol{v}=\lambda(a \boldsymbol{v}) . \tag{ఆ}
\end{align*}
$$

Finding eigenvectors and eigenvalues

- We seek a eigenvector \boldsymbol{v} and eigenvalue $\lambda \in \mathbb{R}$ with $\boldsymbol{A} \cdot \boldsymbol{v}=\lambda \boldsymbol{v}$
- That is: λ and $\boldsymbol{v}(\boldsymbol{v} \neq 0)$ such that $(\boldsymbol{A}-\lambda \cdot \boldsymbol{I}) \cdot \boldsymbol{v}=0$
- Thus, we seek λ for which the system of equations corresponding to the matrix $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}$ has a non-zero solution
- Hence we seek $\lambda \in \mathbb{R}$ for which the matrix $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}$ does not have n pivots in its echelon form
- This means: we seek $\lambda \in \mathbb{R}$ such that $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}$ is not-invertible
- So we need: $\operatorname{det}(\boldsymbol{A}-\lambda \cdot \boldsymbol{I})=\mathbf{0}$
- This can be seen as an equation, with λ as variable
- This $\operatorname{det}(\boldsymbol{A}-\lambda \cdot \boldsymbol{I})$ is called the characteristic polynomial of the matrix A

Eigenvalue example I

- Task: find eigenvalues of matrix $\boldsymbol{A}=\left(\begin{array}{ll}1 & 5 \\ 3 & 3\end{array}\right)$
- $\boldsymbol{A}-\lambda \cdot \boldsymbol{I}=\left(\begin{array}{ll}1 & 5 \\ 3 & 3\end{array}\right)-\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)=\left(\begin{array}{cc}1-\lambda & 5 \\ 3 & 3-\lambda\end{array}\right)$
- Thus:

$$
\begin{aligned}
\operatorname{det}(A-\lambda \cdot I)=0 & \Longleftrightarrow\left|\begin{array}{cc}
1-\lambda & 5 \\
3 & 3-\lambda
\end{array}\right|=0 \\
& \Longleftrightarrow(1-\lambda)(3-\lambda)-5 \cdot 3=0 \\
& \Longleftrightarrow \lambda^{2}-4 \lambda-12=0 \\
& \Longleftrightarrow(\lambda-6)(\lambda+2)=0 \\
& \Longleftrightarrow \lambda=6 \text { or } \lambda=-2 .
\end{aligned}
$$

Recall: quadratic formula

- Consider a second-degree (quadratic) equation

$$
a x^{2}+b x+c=0 \quad(\text { for } a \neq 0)
$$

- Its solutions are:

$$
s_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- These solutions coincide (ie. $s_{1}=s_{2}$) if $b^{2}-4 a c=0$
- Real solutions do not exist if $b^{2}-4 a c<0$
(But "complex number" solutions do exist in this case.)
- [Recall, if s_{1} and s_{2} are solutions of $a x^{2}+b x+c=0$, then we can write $a x^{2}+b x+c=a\left(x-s_{1}\right)\left(x-s_{2}\right)$]

Higher degree polynomial equations

- For third and fourth degree polynomial equations there are (complicated) formulas for the solutions.
- For degree ≥ 5 no such formulas exist (proved by Abel)
- In those cases one can at most use approximations.
- In the examples in this course the solutions will typically be "obvious".

Eigenvalue example II

- Task: find eigenvalues of $\boldsymbol{A}=\left(\begin{array}{ccc}3 & -1 & -1 \\ -12 & 0 & 5 \\ 4 & -2 & -1\end{array}\right)$
- Characteristic polynomial is $\left|\begin{array}{ccc}3-\lambda & -1 & -1 \\ -12 & -\lambda & 5 \\ 4 & -2 & -1-\lambda\end{array}\right|$

$$
\left.\begin{array}{rl}
= & (3-\lambda)\left|\begin{array}{cc}
-\lambda & 5 \\
-2 & -1-\lambda
\end{array}\right|+12\left|\begin{array}{cc}
-1 & -1 \\
-2 & -1-\lambda
\end{array}\right|+4\left|\begin{array}{cc}
-1 & -1 \\
-\lambda & 5
\end{array}\right| \\
& =(3-\lambda)(\lambda(1+\lambda)+10)+12(1+\lambda-2)+4(-5-\lambda
\end{array}\right), ~(3-\lambda)\left(\lambda^{2}+\lambda+10\right)+12(\lambda-1)-20-4 \lambda .
$$

Eigenvalue example II (cntd)

- We need to solve $-\lambda^{3}+2 \lambda^{2}+\lambda-2=0$
- We try a few "obvious" values: $\lambda=1$ YES!
- Reduce from degree 3 to 2 , by separating $(\lambda-1)$ in:

$$
\begin{aligned}
-\lambda^{3}+2 \lambda^{2}+\lambda-2 & =(\lambda-1)\left(a \lambda^{2}+b \lambda+c\right) \\
& =a \lambda^{3}+(b-a) \lambda^{2}+(c-b) \lambda-c
\end{aligned}
$$

- This works for $a=-1, b=1, c=2$
- Now we use quadratic equation for $-\lambda^{2}+\lambda+2=0$
- Solutions: $\lambda=\frac{-1 \pm \sqrt{1+4 \cdot 2}}{-2}=\frac{-1 \pm 3}{-2}$ giving $\lambda=2,-1$
- All three eigenvalues: $\lambda=1, \lambda=-1, \lambda=2$

Getting eigenvectors

- Once we have eigenvalues λ_{i} for a matrix \boldsymbol{A} we can find corresponding eigenvectors \boldsymbol{v}_{i}, with $\boldsymbol{A} \cdot \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}$
- These \boldsymbol{v}_{i} appear as the solutions of $\left(\boldsymbol{A}-\lambda_{i} \cdot \boldsymbol{I}\right) \cdot \boldsymbol{v}=0$
- We can make a convenient choice, using that scalar multiplications a $\cdot \boldsymbol{v}_{i}$ are also a solution
- Once λ is known, getting v is just a matter of solving this homogenious system:

$$
(\boldsymbol{A}-\lambda \cdot \boldsymbol{I}) \cdot \boldsymbol{v}=\mathbf{0}
$$

Eigenvector example I

Recall the eigenvalues $\lambda=-2, \lambda=6$ for $\boldsymbol{A}=\left(\begin{array}{ll}1 & 5 \\ 3 & 3\end{array}\right)$
$\lambda=-2$ gives matrix $\boldsymbol{A}-\lambda \boldsymbol{I}=\left(\begin{array}{cc}1+2 & 5 \\ 3 & 3+2\end{array}\right)=\left(\begin{array}{ll}3 & 5 \\ 3 & 5\end{array}\right)$

- Corresponding system of equations $\left\{\begin{array}{l}3 x+5 y=0 \\ 3 x+5 y=0\end{array}\right.$
- Solution choice $x=-5, y=3$, so $(-5,3)$ is eigenvector (of matrix \boldsymbol{A} with eigenvalue $\lambda=-2$)
- Check:

$$
\left(\begin{array}{ll}
1 & 5 \\
3 & 3
\end{array}\right) \cdot\binom{-5}{3}=\binom{-5+15}{-15+9}=\binom{10}{-6}=-2\binom{-5}{3}
$$

Eigenvector example I (cntd)

$\lambda=6$ gives matrix $\boldsymbol{A}-\lambda \boldsymbol{I}=\left(\begin{array}{cc}1-6 & 5 \\ 3 & 3-6\end{array}\right)=\left(\begin{array}{cc}-5 & 5 \\ 3 & -3\end{array}\right)$

- Corresponding system of equations $\left\{\begin{aligned}-5 x+5 y & =0 \\ 3 x-3 y & =0\end{aligned}\right.$
- Solution choice $x=1, y=1$, so $(1,1)$ is eigenvector
- Check:

$$
\left(\begin{array}{ll}
1 & 5 \\
3 & 3
\end{array}\right) \cdot\binom{1}{1}=\binom{1+5}{3+3}=\binom{6}{6}=6\binom{1}{1}
$$

Diagonalisation theorem

Theorem

Let \boldsymbol{A} be an $n \times n$ matrix, represented wrt. the standard basis \mathcal{S}. Assume \boldsymbol{A} has n (pairwise) different eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, with corresponding eigenvectors $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then:
(1) These v_{1}, \ldots, v_{n} are linearly independent (and thus a basis)
(2) There is an invertible basis transformation matrix $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$ giving a diagonalisation:

$$
\boldsymbol{A}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & & 0 \\
0 & & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

Thus, this diagonal matrix is the representation of \boldsymbol{A} wrt. the eigenvector basis \mathcal{B}.

Multiple eigenvalues

- It may happen that a particular eigenvalue occurs multiple times for a matrix
- eg. the charachterstic polynomial of $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ has $\lambda=1$ twice as a root.
- for this $\lambda=1$ there are two independent eigenvectors, namely $\binom{1}{0}$ and $\binom{0}{1}$
- In general, if an eigenvalue λ occurs n times, then there are at most n independent eigenvectors for this λ
- linear combinations of eigenvectors with the same eigenvalue λ are also eigenvectors with eigenvalue λ
- they form a subspace of dimension n : the eigenspace of λ.
- if λ are all distinct, eigenspaces are all 1 -dimensional

Applications: data processing

- Problem: suppose we have a HUGE matrix, and we want to know approximately what it looks like
- Solution: diagonalise it using its basis \mathcal{B} of eigenvectors...then throw away all the little ones:

$$
\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \cdots & \lambda_{n-1} & 0 \\
0 & 0 & \cdots & 0 & \lambda_{n}
\end{array}\right)_{\mathcal{B}} \approx\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)_{\mathcal{B}}
$$

- If there are only a few big λ 's, and lots of little λ 's, we get almost the same matrix back
- A more sophisticated technique based on eigenvalues is called principle compent analysis (very common in big data applications)

Applications: quantum mechanics/computation

- quantum states can be represented by vectors, and measurements by linear maps, e.g. rotations:

- eigenvalues represent measurement outcomes and eigenvectors represent collapse of the quantum state

Applications: probabilistic transition systems

- In probabilistic transition systems (Markov chains)

- Eigenvalues/vectors are used to make calculations more efficient, and elaborate long-term behaviour

Political swingers re-revisited, part I

- Recall the political transition matrix

$$
\boldsymbol{P}=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)=\frac{1}{10}\left(\begin{array}{ll}
8 & 1 \\
2 & 9
\end{array}\right)
$$

- Eigenvalues λ are obtained via $\operatorname{det}(\boldsymbol{P}-\lambda \boldsymbol{I})=\mathbf{0}$:

$$
\left(\frac{8}{10}-\lambda\right)\left(\frac{9}{10}-\lambda\right)-\frac{1}{10} \cdot \frac{2}{10}=\lambda^{2}-\frac{17}{10} \lambda+\frac{7}{10}=0
$$

- Solutions via quadratic equation

$$
\begin{aligned}
\frac{1}{2}\left(\frac{17}{10} \pm \sqrt{\left(\frac{17}{10}\right)^{2}-\frac{28}{10}}\right) & =\frac{1}{2}\left(\frac{17}{10} \pm \sqrt{\frac{289}{100}-\frac{280}{100}}\right) \\
& =\frac{1}{2}\left(\frac{17}{10} \pm \sqrt{\frac{9}{100}}\right) \\
& =\frac{1}{2}\left(\frac{17}{10} \pm \frac{3}{10}\right)
\end{aligned}
$$

- Hence $\lambda=\frac{1}{2} \cdot \frac{20}{10}=1$ or $\lambda=\frac{1}{2} \cdot \frac{14}{10}=\frac{7}{10}=0.7$.

Political swingers re-revisited, part II

- Compute the eigenvectors by plugging eigenvalues $\lambda=1,0.7$ into:

$$
\left(\begin{array}{cc}
0.8-\lambda & 0.1 \\
0.2 & 0.9-\lambda
\end{array}\right) \cdot\binom{x}{y}=\mathbf{0}
$$

and find a solution to the resulting homogeneous system.

- That is, we need to solve this system, for $\lambda=1,0.7$:

$$
\left\{\begin{array}{l}
(0.8-\lambda) x+0.1 y=0 \\
0.2 x+(0.9-\lambda) y=0
\end{array}\right.
$$

Political swingers re-revisited, part II

$\lambda=1$ solve: $\left\{\begin{array}{l}-0.2 x+0.1 y=0 \\ 0.2 x+-0.1 y=0\end{array}\right.$ giving $(1,2)$ as eigenvector

- Indeed $\left(\begin{array}{ll}0.8 & 0.1 \\ 0.2 & 0.9\end{array}\right) \cdot\binom{1}{2}=\binom{0.8+0.2}{0.2+1.8}=\binom{1}{2}=1\binom{1}{2}$
$\lambda=0.7$ solve: $\left\{\begin{array}{l}0.1 x+0.1 y=0 \\ 0.2 x+0.2 y=0\end{array} \quad\right.$ giving $(1,-1)$ as eigenvector
- Check:

$$
\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \cdot\binom{1}{-1}=\binom{0.8-0.1}{0.2-0.9}=\binom{0.7}{-0.7}=0.7\binom{1}{-1}
$$

Political swingers re-revisited, part III

- The eigenvalues 1 and 0.7 are different, and indeed the eigenvectors $(1,2)$ and $(1,-1)$ are independent
- The coordinate-translation $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$ from the eigenvector basis $\mathcal{B}=\{(1,2),(1,-1)\}$ to the standard basis $\mathcal{S}=\{(1,0),(0,1)\}$ consists of the eigenvectors:

$$
\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}=\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)
$$

- In the reverse direction:

$$
\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}=\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}=\frac{1}{-1-2}\left(\begin{array}{cc}
-1 & -1 \\
-2 & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)
$$

Political swingers re-revisited, part IV

We explicitly check the diagonalisation equation:

$$
\begin{aligned}
\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} & =\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
1 & 0.7 \\
2 & -0.7
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
2.4 & 0.3 \\
0.6 & 2.7
\end{array}\right) \\
& =\left(\begin{array}{cc}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)
\end{aligned}
$$

$=P, \quad$ the original political transition matrix!

Political swingers re-revisited, part V

This diagonalisation $\boldsymbol{P}=\boldsymbol{T} \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & 0.7\end{array}\right) \cdot \boldsymbol{T}^{-1}$ is useful for iteration

$$
\begin{aligned}
\cdot \boldsymbol{P}^{2} & =\boldsymbol{T} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right) \cdot \boldsymbol{T}^{-1} \cdot \boldsymbol{T} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right) \cdot \boldsymbol{T}^{-1} \\
& =\boldsymbol{T} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right) \cdot \boldsymbol{T}^{-1} \\
& =\boldsymbol{T} \cdot\left(\begin{array}{cc}
1^{2} & 0 \\
0 & (0.7)^{2}
\end{array}\right) \cdot \boldsymbol{T}^{-1} \\
\cdot \boldsymbol{P}^{n} & =\boldsymbol{T} \cdot\left(\begin{array}{cc}
(1)^{n} & 0 \\
0 & (0.7)^{n}
\end{array}\right) \cdot \boldsymbol{T}^{-1}
\end{aligned}
$$

- $\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}=\boldsymbol{T} \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \cdot \boldsymbol{T}^{-1} \quad$ since $\lim _{n \rightarrow \infty}(0.7)^{n}=0$

$$
=\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)
$$

Political swingers re-revisited, part VI

- We now have a fairly easy way to compute $\boldsymbol{P}^{n} \cdot\binom{100}{150}$
- ...and we can see that in the limit it goes to:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \boldsymbol{P}^{n} \cdot\binom{100}{150} & =\frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) \cdot\binom{100}{150} \\
& =\frac{1}{3}\binom{250}{500}=\binom{83 \frac{1}{3}}{166 \frac{2}{3}}
\end{aligned}
$$

(This was already suggested earlier, but now we can calculate it!)

Note: we used this useful limit result

$\lim _{n \rightarrow \infty} a^{n}=0, \quad$ for $|a|<1$.

Rental car returns, part I

- Assume a car rental company with three locations, for picking up and returning cars, written as P, Q, R
- The weekly distribution history shows:

Location P	60% stay at P	10% go to Q	30% go to R
Location Q	10% go to P	80% stay at Q	10% go to R
Location R	10% go to P	20% go to Q	70% stay at R

Rental car returns, part II

Two possible representations of these return distributions
(1) As probabilistic transition system

Rental car returns, part III

(2) As a transition matrix

$$
\boldsymbol{C}=\left(\begin{array}{lll}
0.6 & 0.1 & 0.1 \\
0.1 & 0.8 & 0.2 \\
0.3 & 0.1 & 0.7
\end{array}\right)=\frac{1}{10}\left(\begin{array}{lll}
6 & 1 & 1 \\
1 & 8 & 2 \\
3 & 1 & 7
\end{array}\right)
$$

This matrix \boldsymbol{C} is called a Stochastic matrix or Markov chain:

- all entries are in the unit interval $[0,1]$ of probabilities
- in each column, the entries add up to 1

Rental car returns, part IV

Task:

- Start from the following division of cars:

$$
P=Q=R=200 \quad \text { ie. } \quad\left(\begin{array}{c}
P \\
Q \\
R
\end{array}\right)=\left(\begin{array}{l}
200 \\
200 \\
200
\end{array}\right)
$$

- Determine the division of cars after two weeks
- Determine the equilibrium division, reached as the number of weeks goes to infinity

Rental car returns, part V

- After one week we have:

$$
\begin{aligned}
\boldsymbol{C} \cdot\left(\begin{array}{l}
200 \\
200 \\
200
\end{array}\right) & =\frac{1}{10}\left(\begin{array}{lll}
6 & 1 & 1 \\
1 & 8 & 2 \\
3 & 1 & 7
\end{array}\right) \cdot\left(\begin{array}{l}
200 \\
200 \\
200
\end{array}\right) \\
& =\frac{1}{10}\left(\begin{array}{l}
1200+200+200 \\
200+1600+400 \\
600+200+1400
\end{array}\right)=\left(\begin{array}{l}
160 \\
220 \\
220
\end{array}\right)
\end{aligned}
$$

- After two weeks we have:

$$
\begin{aligned}
\boldsymbol{C} \cdot\left(\begin{array}{l}
160 \\
220 \\
220
\end{array}\right) & =\frac{1}{10}\left(\begin{array}{lll}
6 & 1 & 1 \\
1 & 8 & 2 \\
3 & 1 & 7
\end{array}\right) \cdot\left(\begin{array}{l}
160 \\
220 \\
220
\end{array}\right) \\
& =\frac{1}{10}\left(\begin{array}{c}
960+220+220 \\
160+1760+440 \\
480+220+1540
\end{array}\right)=\left(\begin{array}{l}
140 \\
236 \\
224
\end{array}\right)
\end{aligned}
$$

Rental car returns, part VI

- For the equilibrium we first compute eigenvalues and eigenvectors of the transition matrix \mathbf{C}
- The characteristic polynomial is:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
0.6-\lambda & 0.1 & 0.1 \\
0.1 & 0.8-\lambda & 0.2 \\
0.3 & 0.1 & 0.7-\lambda
\end{array}\right| \\
& =\frac{1}{1000}[(6-10 \lambda)((8-10 \lambda)(7-10 \lambda)-2) \\
& \\
& \quad-1((7-10 \lambda)-1)+3(2-1(8-10 \lambda))] \\
& =\cdots \\
& = \\
& =\frac{1}{1000}\left[-1000 \lambda^{3}+2100 \lambda^{2}-1400 \lambda+300\right] \\
& = \\
& =-\lambda^{3}+2.1 \lambda^{2}-1.4 \lambda+0.3 .
\end{aligned}
$$

Rental car returns, part VII

- Next we solve $-\lambda^{3}+2.1 \lambda^{2}-1.4 \lambda+0.3=0$.
- We seek a trivial solution; again $\lambda=1$ works!
- Now we can write

$$
-\lambda^{3}+2.1 \lambda^{2}-1.4 \lambda+0.3=(\lambda-1)\left(-\lambda^{2}+1.1 \lambda-0.3\right)
$$

- We can apply the quadratic formula to the second part:

$$
\begin{aligned}
\frac{-1.1 \pm \sqrt{(1.1)^{2}-4 \cdot 0.3}}{-2} & =\frac{-1.1 \pm \sqrt{1.21-1.2}}{-2} \\
& =\frac{-1.1 \pm \sqrt{0.01}}{-2} \\
& =\frac{-1.1 \pm 0.1}{-2}
\end{aligned}
$$

- This yields additional eigenvalues: $\lambda=0.5$ and $\lambda=0.6$.

Rental car returns, part VIII

$\lambda=1$ has eigenvector ($4,9,7$); indeed:
$\boldsymbol{C} \cdot\left(\begin{array}{l}4 \\ 9 \\ 7\end{array}\right)=\frac{1}{10}\left(\begin{array}{lll}6 & 1 & 1 \\ 1 & 8 & 2 \\ 3 & 1 & 7\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 9 \\ 7\end{array}\right)=\frac{1}{10}\left(\begin{array}{c}24+9+7 \\ 4+72+14 \\ 12+9+49\end{array}\right)=1\left(\begin{array}{l}4 \\ 9 \\ 7\end{array}\right)$
$\lambda=0.6$ has eigenvector $(0,-1,1)$:
$\boldsymbol{C} \cdot\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)=\frac{1}{10}\left(\begin{array}{lll}6 & 1 & 1 \\ 1 & 8 & 2 \\ 3 & 1 & 7\end{array}\right) \cdot\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)=\frac{1}{10}\left(\begin{array}{l}-1+1 \\ -8+2 \\ -1+7\end{array}\right)=0.6\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$
$\lambda=0.5$ has eigenvector $(-1,-1,2)$:
$\boldsymbol{C} \cdot\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=\frac{1}{10}\left(\begin{array}{lll}6 & 1 & 1 \\ 1 & 8 & 2 \\ 3 & 1 & 7\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=\frac{1}{10}\left(\begin{array}{c}-6-1+2 \\ -1-8+4 \\ -3-1+14\end{array}\right)=0.5\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$

Rental car returns, part IX

- Now: eigenvector basis $\mathcal{B}=\{(4,9,7),(0,-1,1),(-1,-1,2)\}$ and standard basis as $\mathcal{S}=\{(1,0,0),(0,1,0),(0,0,1)\}$.
- Then we can do change-of-coordinates back-and-forth:

$$
\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}=\left(\begin{array}{ccc}
4 & 0 & -1 \\
9 & -1 & -1 \\
7 & 1 & 2
\end{array}\right) \quad \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}=\frac{1}{20}\left(\begin{array}{ccc}
1 & 1 & 1 \\
25 & -15 & 5 \\
-16 & 4 & 4
\end{array}\right)
$$

- These translation matrices yield a diagonalisation:

$$
\boldsymbol{C}=\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.6 & 0 \\
0 & 0 & 0.5
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

Rental car returns, part X

- Thus:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \boldsymbol{C}^{n} & =\lim _{n \rightarrow \infty} \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{ccc}
1^{n} & 0 & 0 \\
0 & (0.6)^{n} & 0 \\
0 & 0 & (0.5)^{n}
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \\
& =\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}=\frac{1}{20}\left(\begin{array}{lll}
4 & 4 & 4 \\
9 & 9 & 9 \\
7 & 7 & 7
\end{array}\right)
\end{aligned}
$$

- Finally, the equilibrium starting from $P=Q=R=200$ is:

$$
\frac{1}{20}\left(\begin{array}{lll}
4 & 4 & 4 \\
9 & 9 & 9 \\
7 & 7 & 7
\end{array}\right) \cdot\left(\begin{array}{l}
200 \\
200 \\
200
\end{array}\right)=\left(\begin{array}{l}
120 \\
270 \\
210
\end{array}\right)
$$

