Matrix Calculations: Linear Equations

Aleks Kissinger
Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: Autumn 2018

Outline

Admin and general advice

What is linear algebra?

Systems of linear equations

Gaussian elimination

First, some admin...

Lectures

- Weekly: Wednesdays 15:30-17:15
- Presence not compulsory...
- But if you are going to come, actually be here! (This means laptops shut, phones away.)
- The course material consists of:
- these slides, available via the web
- Linear Algebra lecture notes by Bernd Souvignier ('LNBS')
- Course URL:
www. cs.ru.nl/A.Kissinger/teaching/matrixrekenen2018/ (Link exists in Brightspace, under 'Content').
- Generally, things appear on course website (and not on Brightspace!). Check there before you ask a question.

First, some admin...

Assignments

- You can work together, but exercises must be handed in individually
- Handing in is not compulsory, but:
- It's a tough exam. If you don't do the exercises, you are unlikely to pass.
- Exercises give up to 1 point (out of 10) bonus on exam.
- This could be the difference between a 5 and a 6 (...or a 9 and a 10 ©)

First, some admin...

Werkcollege's

- Werkcollege on Friday, 13:30.
- Presence not compulsory
- Answers (for old assignments) \& Questions (for new ones)
- Schedule:
- New assignments on the web by Wednesday evening
- Next exercise meeting (Friday) you can ask questions
- Hand-in: Tuesday before 4pm, handwritten or typed, on paper in the delivery boxes, ground floor Mercator 1.
- You should NOT hand in via Brightspace, but it's a good idea to make photos of your work before handing in paper copies.
- There is a separate Exercises web-page (see URL on course webpage).

First, some admin...

Werkcollege's

- There will be a werkcollege every Friday (including this one!), 13:30-15:15
- 6 Groups:
- Group 1: Justin Reniers. E2.68 (E2.62 on 12 Oct)
- Group 2: Justin Hende. HG00.062
- Group 3: Iris Delhez. HG00. 108
- Group 4: Stefan Boneschanscher. HG01.028
- Group 5: Serena Rietbergen. HG02.028
- Group 6: Jen Dusseljee. HFML0220
- Each assistant has a delivery box on the ground floor of the Mercator 1 building

First, some admin...

- Register for a class on Brightspace. Click 'Administration > Groups $>$ View Available Groups', then 'Join Group' next to the group you want:

- Don't register in a group that has 'max' students in it.
- Registration must be done by tomorrow (Thursday) at 12:00. (Do it today, if possible.)
- I may shift some people to other groups. This will be finalised by Friday morning, so check your group assignment then.

First, some admin...

Examination

- Final mark is computed from:
- Average of markings of assignments: A
- Written exam (October 30): E
- Final mark: $F=E+\frac{A}{10}$.
- To pass: $E \geq 5$ and $F \geq 6$
- Second chance for written exam on January 25 (A stays the same, E is replaced)
- If you fail again, you will need to re-take the course next year (A and E are replaced)

Next, some advice...

How to pass this course

- Learn by doing, not just staring at the slides (or video, or lecturer)
- Pro tip: exam questions will look a lot like the exercises
- Give this course the time it needs!
- 3ec means $3 \times 28=84$ hours in total
- Let's say 20 hours for exam
- 64 hours for 8 weeks means: 8 hours per week!
- 4 hours in lecture and werkcollege leaves...
- ...another 4 hours for studying \& doing exercises
- Coming up-to-speed is your own responsibility
- if you feel like you are missing some background knowledge: use Wim Gielen's notes...or wikipedia

...and a plug

Open Maths course

It opens mathematics for you and opens you towards mathematics.
"...a new and optional subject relying on state-of-the-art research, you will experience the real, exciting and useful mathematics. As a result, you will be able to learn maths more successfully at the university."

Intro lecture: Sept 10, 12:15. LIN 5
https://thalia.nu/events/348/

Finally, on to the good stuff...

Q: What is matrix calculation all about? linear algebra

A: It depends on who you ask...

What is linear algebra all about?

To a mathematician: linear algebra is the mathematics of geometry and transformation...

It asks: How can we represent a problem in 2D, 3D, 4D (or infinite-dimensional!) space, and transform it into a solution?

What is linear algebra all about?

To an engineer: linear algebra is about numerics...

It asks: Can we encode a complicated question (e.g. 'Will my bridge fall down?') as a big matrix and compute the answer?

What is linear algebra all about?

To an quantum physicist (or quantum computer scientist!): linear algebra is just the way nature behaves...

It asks: How can we explain things that can be in many states at the same time, or entangled to distant things?

A simple example...

Let's start with something everybody knows how to do:

- Suppose I went to the pub last night, but I can't remember how many, umm...'sodas' I had.
- I remember taking out 20 EUR from the cash machine.
- Sodas cost 3 EUR.
- I discover a half-eaten kapsalon in my kitchen. That's 5 EUR.
- I have no money left. (Typical...)

By now, most people have (hopefully) figured out I had... 5 sodas. That's because you can solve simple linear equations:

$$
3 x+5=20 \quad \Longrightarrow \quad x=5
$$

An (only slightly less) simple example

I have two numbers in mind, but I don't tell you which ones

- if I add them up, the result is 12
- if I subtract, the result is 4

Which two numbers do I have in mind?

Now we have a system of linear equations, in two variables:

$$
\left\{\begin{array}{l}
x+y=12 \\
x-y=4
\end{array} \quad \text { with solution } \quad x=8, y=4\right.
$$

An (only slightly less) simple example

Let's try to find a solution, in general, for:

$$
\begin{aligned}
& x+y=a \\
& x-y=b
\end{aligned}
$$

i.e. find the values of x and y in terms of a and b.

- adding the two equations yields:

$$
a+b=(x+y)+(x-y)=2 x
$$

so

$$
x=\frac{a+b}{2}
$$

- subtracting the two equations yields:

$$
a-b=(x+y)-(x-y)=2 y
$$

$$
\text { so } y=\frac{a-b}{2}
$$

Example (from the previous slide)
$a=12, b=4$, so $x=\frac{12+4}{2}=\frac{16}{2}=8$ and $y=\frac{12-4}{2}=\frac{8}{2}=4$. Yes!

A more difficult example

I have two numbers in mind, but I don't tell you which ones!

- if I add them up, the result is 12
- if I multiply, the result is 35

Which two numbers do I have in mind?
It is easy to check that $x=5, y=7$ is a solution.
The system of equations however, is non-linear:

$$
\begin{array}{r}
x+y=12 \\
x \cdot y=35
\end{array}
$$

This is already too difficult for this course. (If you don't believe me, try $x^{5}+x=-1 \ldots$ on second thought, maybe wait till later.)
We only do linear equations.

Basic definitions

Definition (linear equation and solution)

A linear equation in n variables x_{1}, \cdots, x_{n} is an expression of the form:

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b,
$$

where a_{1}, \ldots, a_{n}, b are given numbers (possibly zero).
A solution for such an equation is given by n numbers s_{1}, \ldots, s_{n} such that $a_{1} s_{1}+\cdots+a_{n} s_{n}=b$.

Example

The linear equation $3 x_{1}+4 x_{2}=11$ has many solutions, eg. $x_{1}=1, x_{2}=2$, or $x_{1}=-3, x_{2}=5$.

More basic definitions

Definition

A $(m \times n)$ system of linear equations consists of m equations with n variables, written as:

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =b_{1} \\
& \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

A solution for such a system consists of n numbers s_{1}, \ldots, s_{n} forming a solution for each of the equations.

Example solution

Example

Consider the system of equations

$$
\begin{array}{r}
x_{1}+x_{2}+2 x_{3}=9 \\
2 x_{1}+4 x_{2}-3 x_{3}=1 \\
3 x_{1}+x_{2}+x_{3}=8 .
\end{array}
$$

- How to find solutions, if any?
- Finding solutions requires some work.
- But checking solutions is easy, and you should always do so, just to be sure.
- Solution: $x_{1}=1, x_{2}=2, x_{3}=3$.

Easy and hard

- General systems of equations are hard to solve. But what kinds of systems are easy?
- How about this one?

$$
\begin{aligned}
& x_{1}=7 \\
& x_{2}=-2 \\
& x_{3}=2
\end{aligned}
$$

- ...this one's not too shabby either:

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =1 \\
x_{2}+2 x_{3} & =2 \\
x_{3} & =2
\end{aligned}
$$

Transformation

So, why don't we take something hard, and transform it into something easy?

$$
\left\{\begin{array} { r l }
{ 2 x _ { 2 } + x _ { 3 } } & { = - 2 } \\
{ 3 x _ { 1 } + 5 x _ { 2 } - 5 x _ { 3 } } & { = 1 } \\
{ 2 x _ { 1 } + 4 x _ { 2 } - 2 x _ { 3 } } & { = 2 }
\end{array} \Rightarrow \left\{\begin{array} { r l }
{ x _ { 1 } + 2 x _ { 2 } - x _ { 3 } } & { = 1 } \\
{ x _ { 2 } + 2 x _ { 3 } } & { = 2 } \\
{ x _ { 3 } } & { = 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=7 \\
x_{2}=-2 \\
x_{3}=2
\end{array}\right.\right.\right.
$$

Sound like something linear algebra might be good for?

Gaussian elimination

Gaussian elimination is the 'engine room' of all computer algebra. It was named after this guy:

Carl Friedrich Gauss (1777-1855)
(famous for inventing: like half of mathematics)

Gaussian elimination

Gaussian elimination is the 'engine room' of all computer algebra. ...but it was probably actually invented by this guy:

Liu Hui (ca. 3rd century AD)

Variable names are inessential

The following programs are equivalent:

```
for(int i=0; i<10; i++){ for(int j=0; j<10; j++){
    P(i);
}
}
```

Similarly, the following systems of equations are equivalent:

$$
\begin{array}{ll}
2 x+3 y+z=4 & 2 u+3 v+w=4 \\
x+2 y+2 z=5 & u+2 v+2 w=5 \\
3 x+y+5 z=-1 & 3 u+v+5 w=-1
\end{array}
$$

Matrices

The essence of the system

$$
\begin{aligned}
2 x+3 y+z & =4 \\
x+2 y+2 z & =5 \\
3 x+y+5 z & =-1
\end{aligned}
$$

is not given by the variables, but by the numbers, written as:

coefficient matrix

$$
\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 2 \\
3 & 1 & 5
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|c}
2 & 3 & 1 & 4 \\
1 & 2 & 2 & 5 \\
3 & 1 & 5 & -1
\end{array}\right)
$$

Easy and hard matrices

So, the question becomes, how to we turn a hard matrix:

$$
\left(\begin{array}{ccc|c}
0 & 2 & 1 & -2 \\
3 & 5 & -5 & 1 \\
2 & 4 & -2 & 2
\end{array}\right) \leftrightarrow\left\{\begin{aligned}
2 x_{2}+x_{3} & =-2 \\
3 x_{1}+5 x_{2}-5 x_{3} & =1 \\
2 x_{1}+4 x_{2}-2 x_{3} & =2
\end{aligned}\right.
$$

...into an easy one:

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \leftrightarrow\left\{\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=1 \\
x_{2}+2 x_{3}=2 \\
x_{3}=2
\end{array}\right.
$$

...or an even easier one:

$$
\left(\begin{array}{lll|c}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right) \leftrightarrow\left\{\begin{array}{l}
x_{1}=7 \\
x_{2}=-2 \\
x_{3}=2
\end{array}\right.
$$

Solving equations by row operations

- Operations on equations become operations on rows, e.g.

$$
\left(\begin{array}{cc|c}
1 & 1 & -2 \\
3 & -1 & 2
\end{array}\right) \leftrightarrow\left\{\begin{aligned}
x_{1}+x_{2} & =-2 \\
3 x_{1}-x_{2} & =2
\end{aligned}\right.
$$

- Multiply row 1 by 3 , giving:

$$
\left(\begin{array}{cc|c}
3 & 3 & -6 \\
3 & -1 & 2
\end{array}\right) \leftrightarrow\left\{\begin{aligned}
3 x_{1}+3 x_{2} & =-6 \\
3 x_{1}-x_{2} & =2
\end{aligned}\right.
$$

- Subtract the first row from the second, giving:

$$
\left(\begin{array}{cc|c}
3 & 3 & -6 \\
0 & -4 & 8
\end{array}\right) \leftrightarrow\left\{\begin{aligned}
3 x_{1}+3 x_{2} & =-6 \\
-4 x_{2} & =8
\end{aligned}\right.
$$

- So $x_{2}=\frac{8}{-4}=-2$. The first equation becomes: $3 x_{1}-6=-6$, so $x_{1}=0$. Always check your answer.

Relevant operations \& notation

	on equations	on matrices	LNBS
exchange of rows	$E_{i} \leftrightarrow E_{j}$	$R_{i} \leftrightarrow R_{j}$	$W_{i, j}$
multiplication with $c \neq 0$	$E_{i}:=c E_{i}$	$R_{i}:=c R_{i}$	$V_{i}(c)$
addition with $c \neq 0$	$E_{i}:=E_{i}+c E_{j}$	$R_{i}:=R_{i}+c R_{j}$	$O_{i, j}(c)$

These operations on equations/matrices:

- help to find solutions
- but do not change solutions (introduce/delete them)
- The goal: put matrices in Echelon form

Pivots

- Echelon form $=$ all the pivots are in a convenient place
- A pivot is the first non-zero entry of a row:

$$
\left(\begin{array}{ccc|c}
0 & 2 & 1 & -2 \\
\boxed{3} & 5 & -5 & 1 \\
0 & 0 & \boxed{-2} & 2
\end{array}\right)
$$

- If a row is all zeros, it has no pivot:

$$
\left(\begin{array}{ccc|c}
0 & 2 & 1 & -2 \\
\boxed{3} & 5 & -5 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We call this a zero row.

Echelon form

A matrix is in Echelon form (a.k.a. rijtrapvorm) if:
(1) All of the rows with pivots occur before zero rows, and
(2) Pivots always occur to the right of previous pivots

$$
\begin{gathered}
\left(\begin{array}{cccc|c}
\left.\begin{array}{|cccc}
3 & 2 & 5 & -5 \\
0 & 0 & 2 & 1
\end{array} \right\rvert\,-2 \\
0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \sqrt{2} \\
\left(\begin{array}{cccc|c}
\hline 3 & 2 & 5 & -5 & 1 \\
0 & 0 & 2 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 2
\end{array}\right),\left(\begin{array}{cccc|c}
\hline 3 & 2 & 5 & -5 & 1 \\
0 & 0 & 4 & -2 & 2 \\
0 & 2 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc|c}
\hline 3 & 2 & 5 & -5 & 1 \\
0 & 0 & 4 & -2 & 2 \\
0 & 0 & 2 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Even better: reduced Echelon form

A matrix in reduced Echelon form if it is in Echelon form, and each row contains at most one ' 1 ' to the left of the line.

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
\left.\begin{array}{|ccc|c}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right) \sqrt{2} \\
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 7 \\
0 & 2 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right) & \left(\begin{array}{ccc|c}
1 & 0 & 0 & 7 \\
0 & 1 & 1 & -2 \\
0 & 0 & 1 & 2
\end{array}\right):\left(\begin{array}{lll|l}
0 & 1 & 0 & -2 \\
1 & 0 & 0 & 7 \\
0 & 0 & 1 & 2
\end{array}\right) \otimes
\end{array}\right.
\end{gathered}
$$

Reduced Echelon form lets us read off the solutions directly from the matrix. The big matrix above gives:

$$
x_{1}=7 \quad x_{2}=-2 \quad x_{3}=2
$$

Transformations example, part I

equations

$$
\left.\begin{array}{rlrl}
2 x_{2}+x_{3} & =-2 \\
3 x_{1}+5 x_{2}-5 x_{3} & =1 \\
2 x_{1}+4 x_{2}-2 x_{3} & =2 \\
E_{1} \leftrightarrow E_{3} & & \left(\begin{array}{ccc|c}
0 & 2 & 1 & -2 \\
3 & 5 & -5 & 1 \\
2 & 4 & -2 & 2
\end{array}\right) \\
2 x_{1}+4 x_{2}-2 x_{3} & =2 \\
3 x_{1}+5 x_{2}-5 x_{3} & =1 \\
2 x_{2}+x_{3} & =-2 \\
E_{1}:=\frac{1}{2} E_{1} & & \left(\begin{array}{ccc|c}
2 & 4 & -2 & 2 \\
3 & 5 & -5 & 1 \\
0 & 2 & 1 & -2
\end{array}\right) \\
x_{1}+2 x_{2}-1 x_{3} & =1 \\
3 x_{1}+5 x_{2}-5 x_{3} & =1 \\
2 x_{2}+x_{3} & =-2 & & \begin{array}{cc}
R_{1} & \frac{1}{2} R_{1} \\
1 & 2
\end{array} \\
\hline & -1 & 1 \\
3 & 5 & -5 & 1 \\
0 & 2 & 1 & -2
\end{array}\right)
$$

Radboud University Nifmegen

Transformations example, part II

equations

matrix

$$
\begin{aligned}
& x_{1}+2 x_{2}-1 x_{3}=1 \\
& 3 x_{1}+5 x_{2}-5 x_{3}=1 \\
& 2 x_{2}+x_{3}=-2 \\
& E_{2}:=E_{2}-3 E_{1} \\
& x_{1}+2 x_{2}-1 x_{3}=1 \\
&-x_{2}-2 x_{3}=-2 \\
& 2 x_{2}+x_{3}=-2 \\
& E_{2}:=-E_{2} \\
& x_{1}+2 x_{2}-1 x_{3}=1 \\
& x_{2}+2 x_{3}=2 \\
& 2 x_{2}+x_{3}=-2
\end{aligned}
$$

$$
\left.\begin{array}{c}
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
3 & 5 & -5 & 1 \\
0 & 2 & 1 & -2
\end{array}\right) \\
R_{2}:=R_{2} \\
\hline
\end{array} R_{1}, \begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & -1 & -2 & -2 \\
0 & 2 & 1 & -2
\end{array}\right), \begin{gathered}
R_{2}:=-R_{2} \\
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 2 & 1 & -2
\end{array}\right)
\end{gathered}
$$

Transformations example, part III

equations

$$
\begin{aligned}
& x_{1}+2 x_{2}-1 x_{3}=1 \\
& x_{2}+2 x_{3}=2 \\
& 2 x_{2}+x_{3}=-2 \\
& E_{3}:=E_{3}-2 E_{2} \\
& x_{1}+2 x_{2}-1 x_{3}=1 \\
& x_{2}+2 x_{3}=2 \\
&-3 x_{3}=-6 \\
& E_{3}:=-\frac{1}{3} E_{3} \\
& x_{1}+2 x_{2}-1 x_{3}=1 \\
& x_{2}+2 x_{3}=2 \\
& x_{3}=2
\end{aligned}
$$

matrix

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 2 & 1 & -2
\end{array}\right) \\
R_{3}:=R_{3}-2 R_{2} \\
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & -3 & -6
\end{array}\right) \\
R_{3}:=-\frac{1}{3} R_{3} \\
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right)
\end{gathered}
$$

Transformations example, part IV

equations

$$
\begin{gathered}
x_{1}+2 x_{2}-1 x_{3}=1 \\
x_{2}+2 x_{3}=2 \\
x_{3}=2 \\
E_{1}:=E_{1}-2 E_{2} \\
x_{1}-5 x_{3}=-3 \\
x_{2}+2 x_{3}=2 \\
x_{3}=2 \\
E_{2}:=E_{2}-2 E_{3} \\
x_{1}-5 x_{3}=-3 \\
x_{2}=-2 \\
x_{3}=2
\end{gathered}
$$

$$
\left.\begin{array}{l}
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \text { Echelon } \\
\text { form }
\end{array}\right] \begin{aligned}
& R_{1}:=R_{1}-2 R_{2} \\
& \left(\begin{array}{ccc|c}
1 & 0 & -5 & -3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& R_{2}:=R_{2}-2 R_{3} \\
& \left(\begin{array}{ccc|c}
1 & 0 & -5 & -3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Transformations example, part V

equations

$$
\begin{gathered}
x_{1}-5 x_{3}=-3 \\
x_{2}=-2 \\
x_{3}=2 \\
E_{1}:=E_{1}+5 E_{3} \\
x_{1}=7 \\
x_{2}=-2 \\
x_{3}=2
\end{gathered}
$$

matrix

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 0 & -5 & -3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& R_{1}:==R_{1}+5 R_{3} \\
& \left(\begin{array}{lll|c}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Gauss elimination

- Solutions can be found by mechanically applying simple rules
- in Dutch this is called vegen
- first produce echelon form (rijtrapvorm), then either (a) finish by substitution, or (b) obtain single-variable equations, reduced echelon form (gereduceerde rijtrapvorm)
- it is one of the most important algorithms in virtually any computer algebra system
- Applying these operations is actually easier on matrices, than on the equations themselves
- You should be able to do Gauss elimination in your sleep! It is a basic technique used throughout the course.

