Matrix Calculations: Vector Spaces

A. Kissinger
Institute for Computing and Information Sciences
Radboud University Nijmegen
Version: Autumn 2018

Outline

Non-homogeneous systems

Vector spaces

From last time

Homogeneous systems have 0's in the RHS of all equations.
Given a homogeneous system in n variables:

- A basic solution is a non-zero solution of the system.
- If there are n pivots in its Echelon form, $\mathbf{0}=(0, \ldots, 0)$ is the unique solution, so no basic solutions.
- If there are $p<n$ pivots in its Echelon form, it has $n-p$ linearly independent basic solutions.
- Two methods for finding them: plugging in free variables or deleting non-pivot columns, one-by-one

Non-homogeneous case: subtracting solutions

Theorem

For two solutions \boldsymbol{s} and \boldsymbol{p} of a non-homogeneous system of equations, the difference $\boldsymbol{s}-\boldsymbol{p}$ is a solution of the associated homogeneous system.

Proof: Let $a_{1} x_{1}+\cdots+a_{n} x_{n}=b$ be an equation in the non-homogeneous system. Then:

$$
\begin{aligned}
& a_{1}\left(s_{1}-p_{1}\right)+\cdots+a_{n}\left(s_{n}-p_{n}\right) \\
& =\left(a_{1} s_{1}-a_{1} p_{1}\right)+\cdots+\left(a_{n} s_{n}-a_{n} p_{n}\right) \\
& =\left(a_{1} s_{1}+\cdots+a_{n} s_{n}\right)-\left(a_{1} p_{1}+\cdots+a_{n} p_{n}\right) \\
& =b-b \quad \text { since the } \boldsymbol{s} \text { and } \boldsymbol{p} \text { are solutions } \\
& =0 .
\end{aligned}
$$

General solution for non-homogeneous systems

Theorem

Assume a non-homogeneous system has a solution given by the vector \boldsymbol{p}, which we call a particular solution.
Then any other solution s of the non-homogeneous system can be written as

$$
\boldsymbol{s}=\boldsymbol{p}+\boldsymbol{h}
$$

where \boldsymbol{h} is a solution of the associated homogeneous system.

Proof: Let \boldsymbol{s} be a solution of the non-homogeneous system. Then $\boldsymbol{h}=\boldsymbol{s}-\boldsymbol{p}$ is a solution of the associated homogeneous system. Hence we can write s as $\boldsymbol{p}+\boldsymbol{h}$, for \boldsymbol{h} some solution of the associated homogeneous system.

Example: solutions of a non-homogeneous system

- Consider the non-homogeneous system $\left\{\begin{aligned} x+y+2 z & =9 \\ y-3 z & =4\end{aligned}\right.$
- with solutions: $(0,7,1)$ and $(5,4,0)$
- We can write $(0,7,1)$ as: $(5,4,0)+(-5,3,1)$
- where:
- $\boldsymbol{p}=(5,4,0)$ is a particular solution (of the original system)
- $(-5,3,1)$ is a solution of the associated homogeneous system:

$$
\left\{\begin{array}{r}
x+y+2 z=0 \\
y-3 z=0
\end{array}\right.
$$

- Similarly, $(10,1,-1)$ is a solution of the non-homogeneous system and

$$
(10,1,-1)=(5,4,0)+(5,-3,-1)
$$

- where:
- $(5,-3,-1)$ is a solution of the associated homogeneous system.

General solution for non-homogeneous systems, concretely

Theorem

The general solution of a non-homogeneous system of equations in n variables is given by a parametrization as follows:
$\left(s_{1}, \ldots, s_{n}\right)=\left(p_{1}, \ldots, p_{n}\right)+c_{1}\left(v_{11}, \ldots, v_{1 n}\right)+\cdots c_{k}\left(v_{k 1}, \ldots, v_{k n}\right)$
for $c_{1}, \ldots, c_{k} \in \mathbb{R}$,
where

- $\left(p_{1}, \ldots, p_{n}\right)$ is a particular solution
- $\left(v_{11}, \ldots, v_{1 n}\right), \ldots,\left(v_{k 1}, \ldots, v_{k n}\right)$ are basic solutions of the associated homogeneous system.
- So $c_{1}\left(v_{11}, \ldots, v_{1 n}\right)+\cdots+c_{k}\left(v_{k 1}, \ldots, v_{k n}\right)$ is a general solution for the associated homogeneous system.

Finding a particular solution

- Recall: we found basic solutions by setting all but one of the free variables to zero and solving the homogeneous system
- To find a particular solution, set all the free variables to zero and solving the non-homogeneous system
- In other words, remove all the non-pivot columns:

$$
\left(\begin{array}{ccccc|c}
\boxed{1} & 1 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right) \quad \mapsto\left(\begin{array}{ccc|c}
\boxed{1} & 1 & 1 & 3 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 1 & 4
\end{array}\right)
$$

- Solve. Then, add zeros back in for the free variables:

$$
(10,-11,4) \quad \mapsto \quad(10,0,-11,0,4)
$$

Elaborated example, part I

- Consider the non-homogeneous system of equations given by the augmented matrix in echelon form:

$$
\left(\begin{array}{ccccc|c}
\boxed{1} & 1 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)
$$

- It has 5 variables, 3 pivots, and thus $5-3=2$ basic solutions
- To find a particular solution, remove the non-pivot columns, and (uniquely!) solve the resulting system:

$$
\left(\begin{array}{ccc|c}
\boxed{1} & 1 & 1 & 3 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 1 & 4
\end{array}\right)
$$

- This has $(10,-11,4)$ as solution; the orginal 5 -variable system then has particular solution $(10,0,-11,0,4)$.

Elaborated example, part II

- Consider the associated homogeneous system of equations:

$$
\left.\begin{array}{c}
x_{1} \\
x_{2}
\end{array} x_{3} \quad x_{4} \quad x_{5}, \begin{array}{ccc}
\boxed{1} & 1 & 1 \\
1 & 1 \\
0 & 0 & \boxed{1} \\
2 & 3 \\
0 & 0 & 0
\end{array} 00 \begin{array}{|c}
1
\end{array}\right)
$$

- The two basic solutions are found by removing each of the two non-pivot columns separately, and finding solutions:

$$
\left(\begin{array}{cccc}
x_{1} & x_{3} & x_{4} & x_{5} \\
\hline 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{5} \\
\hline 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- We find: $(1,-2,1,0)$ and $(-1,1,0,0)$. Adding zeros for missing columns gives: $(1,0,-2,1,0)$ and $(-1,1,0,0,0)$.

Elaborated example, part III

Wrapping up: all solutions of the system

$$
\left(\begin{array}{ccccc|c}
\boxed{1} & 1 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)
$$

are of the form:

$$
\underbrace{(10,0,-11,0,4)}_{\text {particular sol. }}+\underbrace{c_{1}(1,0,-2,1,0)+c_{2}(-1,1,0,0,0)}_{\text {two basic solutions }} .
$$

This is the general solution of the non-homogeneous system.

What are numbers?

Suppose I don't know what numbers are... ...but I still manage to pass Mathematical Structures.

Tell me: what are numbers?
What is the first thing you would tell me about some numbers, e.g. the real numbers?

What are numbers?

The First Thing: numbers form a set

$S \quad(\longleftarrow$ these are some numbers!)

The Second Thing: numbers can be added together

$$
a \in S, b \in S \quad \Longrightarrow \quad a+b \in S
$$

Addition? Tell me more!

We have a set S, with a special operation ' + ' which satisfies:

1. $a+b=b+a$
2. $(a+b)+c=a+(b+c)$
...and there's a special element $\mathbf{0} \in S$ where:
3. $a+\mathbf{0}=a$

In math-speak, $(S,+, \mathbf{0})$ is called a commutative monoid, but we could also just call it a set with addition.

Examples: sets with addition

- Every kind of number you know: $\mathbb{R}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{C}, \ldots$
- The set of all polynomials:

$$
\left(x^{2}+4 x+1\right)+\left(2 x^{2}\right):=3 x^{2}+4 x+1 \quad \mathbf{0}:=0
$$

- The set of all finite sets:

$$
\{1,2,3\}+\{3,4\}:=\{1,2,3\} \cup\{3,4\}=\{1,2,3,4\} \quad \mathbf{0}:=\{ \}
$$

- Here's a small example: $\{0\}$

$$
0+0:=0 \quad 0:=0
$$

- ...and (important!) the set \mathbb{R}^{n} of all vectors of size n :

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \quad \mathbf{0}:=(0, \ldots, 0)
$$

Linear combinations

- We've been talking a lot about linear combinations:

$$
a \cdot \boldsymbol{v}+b \cdot \boldsymbol{w}=\boldsymbol{u}
$$

- Q: what is the most general kind of set, where we can take linear combinations of elements?
- A: a set V with addition and...scalar multiplication

$$
a \in \mathbb{R}, \boldsymbol{v} \in V \quad \Longrightarrow \quad a \cdot v \in V
$$

Multiplication?! What does that do?

A vector space is a set with addition $(V,+, \mathbf{0})$ with an extra operation ' \because ', which satisfies:
(1) $a \cdot(\boldsymbol{v}+\boldsymbol{w})=a \cdot \boldsymbol{v}+a \cdot \boldsymbol{w}$
(2) $(a+b) \cdot \mathbf{v}=a \cdot \mathbf{v}+b \cdot \mathbf{v}$
(3) $a \cdot(b \cdot \boldsymbol{v})=a b \cdot v$
(4) $1 \cdot v=v$
(5) $0 \cdot v=0$

Example

Our main example is \mathbb{R}^{n}, where:

$$
a \cdot\left(v_{1}, \ldots, v_{n}\right):=\left(a v_{1}, \ldots, a v_{n}\right)
$$

Vector spaces: all together

Definition

A vector space $(V,+, \cdot, \mathbf{0})$ is a set V with a special element $\mathbf{0} \in V$ and operations ' + ' and ' \because ' satisfying:
(1) $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$
(2) $\boldsymbol{v}+\boldsymbol{w}=\boldsymbol{w}+\boldsymbol{v}$
(3) $v+0=v$
(4) $a \cdot(\boldsymbol{v}+\boldsymbol{w})=a \cdot \boldsymbol{v}+a \cdot \boldsymbol{w}$
5) $(a+b) \cdot v=a \cdot v+b \cdot v$
(6) $a \cdot(b \cdot v)=a b \cdot v$
(7) $1 \cdot v=v$
(8) $0 \cdot v=0$
for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $a, b \in \mathbb{R}$.

Vector spaces: Main Example

Our main example:

$$
\begin{aligned}
\mathbb{R}^{n} & =\left\{\left(v_{1}, \ldots, v_{n}\right) \mid v_{1}, \ldots, v_{n} \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \right\rvert\, v_{1}, \ldots, v_{n} \in \mathbb{R}\right\}
\end{aligned}
$$

The operations:

$$
\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)+\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)=\left(\begin{array}{c}
v_{1}+w_{1} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right) \quad a \cdot\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
a v_{1} \\
\vdots \\
a v_{n}
\end{array}\right)
$$

have a clear geometric interpretation.

Vector spaces: geometric interpretation

a. v makes a vector shorter or longer:

$\boldsymbol{v}+\boldsymbol{w}$ stacks vectors together:

Example: subspaces

Certain subsets $V \subseteq \mathbb{R}^{n}$ are also vector spaces, e.g.

$$
\begin{aligned}
V & =\left\{\left(v_{1}, v_{2}, 0\right) \mid v_{1}, v_{2} \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3} \\
W & =\{(x, 2 x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^{2}
\end{aligned}
$$

as long as they have $\mathbf{0}$, and they are closed under ' + ' and '. ':

$$
\begin{aligned}
& \boldsymbol{v}, \boldsymbol{w} \in V \Longrightarrow \boldsymbol{v}+\boldsymbol{w} \in V \\
& \boldsymbol{v} \in V, a \in \mathbb{R} \Longrightarrow a \cdot \boldsymbol{v} \in V
\end{aligned}
$$

These are called subspaces of \mathbb{R}^{n}.

Vector space example

We've seen this example before!

Example

The set of solutions of a homogeneous system of equations is a vector space.

Let S be the set of solutions of a homogeneous system of equations, with n variables. Then $S \subseteq \mathbb{R}^{n}$, and as we learned last week:

$$
\begin{gathered}
\boldsymbol{s}, \boldsymbol{t} \in S \Longrightarrow \boldsymbol{s}+\boldsymbol{t} \in S \\
\boldsymbol{s} \in S, a \in \mathbb{R} \Longrightarrow a \cdot \boldsymbol{s} \in S
\end{gathered}
$$

Proving something is a subspace

In summary, to prove something is a subspace, there are 2 things to check:
(1)

$$
\boldsymbol{v}, \boldsymbol{w} \in V \Longrightarrow \boldsymbol{v}+\boldsymbol{w} \in V
$$

(2)

$$
\boldsymbol{v} \in V, \lambda \in \mathbb{R} \Longrightarrow \lambda \cdot \boldsymbol{v} \in V
$$

To prove something is not a subspace, show that one of these things fails:

- e.g. find $\boldsymbol{v}, \boldsymbol{w} \in V$ such that $\boldsymbol{v}+\boldsymbol{w} \notin V$
- ...or find \boldsymbol{v} such that $2 \cdot \boldsymbol{v} \notin V$,
- ...or give some other counter-example.

Proving something is a subspace: example

Example: Prove $V=\{(2 x, y, x+y) \mid x, y \in \mathbb{R}\}$ is a subspace.
(1) Let $\boldsymbol{v}=(2 a, b, a+b)$ and $\boldsymbol{w}=(2 c, d, c+d)$ are two arbitrary elements of V. Then:

$$
\begin{aligned}
\boldsymbol{v}+\boldsymbol{w} & =(2 a+2 c, b+d, a+b+c+d) \\
& =(2(a+c), b+d,(a+c)+(b+d))
\end{aligned}
$$

is in $V .(\ln$ this case, $x=a+c$ and $y=b+d$.
(2) Let $\boldsymbol{v}=(2 a, b, a+b)$ and λ be some arbitrary vector in V and some arbitrary real number. Then:

$$
\begin{aligned}
\lambda \cdot \boldsymbol{v} & =(2 \lambda a, \lambda b, \lambda(a+b)) \\
& =(2 \lambda a, \lambda b, \lambda a+\lambda b)
\end{aligned}
$$

is in $V .(\ln$ this case, $x=\lambda a$ and $y=\lambda b$.

Vector spaces: 'weirder' examples

\mathbb{R}^{n} and $V \subseteq \mathbb{R}^{n}$ are the only things we'll use in this course...but there are other examples:

- $\{0\}$ is still an example
- Polynomials are still an example: $5 \cdot\left(2 x^{2}+1\right)=10 x^{2}+5$
- ...but finite sets are not!

$$
5 \cdot\{\text { sandwich, Tuesday }\}=? ? ?
$$

- Functions $\mathcal{F}(X):=\{f: X \rightarrow \mathbb{R}\}$ are an example. If f, g are functions, then ' $f+g$ ' and $a \cdot f$ are also functions, defined by:

$$
(f+g)(x):=f(x)+g(x) \quad(a \cdot f)(x)=a f(x)
$$

Exercise: show that, if $X=\{1,2, \ldots, n\}$, then $\mathcal{F}(X)$ is basically the same as \mathbb{R}^{n}.

