# Matrix Calculations: Inner Products \& Orthogonality 

A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: autumn 2017

## Outline

Inner products and orthogonality

Orthogonalisation

Application: computational linguistics

Wrapping up

## Length of a vector

- Each vector $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ has a length (aka. norm), written as $\|\boldsymbol{v}\|$
- This $\|\boldsymbol{v}\|$ is a non-negative real number: $\|\boldsymbol{v}\| \in \mathbb{R},\|\boldsymbol{v}\| \geq 0$
- Some special cases:
- $n=1$ : so $\boldsymbol{v} \in \mathbb{R}$, with $\|\boldsymbol{v}\|=|\boldsymbol{v}|$
- $n=2$ : so $\boldsymbol{v}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and with Pythagoras:

$$
\|\boldsymbol{v}\|^{2}=x_{1}^{2}+x_{2}^{2} \quad \text { and thus } \quad\|\boldsymbol{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

- $n=3$ : so $\boldsymbol{v}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ and also with Pythagoras:

$$
\|\boldsymbol{v}\|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \quad \text { and thus } \quad\|\boldsymbol{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
$$

- In general, for $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
\|\boldsymbol{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

## Distance between points

- Assume now we have two vectors $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$, written as:

$$
\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right) \quad \boldsymbol{w}=\left(y_{1}, \ldots, y_{n}\right)
$$

-What is the distance between the endpoints?

- commonly written as $d(\boldsymbol{v}, \boldsymbol{w})$
- again, $d(\boldsymbol{v}, \boldsymbol{w})$ is a non-negative real
- For $n=2$,

$$
d(\boldsymbol{v}, \boldsymbol{w})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}=\|\boldsymbol{v}-\boldsymbol{w}\|=\|\boldsymbol{w}-\boldsymbol{v}\|
$$

- This will be used also for other $n$, so:

$$
d(\boldsymbol{v}, \boldsymbol{w})=\|\boldsymbol{v}-\boldsymbol{w}\|
$$

## Length is fundamental

- Distance can be obtained from length of vectors
- Angles can also be obtained from length
- Both length of vectors and angles between vectors can be derived from the notion of inner product


## Inner product definition

## Definition

For vectors $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{w}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ define their inner product as the real number:

$$
\begin{aligned}
\langle\boldsymbol{v}, \boldsymbol{w}\rangle & =x_{1} y_{1}+\cdots+x_{n} y_{n} \\
& =\sum_{1 \leq i \leq n} x_{i} y_{i}
\end{aligned}
$$

Note: Length $\|\boldsymbol{v}\|$ can be expressed via inner product:

$$
\|\boldsymbol{v}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}=\langle\boldsymbol{v}, \boldsymbol{v}\rangle, \quad \text { so } \quad\|\boldsymbol{v}\|=\sqrt{\langle\boldsymbol{v}, \boldsymbol{v}\rangle} .
$$

## Inner products via matrix transpose

## Matrix transposition

For an $m \times n$ matrix $\boldsymbol{A}$, the transpose $\boldsymbol{A}^{T}$ is the $n \times m$ matrix $\boldsymbol{A}$ obtained by mirroring in the diagonal:

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
& \vdots & \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)^{T}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{m 1} \\
& \vdots & \\
a_{1 n} & \cdots & a_{m n}
\end{array}\right)
$$

In other words, the rows of $\boldsymbol{A}$ become the columns of $\boldsymbol{A}^{T}$.
The inner product of $\boldsymbol{v}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{w}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ is then a matrix product:

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}=\left(\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\boldsymbol{v}^{T} \cdot \boldsymbol{w} .
$$

## Properties of the inner product

(1) The inner product is symmetric in $\boldsymbol{v}$ and $\boldsymbol{w}$ :

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{w}, \boldsymbol{v}\rangle
$$

(2) It is linear in $\boldsymbol{v}$ :

$$
\left\langle\boldsymbol{v}+\boldsymbol{v}^{\prime}, \boldsymbol{w}\right\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle+\left\langle\boldsymbol{v}^{\prime}, \boldsymbol{w}\right\rangle \quad\langle a \boldsymbol{v}, \boldsymbol{w}\rangle=a\langle\boldsymbol{v}, \boldsymbol{w}\rangle
$$

...and hence also in $\boldsymbol{w}$ (by symmetry):

$$
\left\langle\boldsymbol{v}, \boldsymbol{w}+\boldsymbol{w}^{\prime}\right\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle+\left\langle\boldsymbol{v}, \boldsymbol{w}^{\prime}\right\rangle \quad\langle\boldsymbol{v}, a \boldsymbol{w}\rangle=a\langle\boldsymbol{v}, \boldsymbol{w}\rangle
$$

(3) And it is positive definite:

$$
\boldsymbol{v} \neq \mathbf{0} \Longrightarrow\langle\boldsymbol{v}, \boldsymbol{v}\rangle>0
$$

## Inner products and angles, part I

For $\boldsymbol{v}=\boldsymbol{w}=(1,0),\langle\boldsymbol{v}, \boldsymbol{w}\rangle=1$.
As we start to rotate $\boldsymbol{w},\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ goes down until 0 :

... and then goes to -1 :

...then down to 0 again, then to 1 , then repeats...

## Cosine

Plotting these numbers vs. the angle between the vectors, we get:


It looks like $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ depends on the cosine of the angle between $\boldsymbol{v}$ and $\boldsymbol{w}$. Let's prove it!

## Recall: definition of cosine



$$
\cos (\gamma)=\frac{x}{a} \quad \Longrightarrow \quad x=a \cos (\gamma)
$$

## The cosine rule



Claim: $\cos (\gamma)=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
Proof: We have three equations to play with:

$$
x^{2}+y^{2}=a^{2} \quad(b-x)^{2}+y^{2}=c^{2} \quad x=a \cos (\gamma)
$$

...do the math. ©

## Inner products and angles, part II

Translating this to something about vectors:

gives:

$$
\cos (\gamma)=\frac{\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}-\|\boldsymbol{v}-\boldsymbol{w}\|^{2}}{2\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

Let's clean this up...

## Inner products and angles, part II

Starting from the cosine rule:

$$
\begin{aligned}
& \cos (\gamma)=\frac{\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}-\|\boldsymbol{v}-\boldsymbol{w}\|^{2}}{2\|\boldsymbol{v}\|\|\boldsymbol{w}\|} \\
& =\frac{x_{1}^{2}+\cdots+x_{n}^{2}+y_{1}^{2}+\cdots+y_{n}^{2}-\left(x_{1}-y_{1}\right)^{2}-\cdots-\left(x_{n}-y_{n}\right)^{2}}{2\|\boldsymbol{v}\|\|\boldsymbol{w}\|} \\
& =\frac{2 x_{1} y_{1}+\cdots+2 x_{n} y_{n}}{2\|\boldsymbol{v}\|\|\boldsymbol{w}\|} \\
& =\frac{x_{1} y_{1}+\cdots+x_{n} y_{n}}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|} \\
& =\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|} \quad \text { remember this: } \cos (\gamma)=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
\end{aligned}
$$

Thus, angles between vectors are expressible via the inner product (since $\|\boldsymbol{v}\|=\sqrt{\langle\boldsymbol{v}, \boldsymbol{v}\rangle})$.

## Examples

- What is the angle between $(1,1)$ and $(-1,-1)$ ?

$$
\cos \gamma=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=\frac{-2}{\sqrt{2} \cdot \sqrt{2}}=\frac{-2}{2}=-1 \quad \Longrightarrow \quad \gamma=\pi
$$

-What is the angle between $(1,0)$ and $(1,1)$ ?

$$
\cos \gamma=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=\frac{1}{1 \cdot \sqrt{2}}=\frac{1}{\sqrt{2}} \quad \Longrightarrow \quad \gamma=\frac{\pi}{4}
$$

-What is the angle between $(1,0)$ and $(0,1)$ ?

$$
\cos \gamma=\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=\frac{0}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}=0 \quad \Longrightarrow \quad \gamma=\frac{\pi}{2}
$$

## Orthogonality

## Definition

Two vectors $\boldsymbol{v}, \boldsymbol{w}$ are called orthogonal if $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0$. This is written as $v \perp w$.

Explanation: orthogonality means that the cosine of the angle between the two vectors is 0 ; hence they are perpendicular.

## Example

Which vectors $(x, y) \in \mathbb{R}^{2}$ are orthogonal to $(1,1)$ ?
Examples, are $(1,-1)$ or $(-1,1)$, or more generally $(x,-x)$.
This follows from an easy computation:

$$
\langle(x, y),(1,1)\rangle=0 \Longleftrightarrow x+y=0 \Longleftrightarrow y=-x
$$

## Orthogonality and independence

## Lemma

Call a set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of non-zero vectors orthogonal if every pair of different vectors is orthogonal.
(1) orthogonal vectors are always independent,
(2) independent vectors are not always orthogonal.

Proof: The second point is easy: $(1,1)$ and $(1,0)$ are independent, but not orthogonal

## Orthogonality and independence (cntd)

(Orthogonality $\Longrightarrow$ Independence): assume $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ is orthogonal and $a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}=0$. Then for each $i \leq n$ :

$$
\begin{aligned}
0 & =\left\langle 0, \boldsymbol{v}_{i}\right\rangle \\
& =\left\langle a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \\
& =\left\langle a_{1} \boldsymbol{v}_{1}, \boldsymbol{v}_{i}\right\rangle+\cdots+\left\langle a_{n} \boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \\
& =a_{1}\left\langle\mathbf{v}_{1}, \boldsymbol{v}_{i}\right\rangle+\cdots+a_{n}\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \\
& =a_{i}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle \quad \text { since }\left\langle\boldsymbol{v}_{j}, \boldsymbol{v}_{i}\right\rangle=0 \text { for } j \neq i
\end{aligned}
$$

But since $\boldsymbol{v}_{i} \neq 0$ we have $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle \neq 0$, and thus $a_{i}=0$.
This holds for each $i$, so $a_{1}=\cdots=a_{n}=0$, and we have proven independence.

## Orthogonal and orthonormal bases

## Definition

A basis $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of a vector space with an inner product is called:
(1) orthogonal if $\mathcal{B}$ is an orthogonal set: $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0$ if $i \neq j$
(2) orthonormal if it is orthogonal and $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle=\left\|\boldsymbol{v}_{i}\right\|=1$, for each $i$

## Example

The standard basis $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \cdots,(0, \cdots, 0,1)$ is an orthonormal basis of $\mathbb{R}^{n}$.

## Orthonormal basis transformations

- Orthonormal bases are very handy! Example: basis transformations.
- For any basis $\mathcal{B}$, the matrix $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$ is easy to compute: it has the vectors in $\mathcal{B}$ as its columns.
- Normally, $\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}:=\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}$ is a pain to compute, but $\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{T}$ is also easy: it has the vectors in $\mathcal{B}$ as its rows
- Now, if $\mathcal{B}$ is an orthonormal basis, a miracle occurs:

$$
\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{T} \cdot \boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}=\left(\begin{array}{cccc}
\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right\rangle & \left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\rangle & \cdots & \left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{n}\right\rangle \\
\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{2}\right\rangle & \left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{2}\right\rangle & \cdots & \left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{1}\right\rangle & \left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{2}\right\rangle & \cdots & \left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{n}\right\rangle
\end{array}\right)=\boldsymbol{I}
$$

- So, $\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{-1}=\left(\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}\right)^{T}$ !


## From independence to orthogonality

- Not every basis is an orthonormal basis:

- But, by taking linear linear combinations of basis vectors, we can transform a basis into a (better) orthonormal basis:

$$
\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\} \quad \mapsto \quad \mathcal{B}^{\prime}=\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right\}
$$

- Making basis vectors normalised is easy:

$$
\boldsymbol{v}_{i} \mapsto \boldsymbol{w}_{i}:=\frac{1}{\left\|\boldsymbol{v}_{i}\right\|} \boldsymbol{v}_{i}
$$

- But first they should be orthogonal, which we can accomplish using Gram-Schmidt orthogonalisation


## Making vectors orthogonal

- Suppose we have two vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ which are independent, but not orthogonal
- We want to make a new orthogonal pair of vectors $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ which span the same space.
- We do it one vector at a time, starting with $\boldsymbol{w}_{1}=\boldsymbol{v}_{1}$
- Then $\boldsymbol{v}_{2}$ has a "bit of $\boldsymbol{w}_{1}$ " in it:

$$
\boldsymbol{v}_{2}=\lambda \boldsymbol{w}_{1}+\underbrace{\cdots \cdots \cdots}_{\text {stuff that is orthogonal to } \boldsymbol{w}_{1}}
$$

- So lets take it out! Let $\boldsymbol{w}_{2}:=\boldsymbol{v}_{2}-\lambda \boldsymbol{w}_{1}$


## Making vectors orthogonal

$$
\boldsymbol{w}_{2}:=\boldsymbol{v}_{2}-\lambda \boldsymbol{w}_{1}
$$

- The only thing we need to do is find $\lambda$. Here's what we want:

$$
\begin{gathered}
0=\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{1}\right\rangle=\left\langle\boldsymbol{v}_{2}-\lambda \boldsymbol{w}_{1}, \boldsymbol{e}_{1}\right\rangle=\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle-\lambda\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle \\
\Longrightarrow \lambda=\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \Longrightarrow \boldsymbol{w}_{2}=\boldsymbol{v}_{2}-\underbrace{\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}}_{\text {the 'projection of } \boldsymbol{v}_{2} \text { onto } \boldsymbol{w}_{1} \text { ' }}
\end{gathered}
$$

## Making vectors orthogonal

- The process continues...
- We make $\boldsymbol{w}_{3}$ by starting with $\boldsymbol{v}_{3}$, and removing the stuff that is not orthogonal to $\boldsymbol{w}_{1}$ and $\boldsymbol{w}_{2}$ :

$$
\boldsymbol{w}_{3}=\boldsymbol{v}_{3}-\underbrace{\frac{\left\langle\boldsymbol{v}_{3}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}}_{\text {proj. of } \boldsymbol{v}_{3} \text { onto } \boldsymbol{w}_{1}}-\underbrace{\frac{\left\langle\boldsymbol{v}_{3}, \boldsymbol{w}_{2}\right\rangle}{\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{2}\right\rangle} \boldsymbol{w}_{2}}_{\text {proj. of } \boldsymbol{v}_{3} \text { onto } \boldsymbol{w}_{2}}
$$

- and so on...

$$
\boldsymbol{w}_{4}=\boldsymbol{v}_{4}-\underbrace{\frac{\left\langle\boldsymbol{v}_{4}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}}_{\text {proj. of } \boldsymbol{v}_{4} \text { onto } \boldsymbol{w}_{1}}-\underbrace{\frac{\left\langle\boldsymbol{v}_{4}, \boldsymbol{w}_{2}\right\rangle}{\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{2}\right\rangle} \boldsymbol{w}_{2}}_{\text {proj. of } \boldsymbol{v}_{4} \text { onto } \boldsymbol{w}_{2}}-\underbrace{\frac{\left\langle\boldsymbol{v}_{4}, \boldsymbol{w}_{3}\right\rangle}{\left\langle\boldsymbol{w}_{3}, \boldsymbol{w}_{3}\right\rangle} \boldsymbol{w}_{3}}_{\text {proj. of } \boldsymbol{v}_{4} \text { onto } \boldsymbol{w}_{3}}
$$

## Gram-Schmidt orthogonalisation

Start with an independent set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of vectors.
Make them orthogonal one at a time:

$$
\begin{aligned}
&\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\} \Rightarrow\left\{\boldsymbol{w}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\} \\
& \Rightarrow\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{v}_{n}\right\} \\
& \ldots \\
& \Rightarrow\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}
\end{aligned}
$$

...where each $\boldsymbol{w}_{i}$ depends only on $\boldsymbol{v}_{i}$ and $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{i-1}$, i.e. the orthogonal vectors we have made already.

## Gram-Schmidt orthogonalisation, part I

(1) Starting point: independent set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of vectors
(2) Take $\boldsymbol{w}_{1}=\boldsymbol{v}_{1}$
(3) Take $\boldsymbol{w}_{2}=\boldsymbol{v}_{2}-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}$

This gives an orthogonal vector. We can check:

$$
\begin{aligned}
\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{1}\right\rangle & =\left\langle\boldsymbol{v}_{2}-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle \\
& =\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle-\left\langle\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle \\
& =\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle}\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle \\
& =\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle-\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle \\
& =0
\end{aligned}
$$

## Gram-Schmidt orthogonalisation, part II

4 In general, $\boldsymbol{w}_{i}=\boldsymbol{v}_{i}-\frac{\left\langle\boldsymbol{v}_{i}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}-\cdots-\frac{\left\langle\boldsymbol{v}_{i}, \boldsymbol{w}_{i-1}\right\rangle}{\left\langle\boldsymbol{w}_{i-1}, \boldsymbol{w}_{i-1}\right\rangle} \boldsymbol{w}_{i-1}$
By essentially the same reasoning as before one shows:

$$
\left\langle\boldsymbol{w}_{i}, \boldsymbol{w}_{j}\right\rangle=0, \quad \text { for all } j<i .
$$

(5) Result: orthogonal set of vectors $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right\}$.

## Gram-Schmidt orthogonalisation: example I

- Take $\boldsymbol{v}_{1}=(1,-1)$ and $\boldsymbol{v}_{2}=(2,1)$ in $\mathbb{R}^{2}$.
- Clearly not orthogonal! $\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\rangle=1$
- Lets fix that. Let $\boldsymbol{w}_{1}:=\boldsymbol{v}_{1}$ and:

$$
\begin{aligned}
\boldsymbol{w}_{2} & =\boldsymbol{v}_{2}-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1} \\
& =\binom{2}{1}-\frac{1}{2}\binom{1}{-1}=\binom{\frac{3}{2}}{\frac{3}{2}}
\end{aligned}
$$

- Bam! $\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\rangle=0$


## Radboud University Nijmegen

## Gram-Schmidt orthogonalisation: example II

- Take in $\mathbb{R}^{4}, \boldsymbol{v}_{1}=(0,1,2,1), \boldsymbol{v}_{2}=(0,1,3,1), \boldsymbol{v}_{3}=(1,1,1,0)$
- $\boldsymbol{w}_{1}=\boldsymbol{v}_{1}=(0,1,2,1)$; then $\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle=1 \cdot 1+2 \cdot 2+1 \cdot 1=6$.
- $\boldsymbol{w}_{2}=\boldsymbol{v}_{2}-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}$

$$
\begin{aligned}
& =(0,1,3,1)-\frac{1 \cdot 1+3 \cdot 2+1 \cdot 1}{6}(0,1,2,1) \\
& =(0,1,3,1)-\frac{8}{6}(0,1,2,1)=\left(0,-\frac{1}{3}, \frac{1}{3},-\frac{1}{3}\right)
\end{aligned}
$$

We prefer to take: $\boldsymbol{w}_{2}=(0,-1,1,-1)$; then $\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{2}\right\rangle=3$.

$$
\text { - } \begin{aligned}
\boldsymbol{w}_{3} & =\boldsymbol{v}_{3}-\frac{\left\langle\boldsymbol{v}_{3}, \boldsymbol{w}_{1}\right\rangle}{\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle} \boldsymbol{w}_{1}-\frac{\left\langle\boldsymbol{v}_{3}, \boldsymbol{w}_{2}\right\rangle}{\left\langle\boldsymbol{w}_{2}, \boldsymbol{w}_{2}\right\rangle} \boldsymbol{w}_{2} \\
& =\cdots=\left(1, \frac{1}{2}, 0,-\frac{1}{2}\right)
\end{aligned}
$$

We can change it into $w_{3}=(2,1,0,-1)$, for convenience.

## Making an orthonormal basis

## Definition

A basis $B=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of a vector space with an inner product is called:
(1) orthogonal if $B$ is an orthogonal set: $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0$ if $i \neq j$
(2) orthonormal if it is orthogonal and $\left\|\boldsymbol{v}_{i}\right\|=1$, for each $i$

By Gram-Schmidt each basis can be made orthogonal (first), and then orthonormal by replacing $\boldsymbol{v}_{i}$ by $\frac{1}{\left\|\boldsymbol{v}_{i}\right\|} \boldsymbol{v}_{i}$.

## Computational linguistics

## Computational linguistics $=$ teaching computers to read

- Example: I have two words, and I want a program that tells me how "similar" the two words are, e.g.

$$
\begin{aligned}
\text { nice }+ \text { kind } & \Rightarrow 95 \% \text { similar } \\
\text { dog }+ \text { cat } & \Rightarrow 61 \% \text { similar } \\
\text { dog }+ \text { xylophone } & \Rightarrow 0.1 \% \text { similar }
\end{aligned}
$$

- Applications: thesaurus, smart web search, translation, ...
- Dumb solution: ask a whole bunch of people to rate similarity and make a big database
- Smart solution: use distributional semantics


## Meaning vectors

"You shall know a word by the company it keeps."

## - J. R. Firth

- Pick about $500-1000$ words ( $\boldsymbol{v}_{\text {cat }}, \boldsymbol{v}_{\text {boy }}, \boldsymbol{v}_{\text {sandwich }} .$. ) to act as "basis vectors"
- Build up a meaning vector for each word, e.g. "dog", by scanng a whole lot of text
- Every time "dog" occurs within, say 200 words of a basis vector, add that basis vector. Soon we'll have:

$$
\boldsymbol{v}_{\mathrm{dog}}=2308198 \cdot \boldsymbol{v}_{\mathrm{cat}}+4291 \cdot \boldsymbol{v}_{\mathrm{boy}}+4 \cdot \boldsymbol{v}_{\text {sandwich }}+\cdots
$$

- Similar words cluster together:

- ...while dissimilar words drift apart.We can measure this by:

$$
\frac{\left\langle\boldsymbol{v}_{\text {dog }}, \boldsymbol{v}_{\text {cat }}\right\rangle}{\left\|\boldsymbol{v}_{\text {dog }}\right\|\left\|\boldsymbol{v}_{\text {cat }}\right\|}=0.953 \quad \frac{\left\langle\boldsymbol{v}_{\text {dog }}, \boldsymbol{v}_{\text {xylophone }}\right\rangle}{\left\|\boldsymbol{v}_{\text {dog }}\right\|\left\|\boldsymbol{v}_{\text {xylophone }}\right\|}=0.001
$$

- Search engines do something very similar. Learn more in the course on Information Retrieval.


## Distributional Semantics

- This works very well, but also has weaknesses (e.g. meanings of whole sentences, ambiguous words)
- This can be improved by incorporating other kinds of semantics:
distributional + compositional + categorical

$=$ DisCoCat



## About linear algebra

- Linear algebra forms a coherent body of mathematics ...
- involving elementary algebraic and geometric notions
- systems of equations and their solutions
- vector spaces with bases and linear maps
- matrices and their operations (product, inverse, determinant)
- inner products and distance
- ...together with various calculational techniques
- the most important/basic ones you learned in this course
- they are used all over the place: mathematics, physics, engineering, linguistics...



## About the exam, part I

- Closed book
- Simple '4-function' calculators are allowed (but not necessary)
- phones, graphing calculators, etc. are NOT allowed
- Questions are in line with exercises from assignments
- In principle, slides contain all necessary material
- LNBS lecture notes have extra material for practice
- wikipedia also explains a lot
- Theorems, propositions, lemmas:
- are needed to understand the theory
- are needed to answer the questions
- their proofs are not required for the exam (but do help understanding)
- need not be reproducable literally
- but help you to understand questions


## About the exam, part II

Calculation rules (or formulas) must be known by heart for:
(1) solving (non)homogeneous equations, echelon form
(2) linearity, independence, matrix-vector multiplication
(3) matrix multiplication \& inverse, change-of-basis matrices
(4) eigenvalues, eigenvectors and determinants
(5) inner products, distance, length, angle, orthogonality, Gram-Schmidt orthogonalisation

## About the exam, part III

- Questions are formulated in English
- you may choose to answer in Dutch or English
- Give intermediate calculation results
- just giving the outcome (say: 68 ) yields no points when the answer should be 67
- Write legibly, and explain what you are doing
- giving explanations forces yourself to think systematically
- mitigates calculation mistakes
- Perform checks yourself, whenever possible, e.g.
- solutions of equations
- inverses of matrices,
- orthogonality of vectors, etc.


## Finally

## Practice, practice, practice!

(so that you can rely on skills, not on luck)

## Some practical issues (Autumn 2017)

- Exam: Monday, November 6, 8:30-11:30 in HAL 1. (Extra time: 8:30-12:00, HG00.062)
- Vragenuur: there will be a Q\&A session next week. Thursday, 2 November. 8:45-10:30 in HG00.062
- How we compute the final grade $g$ for the course
- Your exam grade e
- Your average assignment grade a
- Final grade is: $e+\frac{a}{10}$, rounded to the nearest half (except 5.5).


## Final request

- Fill out the enquete form for Matrixrekenen, IPC017, when invited to do so.
- Any constructive feedback is highly appreciated.

And good luck with the preparation \& exam itself! Start now!

