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Length of a vector

• Each vector v = (x1, . . . , xn) ∈ Rn has a length (aka. norm),
written as ‖v‖

• This ‖v‖ is a non-negative real number: ‖v‖ ∈ R, ‖v‖ ≥ 0
• Some special cases:

• n = 1: so v ∈ R, with ‖v‖ = |v |
• n = 2: so v = (x1, x2) ∈ R2 and with Pythagoras:

‖v‖2 = x2
1 + x2

2 and thus ‖v‖ =
√
x2

1 + x2
2

• n = 3: so v = (x1, x2, x3) ∈ R3 and also with Pythagoras:

‖v‖2 = x2
1 + x2

2 + x2
3 and thus ‖v‖ =

√
x2

1 + x2
2 + x2

3

• In general, for v = (x1, . . . , xn) ∈ Rn,

‖v‖ =
√
x2

1 + x2
2 + · · ·+ x2

n
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Distance between points

• Assume now we have two vectors v ,w ∈ Rn, written as:

v = (x1, . . . , xn) w = (y1, . . . , yn)

• What is the distance between the endpoints?
• commonly written as d(v ,w)
• again, d(v ,w) is a non-negative real

• For n = 2,

d(v ,w) =
√

(x1 − y1)2 + (x2 − y2)2 = ‖v −w‖ = ‖w − v‖

• This will be used also for other n, so:

d(v ,w) = ‖v −w‖
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Length is fundamental

• Distance can be obtained from length of vectors

• Angles can also be obtained from length

• Both length of vectors and angles between vectors can be
derived from the notion of inner product
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Inner product definition

Definition

For vectors v = (x1, . . . , xn),w = (y1, . . . , yn) ∈ Rn define their
inner product as the real number:

〈v ,w〉 = x1y1 + · · ·+ xnyn

=
∑

1≤i≤n
xiyi

Note: Length ‖v‖ can be expressed via inner product:

‖v‖2 = x2
1 + · · ·+ x2

n = 〈v , v〉, so ‖v‖ =
√
〈v , v〉.
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Inner products via matrix transpose

Matrix transposition

For an m × n matrix A, the transpose AT is the n ×m matrix A
obtained by mirroring in the diagonal:a11 · · · a1n

...
am1 · · · amn


T

=

a11 · · · am1
...

a1n · · · amn


In other words, the rows of A become the columns of AT .

The inner product of v = (x1, . . . , xn),w = (y1, . . . , yn) ∈ Rn is
then a matrix product:

〈v ,w〉 = x1y1 + · · ·+ xnyn = (x1 · · · xn) ·

y1
...
yn

 = vT ·w .
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Properties of the inner product

1 The inner product is symmetric in v and w :

〈v ,w〉 = 〈w , v〉

2 It is linear in v :

〈v + v ′,w〉 = 〈v ,w〉+ 〈v ′,w〉 〈av ,w〉 = a〈v ,w〉

...and hence also in w (by symmetry):

〈v ,w + w ′〉 = 〈v ,w〉+ 〈v ,w ′〉 〈v , aw〉 = a〈v ,w〉

3 And it is positive definite:

v 6= 0 =⇒ 〈v , v〉 > 0
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Inner products and angles, part I

For v = w = (1, 0), 〈v ,w〉 = 1.
As we start to rotate w , 〈v ,w〉 goes down until 0:

〈v ,w〉 = 1 〈v ,w〉 = 4
5 〈v ,w〉 = 3

5 〈v ,w〉 = 0

...and then goes to −1:

〈v ,w〉 = −1〈v ,w〉 = −4
5〈v ,w〉 = −3

5〈v ,w〉 = 0

...then down to 0 again, then to 1, then repeats...
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Cosine

Plotting these numbers vs. the angle between the vectors, we get:

It looks like 〈v ,w〉 depends on the cosine of the angle between v
and w . Let’s prove it!
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Recall: definition of cosine

x

y
a

γ

cos(γ) =
x

a
=⇒ x = a cos(γ)
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The cosine rule

y
a

γ x

b

c

Claim: cos(γ) =
a2 + b2 − c2

2ab

Proof: We have three equations to play with:

x2 + y2 = a2 (b − x)2 + y2 = c2 x = a cos(γ)

...do the math. ,
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Inner products and angles, part II

Translating this to something about vectors:

‖v‖

γ

d(v ,w) := ‖v −w‖

‖w‖

gives:

cos(γ) =
‖v‖2 + ‖w‖2 − ‖v −w‖2

2‖v‖ ‖w‖
Let’s clean this up...
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Inner products and angles, part II

Starting from the cosine rule:

cos(γ) =
‖v‖2 + ‖w‖2 − ‖v −w‖2

2‖v‖ ‖w‖

=
x2

1 + · · ·+ x2
n + y2

1 + · · ·+ y2
n − (x1 − y1)2 − · · · − (xn − yn)2

2‖v‖ ‖w‖

=
2x1y1 + · · ·+ 2xnyn

2‖v‖ ‖w‖

=
x1y1 + · · ·+ xnyn
‖v‖ ‖w‖

=
〈v ,w〉
‖v‖ ‖w‖

remember this: cos(γ) =
〈v ,w〉
‖v‖ ‖w‖

Thus, angles between vectors are expressible via the inner product
(since ‖v‖ =

√
〈v , v〉).
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Examples

• What is the angle between (1, 1) and (−1,−1)?

cos γ =
〈v ,w〉
‖v‖‖w‖

=
−2√
2 ·
√

2
=
−2

2
= −1 =⇒ γ = π

• What is the angle between (1, 0) and (1, 1)?

cos γ =
〈v ,w〉
‖v‖‖w‖

=
1

1 ·
√

2
=

1√
2

=⇒ γ =
π

4

• What is the angle between (1, 0) and (0, 1)?

cos γ =
〈v ,w〉
‖v‖‖w‖

=
0

‖v‖‖w‖
= 0 =⇒ γ =

π

2
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Orthogonality

Definition

Two vectors v ,w are called orthogonal if 〈v ,w〉 = 0. This is
written as v ⊥ w .

Explanation: orthogonality means that the cosine of the angle
between the two vectors is 0; hence they are perpendicular.

Example

Which vectors (x , y) ∈ R2 are orthogonal to (1, 1)?

Examples, are (1,−1) or (−1, 1), or more generally (x ,−x).

This follows from an easy computation:

〈(x , y), (1, 1)〉 = 0⇐⇒ x + y = 0⇐⇒ y = −x .
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Orthogonality and independence

Lemma

Call a set {v1, . . . , vn} of non-zero vectors orthogonal if every
pair of different vectors is orthogonal.

1 orthogonal vectors are always independent,

2 independent vectors are not always orthogonal.

Proof: The second point is easy: (1, 1) and (1, 0) are
independent, but not orthogonal
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Orthogonality and independence (cntd)

(Orthogonality =⇒ Independence): assume {v1, . . . , vn} is
orthogonal and a1v1 + · · ·+ anvn = 0. Then for each i ≤ n:

0 = 〈0, vi 〉
= 〈a1v1 + · · ·+ anvn, vi 〉
= 〈a1v1, vi 〉+ · · ·+ 〈anvn, vi 〉
= a1〈v1, vi 〉+ · · ·+ an〈vn, vi 〉
= ai 〈vi , vi 〉 since 〈vj , vi 〉 = 0 for j 6= i

But since vi 6= 0 we have 〈vi , vi 〉 6= 0, and thus ai = 0.
This holds for each i , so a1 = · · · = an = 0, and we have proven
independence. -
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Orthogonal and orthonormal bases

Definition

A basis B = {v1, . . . , vn} of a vector space with an inner product is
called:

1 orthogonal if B is an orthogonal set: 〈vi , vj〉 = 0 if i 6= j

2 orthonormal if it is orthogonal and 〈vi , vi 〉 = ‖vi‖ = 1, for
each i

Example

The standard basis (1, 0, . . . , 0), (0, 1, 0, . . . , 0), · · · , (0, · · · , 0, 1) is
an orthonormal basis of Rn.
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Orthonormal basis transformations

• Orthonormal bases are very handy! Example: basis
transformations.

• For any basis B, the matrix TB⇒S is easy to compute: it has
the vectors in B as its columns.

• Normally, TS⇒B := (TB⇒S)−1 is a pain to compute, but
(TB⇒S)T is also easy: it has the vectors in B as its rows

• Now, if B is an orthonormal basis, a miracle occurs:

(TB⇒S)T ·TB⇒S =


〈v1, v1〉 〈v1, v2〉 · · · 〈v1, vn〉
〈v2, v2〉 〈v2, v2〉 · · · 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vn, v2〉 · · · 〈vn, vn〉

 = I

• So, (TB⇒S)−1 = (TB⇒S)T !
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From independence to orthogonality

• Not every basis is an orthonormal basis:

Orthonormal basis
+3

Basis
/ks

• But, by taking linear linear combinations of basis vectors, we
can transform a basis into a (better) orthonormal basis:

B = {v1, . . . , vn} 7→ B′ = {w1, . . . ,wn}

• Making basis vectors normalised is easy:

vi 7→ wi :=
1

‖vi‖
vi

• But first they should be orthogonal, which we can accomplish
using Gram-Schmidt orthogonalisation
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Making vectors orthogonal

• Suppose we have two vectors v1, v2 which are independent,
but not orthogonal

• We want to make a new orthogonal pair of vectors w1,w2

which span the same space.

• We do it one vector at a time, starting with w1 = v1

• Then v2 has a “bit of w1” in it:

v2 = λw1 + · · · · · · · · ·︸ ︷︷ ︸
stuff that is orthogonal to w1

• So lets take it out! Let w2 := v2 − λw1
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Making vectors orthogonal

w2 := v2 − λw1

• The only thing we need to do is find λ. Here’s what we want:

0 = 〈w2,w1〉 = 〈v2 − λw1, e1〉 = 〈v2,w1〉 − λ〈w1,w1〉

=⇒ λ =
〈v2,w1〉
〈w1,w1〉

=⇒ w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1︸ ︷︷ ︸
the ‘projection of v2 onto w1’
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Making vectors orthogonal

• The process continues...

• We make w3 by starting with v3, and removing the stuff that
is not orthogonal to w1 and w2:

w3 = v3 −
〈v3,w1〉
〈w1,w1〉

w1︸ ︷︷ ︸
proj. of v3 onto w1

− 〈v3,w2〉
〈w2,w2〉

w2︸ ︷︷ ︸
proj. of v3 onto w2

• and so on...

w4 = v4 −
〈v4,w1〉
〈w1,w1〉

w1︸ ︷︷ ︸
proj. of v4 onto w1

− 〈v4,w2〉
〈w2,w2〉

w2︸ ︷︷ ︸
proj. of v4 onto w2

− 〈v4,w3〉
〈w3,w3〉

w3︸ ︷︷ ︸
proj. of v4 onto w3
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Gram-Schmidt orthogonalisation

Start with an independent set {v1, . . . , vn} of vectors.

Make them orthogonal one at a time:

{v1, v2, . . . , vn} ⇒ {w1, v2, . . . , vn}
⇒ {w1,w2, . . . , vn}

· · ·
⇒ {w1,w2, . . . ,wn}

...where each wi depends only on vi and w1, . . . ,wi−1, i.e. the
orthogonal vectors we have made already.
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Gram-Schmidt orthogonalisation, part I

1 Starting point: independent set {v1, . . . , vn} of vectors

2 Take w1 = v1

3 Take w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1

This gives an orthogonal vector. We can check:

〈w2,w1〉 = 〈v2 − 〈v2,w1〉
〈w1,w1〉w1,w1〉

= 〈v2,w1〉 − 〈 〈v2,w1〉
〈w1,w1〉w1,w1〉

= 〈v2,w1〉 − 〈v2,w1〉
〈w1,w1〉〈w1,w1〉

= 〈v2,w1〉 − 〈v2,w1〉

= 0

A. Kissinger Version: autumn 2017 Matrix Calculations 28 / 45



Inner products and orthogonality
Orthogonalisation

Application: computational linguistics
Wrapping up

Radboud University Nijmegen

Gram-Schmidt orthogonalisation, part II

4 In general, wi = vi −
〈vi ,w1〉
〈w1,w1〉

w1 − · · · −
〈vi ,wi−1〉
〈wi−1,wi−1〉

wi−1

By essentially the same reasoning as before one shows:

〈wi ,wj〉 = 0, for all j < i .

5 Result: orthogonal set of vectors {w1, . . . ,wn}.
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Gram-Schmidt orthogonalisation: example I

• Take v1 = (1,−1) and v2 = (2, 1) in R2.

• Clearly not orthogonal! 〈v1, v2〉 = 1

• Lets fix that. Let w1 := v1 and:

w2 = v2 − 〈v2,w1〉
〈w1,w1〉w1

=

(
2
1

)
− 1

2

(
1
−1

)
=

( 3
2

3
2

)

• Bam! 〈w1,w2〉 = 0
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Gram-Schmidt orthogonalisation: example II

• Take in R4, v1 = (0, 1, 2, 1), v2 = (0, 1, 3, 1), v3 = (1, 1, 1, 0)

• w1 = v1 = (0, 1, 2, 1); then 〈w1,w1〉 = 1 · 1 + 2 · 2 + 1 · 1 = 6.

• w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1

= (0, 1, 3, 1)− 1·1+3·2+1·1
6 (0, 1, 2, 1)

= (0, 1, 3, 1)− 8
6 (0, 1, 2, 1) = (0,−1

3 ,
1
3 ,−

1
3 ) X

We prefer to take: w2 = (0,−1, 1,−1); then 〈w2,w2〉 = 3.

• w3 = v3 −
〈v3,w1〉
〈w1,w1〉

w1 −
〈v3,w2〉
〈w2,w2〉

w2

= · · · = (1, 1
2 , 0,−

1
2 ) X

We can change it into w3 = (2, 1, 0,−1), for convenience.
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Making an orthonormal basis

Definition

A basis B = {v1, . . . , vn} of a vector space with an inner product
is called:

1 orthogonal if B is an orthogonal set: 〈vi , vj〉 = 0 if i 6= j

2 orthonormal if it is orthogonal and ‖vi‖ = 1, for each i

By Gram-Schmidt each basis can be made orthogonal (first), and
then orthonormal by replacing vi by 1

‖vi‖vi .
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Computational linguistics

Computational linguistics = teaching computers to read

• Example: I have two words, and I want a program that tells
me how “similar” the two words are, e.g.

nice + kind ⇒ 95% similar
dog + cat ⇒ 61% similar

dog + xylophone ⇒ 0.1% similar

• Applications: thesaurus, smart web search, translation, ...

• Dumb solution: ask a whole bunch of people to rate similarity
and make a big database

• Smart solution: use distributional semantics
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Meaning vectors

“You shall know a word by the company it keeps.”
– J. R. Firth

• Pick about 500-1000 words (vcat, vboy, vsandwich ...) to act as
“basis vectors”

• Build up a meaning vector for each word, e.g. “dog”, by
scanng a whole lot of text

• Every time “dog” occurs within, say 200 words of a basis
vector, add that basis vector. Soon we’ll have:

vdog = 2308198 · vcat + 4291 · vboy + 4 · vsandwich + · · ·
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• Similar words cluster together:

vcat

vdog

vxylophone

vcat

vdog

vxylophone

seen with: fur, pet, train, love, poo, ...

seen with: music, mallet, hobby, ...

• ...while dissimilar words drift apart.We can measure this by:

〈vdog, vcat〉
‖vdog‖ ‖vcat‖

= 0.953
〈vdog, vxylophone〉
‖vdog‖ ‖vxylophone‖

= 0.001

• Search engines do something very similar. Learn more in the
course on Information Retrieval.
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Distributional Semantics

• This works very well, but also has weaknesses (e.g. meanings
of whole sentences, ambiguous words)

• This can be improved by incorporating other kinds of
semantics:

distributional + compositional + categorical
does not

like

John not like Mary
=

John not Mary

= DisCoCat
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About linear algebra

• Linear algebra forms a coherent body of mathematics . . .

• involving elementary algebraic and geometric notions
• systems of equations and their solutions
• vector spaces with bases and linear maps
• matrices and their operations (product, inverse, determinant)
• inner products and distance

• . . . together with various calculational techniques
• the most important/basic ones you learned in this course
• they are used all over the place: mathematics, physics,

engineering, linguistics...
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About the exam, part I

• Closed book
• Simple ‘4-function’ calculators are allowed (but not necessary)
• phones, graphing calculators, etc. are NOT allowed

• Questions are in line with exercises from assignments

• In principle, slides contain all necessary material
• LNBS lecture notes have extra material for practice
• wikipedia also explains a lot

• Theorems, propositions, lemmas:
• are needed to understand the theory
• are needed to answer the questions
• their proofs are not required for the exam

(but do help understanding)

• need not be reproducable literally
• but help you to understand questions
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About the exam, part II

Calculation rules (or formulas) must be known by heart for:

1 solving (non)homogeneous equations, echelon form

2 linearity, independence, matrix-vector multiplication

3 matrix multiplication & inverse, change-of-basis matrices

4 eigenvalues, eigenvectors and determinants

5 inner products, distance, length, angle, orthogonality,
Gram-Schmidt orthogonalisation
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About the exam, part III

• Questions are formulated in English
• you may choose to answer in Dutch or English

• Give intermediate calculation results
• just giving the outcome (say: 68) yields no points when the

answer should be 67

• Write legibly, and explain what you are doing
• giving explanations forces yourself to think systematically
• mitigates calculation mistakes

• Perform checks yourself, whenever possible, e.g.
• solutions of equations
• inverses of matrices,
• orthogonality of vectors, etc.
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Finally . . .

Practice, practice, practice!

(so that you can rely on skills, not on luck)
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Some practical issues (Autumn 2017)

• Exam: Monday, November 6, 8:30–11:30 in HAL 1.
(Extra time: 8:30-12:00, HG00.062)

• Vragenuur: there will be a Q&A session next week. Thursday,
2 November. 8:45-10:30 in HG00.062

• How we compute the final grade g for the course
• Your exam grade e
• Your average assignment grade a
• Final grade is: e + a

10 , rounded to the nearest half (except 5.5).
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Final request

• Fill out the enquete form for Matrixrekenen, IPC017, when
invited to do so.

• Any constructive feedback is highly appreciated.

And good luck with the preparation & exam itself!
Start now!
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