Matrix Calculations
 Assignment 3, Wednesday, September 19, 2018

Exercise teachers. Recall the following split-up of students:

teacher	email	lecture room
Justin Reniers	j.reniers@student.ru.nl	E2.68 (E2.62 on 12 Oct)
Justin Hende	J.Hende@gmail.com	HG00.062
Iris Delhez	iam.delhez@student.ru.nl	HG00.108
Stefan Boneschanscher	S.Boneschanscher@student.ru.nl	HG01.028
Serena Rietbergen	serena.rietbergen@student.ru.nl	HG02.028
Jen Dusseljee	j.dusseljee@student.ru.nl	HFML0220

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 3'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-3.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Tuesday, September 25, 16:00 sharp!

Goals: After completing these exercises successfully you should be able to give the general solution to a system of non-homogeneous equations and determine whether certain sets form vector spaces (or subspaces).
The total number of points is 20 .

1. (5 points) Express the vector $\boldsymbol{v}=(4,3,2) \in \mathbb{R}^{3}$ as a linear combination of the following vectors:

$$
\boldsymbol{v}_{1}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \quad \boldsymbol{v}_{2}=\left(\begin{array}{c}
3 \\
-6 \\
-1
\end{array}\right) \quad \boldsymbol{v}_{3}=\left(\begin{array}{c}
-1 \\
6 \\
2
\end{array}\right)
$$

2. (10 points) A system of linear equations is given by the following augmented matrix in echelon form:

$$
\left(\begin{array}{ccccc|c}
2 & 3 & 1 & 2 & 1 & 1 \\
0 & 0 & 4 & 1 & 1 & 2 \\
-2 & -3 & 3 & -1 & 2 & 7
\end{array}\right)
$$

(i) How many basic solutions does the corresponding homogeneous system have? Why? Provide basic solutions.
(ii) Find a particular solution of the non-homogeneous system.
(iii) Give the general solution of the non-homogeneous system. (That is: give the set of all solutions as a parametrisation.)
3. (5 points) Which of the following subsets of \mathbb{R}^{n} are subspaces?
(i) $S \subseteq \mathbb{R}^{3}$ defined by $S=\{(x, 2 x, 3 x) \mid x \in \mathbb{R}\}$.
(ii) $S \subseteq \mathbb{R}^{2}$ defined by $S=\{(x, x+y) \mid x, y \in \mathbb{R}\}$
(iii) $S \subseteq \mathbb{R}^{2}$ defined by $S=\{(x, x+1) \mid x \in \mathbb{R}\}$
(iv) For any $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}, S \subseteq \mathbb{R}^{n}$ defined by: $\{a \cdot \boldsymbol{v}+b \cdot \boldsymbol{w} \mid a, b \in \mathbb{R}\}$.
(v) $\mathbb{N} \subseteq \mathbb{R}$

If a set is a subspace, prove it. If it is not, give an argument why not.
4. (0 points) Extra exercise, for those interested

Prove that the following, alternative definition of a vector space is equivalent to the one given in the slides:

Definition 1. A vector space $(V,+, \cdot, \mathbf{0})$ is a set V, a special element $\mathbf{0} \in V$ and operations ,$+ \cdot$ satisfying the following properties:
(a) $\boldsymbol{v}+\boldsymbol{w}=\boldsymbol{w}+\boldsymbol{v}$
(b) $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$
(c) $\boldsymbol{v}+\mathbf{0}=\boldsymbol{v}$
(d) $(a+b) \cdot \boldsymbol{v}=a \cdot \boldsymbol{v}+b \cdot \boldsymbol{v}$
(e) $a \cdot(\boldsymbol{v}+\boldsymbol{w})=a \cdot \boldsymbol{v}+a \cdot \boldsymbol{w}$
(f) $a \cdot(b \cdot \boldsymbol{v})=a b \cdot \boldsymbol{v}$
(g) $1 \cdot \boldsymbol{v}=\boldsymbol{v}$
(h) for all $\boldsymbol{v} \in V$ there exists $-\boldsymbol{v} \in V$ such that $-\boldsymbol{v}+\boldsymbol{v}=\mathbf{0}$

That is, assuming (a)-(g), condition (h) is equivalent to the equation $0 \cdot \boldsymbol{v}=\mathbf{0}$.

