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Abstract. Failures are unavoidable in many circumstances. For exam-
ple, an agent may fail at some point to perform a task in a dynamic
environment. Robust systems typically have mechanisms to handle such
failures. Temporal logic is a widely used representation language for rea-
soning about the behaviour of systems, although dealing with failures
is not part of the language. In this paper, it is investigated how inter-
val temporal logic can be extended with an operator describing failure.
This logic has a close relationship to exception handling mechanisms in
programming languages, which provides an elegant mechanism for mod-
elling and handling failures. The approach is motivated from the context
of specification of systems that have to operate in highly dynamic envi-
ronments. A case study of the formal modelling and verification of the
treatment of diabetes mellitus type 2 illustrates the practical usefulness
of the approach.

1 Introduction

For agents that do not have a complete model of their environment or lack
certain control over it, it is unavoidable that failures to perform tasks occur.
Many systems require some type of robustness against these failures, e.g., robots
need to make sure that their task will be accomplished, aviation systems need to
make sure that the plane does not crash, etc. In agent literature, the semantics of
failures have been investigated in a logical sense [11] and have been incorporated
in agent programming languages [5]. Similarly, in software engineering, the use
of exceptions as first-class citizens in programming languages is wide-spread.

Besides the internal aspects of a system, i.e., a program state or mental state
of an agent, an important aspect of systems is behaviour, i.e., how it acts and
reacts in a dynamic environment. To reason about this behaviour, mechanisms
that go beyond the scope of classical predicate logic are employed. Since the late
seventies, several temporal logics have been proposed to deal with specification
and verification of hardware and software systems. In artificial intelligence, many
of the logics dealing with actions usually contain some temporal component. In
systems where failures heavily determine the final behaviour, modelling of this
behaviour is more natural when failures are part of the modelling language.
Moreover, we will argue that, since temporal logical formulas can be used to
describe behaviour, the failure of a behaviour is best described using a sentential



operator, i.e., as a property of a (temporal) logical sentence. This contrasts with
other approaches, where failure is seen as a property of primitive events and
corresponds to the major contribution of this paper.

In the next section, we will first consider some motivating examples for rea-
soning about failure and explain why a simple solution is often unsatisfactory.
Then, in Section 3, this is related to exception handling mechanisms that are
found in programming languages. In Section 4, preliminaries concerning Interval
Temporal Logic (ITL) are introduced, which is subsequently extended with fail-
ures in Section 5. In Section 6, we apply this to to a medical guideline that deals
with the treatment of diabetes mellitus type 2 and study the formalisation and
its properties. In Section 7, related work of modelling failure in AI is discussed.
Finally, in Section 8, we discuss the results and future work.

2 Motivating Examples

2.1 Robbing a Bank

A well-known logic to model agents is BDI logic as proposed by Rao & Georgeff
[11]. It contains modal operators BEL, GOAL, and INTEND which should be
interpreted as the believe, goal and intention of the agent. Moreover, amongst
other operators, it contains an operator failed to describe that an event has
(just) failed and temporal operators such as � (always) and ♦ (eventually). The
introduction of a failed operator is motivated by Rao & Georgeff by the fact
that failure may force an agent to replan or revise her plans. They give the
following example:

(...) the consequence of a thief successfully robbing a bank is quite dif-
ferent from a thief failing in his attempt to rob the bank, which is again
different from the thief not attempting to rob the bank.

For example, it is possible to model an agent that believes that if he fails to rob
the bank, then he will go to jail:

BEL �(failed(rob bank) → ♦locked up)

which allows the agent to revise its plan after the robbery accordingly. Robbing a
bank, however, is not an easy task for any intelligent agent (over 50 percent of the
bank robbers are arrested in the US1). For example, in case of an armed robbery,
it involves threatening the people inside the bank at all times, demanding money
and securing a getaway. Failure to accomplish any of the subtasks will result in
failure to complete the overall task. Note that failure to demand money will
in some sense result in failure to rob the bank; however, it is clear that this
does not necessarily lead to the consequence of going to jail. There is a need to
model the different ‘types’ of failure associated with a goal that the agent tries to

1 http://www.fbi.gov/ucr/cius 02/html/web/specialreport/05-SRbankrobbery.

html



accomplish. More importantly, the predicate failed describes failure of events;
however, ‘robbing a bank’ is not a primitive event here, but rather a complex
temporal description of several events to accomplish the overall task. Clearly, as
failed is a predicate on events, it cannot be used in a temporal formula. The
only possibility is to define the event rob bank in terms of more primitive events.
The downside of this approach is that there is no mechanism to infer that failure
of some of the mandatory sub-tasks will result in failure of the overall task.
While it might be possible to specify this, as rob bank is a complex temporal
description of events, a description of its failure is, most likely, complex as well.
In the next subsection, this is illustrated with some temporal patterns that may
occur in medical management.

2.2 Medical Management

Suppose we are modelling an agent, typically a physician, who treats a patient.
As almost all drugs may result in side-effects, it is of great importance that the
agent does not over-medicate the patient. Therefore, if the disease is not directly
life-threatening, management of a disease should start with a non-invasive treat-
ment where one expects as little side-effects as possible. It is not always possible
to measure beforehand if the effects of the treatment will be desirable, as this
could require a test that is considered to be too invasive or because it is not
known which physiological variable should be measured. As a result, a failure to
treat the patient may occur, which means that subsequent actions are required.

Medical treatments are performed in sequence or in parallel. Sequential ac-
tions are typically done in case an earlier treatment fails or when a certain
physiological state should be reached before a subsequent state can be effective.
In such a case, failure to perform a treatment will result in a failure of the whole
protocol, as it will block the successful administering of subsequent treatments.
Parallel treatments occur for example when multiple drugs are prescribed at
the same time. If the effects of these drugs are combined, then the combination
of drugs will fail if one of the individual actions fails. If failures are not han-
dled appropriately, it may lead to medical mismanagement, e.g., in case drugs
become ineffective due to failure of other treatment components, continuing to
administer these drugs is considered bad medical practice. As a consequence,
failure handling plays an important role in maintaining the quality of medical
management.

This idea of an implicit mechanism that “propagates” the failures throughout
the management of a disease leads to the idea that such failures could be seen
as exceptions that need to be handled appropriately. This idea is pursued in the
next section.

3 Exception Handling

The idea of handling failures while performing a task is well-known in the context
of programming languages by means of exception handling mechanisms. An ex-
ception is a failure of an operation that cannot be resolved by the operation itself



[14]. Exception handling mechanisms provides a way for a program to deal with
them. Many programming languages (C++, Ada, Java, etc) now incorporate
such extensive exception mechanism in order to facilitate robust applications.
Typically, such a mechanism consists of two parts. There is a mechanism to
throw an exception, which sends a signal that an exception has occurred. Sec-
ond, catching an exception transfers control to the exception handler that defines
the response that the program takes when the exception occurs. Looking at it
slightly differently, one could say that the program determines the plan that is
being executed, while the exception handler is able to revise this plan in case an
failure occurs.

For the purpose of this paper, it is useful to summarise the semantics of
exception handling mechanisms. A formal semantic model of exceptions in Java
based on denotational semantics [1] as well as operational semantics [10] exists.
The complete mathematical description of these mechanisms is too extensive
to be discussed here, as only a small part of the semantics deals with failures.
Instead, we give a more general description of the operational semantics of the
exception mechanism. A state, here denoted by σ, consists of the heap, values
of the local variables, and optionally an exception. Evaluation rules describe
how statements change the state, typically in the form σ0

s
−→ σ1 which denotes

that the execution of statement s starting in state σ0 can terminate in state
σ1. For exception handling, the state is extended with an exception, i.e., we
then deal with assertions σ0

s
−→ σe

1 which means that the execution of s in
σ0 can terminate in σ1 throwing an exception denoted by the superscript e2.
The operational semantics is then also extended with these assertions, e.g., for
sequential composition this yields the following two rules depending on whether
or not a failure has occurred in the first statement:

Γ ⊢ σ0
s1−→ σ1 Γ ⊢ σ1

s2−→ σ2

Γ ⊢ σ0
s1;s2
−−−→ σ2

Γ ⊢ σ0
s1−→ σe

1

Γ ⊢ σ0
s1;s2
−−−→ σe

1

where Γ defines the context of the rule. Logically speaking, what we see here is
that failures are propagated through the semantics of each programming struc-
ture. We will show how to incorporate this idea in terms of temporal logic in the
next two sections.

4 Interval Temporal Logic

In this section, we define the necessary preliminaries of interval temporal logic
(ITL) [8], which acts as the basis for our approach and can be considered a rich
framework for specifying many systems. As it is quite a rich system, it can be
considered a rather heavy machinery for solving the problems that were discussed
in the previous section. However, it shows that the incorporation of failures in
the logic can be done for a wide range of logics, such as the more common linear
temporal logic (LTL), a sub-logic of ITL.

2 abstracting from the different types of exceptions



4.1 Syntax

For the purpose of this paper, we consider the propositional part of ITL. The
main difference with standard temporal logic is that interval temporal logic deals
with intervals rather than time points, which makes it suitable for logic-based
modular reasoning involving periods of time. In this logic there are three primary
temporal constructs:

– skip: the interval is a unit interval of length 1

– ϕ;ψ: chop the interval into two parts, such that ϕ holds in the first part and
ψ holds in the second part

– ϕ∗: decompose the interval into a (possibly infinite) number of finite intervals
in which ϕ holds.

Given a non-empty set of propositional variables P, the full syntax can then be
given in BNF notation as follows:

ϕ −→ p | ¬ϕ | ϕ ∧ ϕ | skip | ϕ;ϕ | ϕ∗

with p ∈ P. Let true be defined as p ∨ ¬p and false as ¬true, for some p ∈ P.
Then, the following additional linear temporal operators are defined that are
used in the remainder of this paper:

◦ϕ , skip;ϕ in the next state ϕ

•ϕ , ¬ ◦ ¬ϕ if there is a next state, then in the next state ϕ

last , • false this is the last state of the interval

finite , ¬(true; false) the interval is finite

♦ϕ , finite;ϕ eventually ϕ

�ϕ , ¬♦¬ϕ always ϕ

Other propositional connectives are defined as usual, i.e., ϕ ∨ ψ , ¬(¬ϕ ∧ ¬ψ),
ϕ→ ψ , ¬ϕ ∨ ψ, and if α then ϕ else ψ , (α ∧ ϕ) ∨ (¬α ∧ ψ).

4.2 Semantics

Models of this logic are (possibly infinite) sequences of states, denoted by σ, i.e.,
σ = σ0, σ1, . . .. We write |σ| to denote one less than the length of the sequence
(as usual in ITL), which is either ∞ if there are infinite number of states and
otherwise some natural number n. If σ = σ0, . . . , σn, . . . , σm, . . ., then σ[n,m]

denotes the subsequence σn, . . . , σm of σ. Let each σi be a function of type
P → {⊥,⊤}, that denotes whether an atomic proposition is either true (⊤) or



false (⊥). The formal semantics is then as follows:

σ |= p ⇔ σ0(p) = ⊤
σ |= ¬ϕ ⇔ σ 6|= ϕ

σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ

σ |= skip ⇔ |σ| = 1
σ |= ϕ;ψ ⇔ |σ| = ∞∧ σ |= ϕ or

there exists n ≤ |σ| with σ[0,n] |= ϕ and σ[n,|σ|] |= ψ

σ |= ϕ∗ ⇔ |σ| = 0
or there exists 0 = n0 < n1 < . . . < nm < |σ|

with σ[ni,ni+1] |= ϕ for all 0 ≤ i < m

and σ[nm,|σ|] |= ϕ

or there exists infinite many 0 = n0 < n1 < . . .

with σ[ni,ni+1] |= ϕ for all 0 ≤ i

Sequences of, for example medical, actions can now be modelled quite easily,
e.g., action a after b is modelled as a; b, provided that a and b may overlap.
Repetition of this patterns could be modelled as, for example, (a; ◦ b)∗. If, on
the other hand, a must be applied for a longer period of time, this may be
described as �a; b. What will happen when in this latter case fail(b) holds at
some point: does this constitute a failure of the complete sequence? Presumably
not, as b does not necessarily have to hold by the given semantics. What if failure
occurs at the last time that a holds? Then it seems to be the case that the whole
sequence has failed. We will formalise this intuition in the next section.

5 Interval Temporal Action Logic with Failure

In this section, we extend the logic of ITL with actions and introduce an operator
that denotes failure of the formula. We will refer to this extended logic as ITALF.

5.1 Syntax and Semantics

Let A be a set of actions, and P a set of atomic propositions. Models σ we will
be working with consists of a (possible infinite) sequence of states σ0, . . .. Each
σi is defined as 〈πi, αi〉, where πi is a function P → {⊤,⊥} and αi a function
A → {inactive, active, failed}. When discussing a σ′, we will write α′

i and π′
i such

that σ′
i = 〈α′

i, π
′
i〉. Let the language be extended with actions and an operator

fail. All semantics given by the language of ITL remains the same. Entailment
of ITL will be denoted as |=ITL from now on and |= will be understood as
entailment for ITALF.

Actions are interpreted as activations, hence, negations of actions are under-
stood as actions that are not active (i.e., inactive or failed). This is formalised
as follows:

σ |= a⇔ α0(a) = active

For the definition of failure, we need to consider models where we abstract from
the difference between inactive and activation, but instead only consider the



1. fail(ϕ) → fail(ϕ ∧ ψ)
2. fail(ϕ ∨ ψ) → fail(ϕ) ∨ fail(ψ)
3. fail(ϕ) → fail(ϕ;ψ), where ϕ is objective
4. fail(ϕ) → fail(ϕ∗), where ϕ is objective

Fig. 1. Propagation of failures in ITALF, where objective formulas are formulas that
do not contain any temporal operators.

difference between failures and non-failures. In order to accomplish this, we use
the following models, that we denote as failmodel(σ):

Definition 1. For all σ, failmodel(σ) = σ′ if:

– |σ| = |σ′|

– for all i such that 0 ≤ i ≤ |σ|:

• for all p ∈ P: πi(p) = π′
i(p)

• for all a ∈ A: if αi(a) = failed then α′
i(a) = failed,

otherwise α′
i(a) = active

So failmodel(σ) describes σ where non-failures (in particular inactive actions)
are interpreted as activations. We can then consider failure as a type of negation
in the definition of fail, as follows:

σ |= failϕ⇔ σ 6|= ϕ and failmodel(σ) 6|= ϕ

To understand this definition, consider ϕ as a formula that implies that certain
propositions and actions are true or false at certain moments in time, even
though for some formulas, there is a choice to be made on which point in time.
For atomic propositions, the definition is clear and is equivalent to the negation
as failmodel(σ) does not evaluate propositions differently than σ. For actions, the
situation is more complicated. First, if an action a is implied by ϕ at a certain
moment in time, then ϕ fails if the action fails on that point in time, which
is exactly given looking at ¬a on failmodel(σ). This seems sufficient; however,
consider the converse, i.e., that ϕ implies ¬a at a certain point in time. Then, the
formula fails if in fact the action is activated at that point, which corresponds
to the first part of the definition. Note that by just looking at failmodel(σ), we
can only derive that it must be active or inactive, however, a failure not to do
an action does not correspond to this idea.

5.2 Logical Characterisation

As already mentioned in the previous section, with respect to atomic propositions
p, it follows:

fail p ≡ ¬p



fail αi

ϕ ψ

t t+ 2t+ 1

Fig. 2. Sketch of ϕ orelse{αi} ψ in case of failure of αi.

i.e., failure to accomplish p simply means it is not true. So, the formalisation
considers failure as a kind of negation. Typically, in the formalisation of medical
management, we are interested in formulas such as:

fail (p→ a)

i.e., in situation described by p, the action a must be activated. According to
the semantics, this is equivalent to p ∧ fail a, i.e., if the implication fails, then
in the situation described by p, the action a indeed fails. As argued in the
previous subsection, failure not to do an action a, i.e., fail¬a means that a is
in fact done. Conversely ¬fail a means that a is either active or inactive. Hence
fail¬ϕ 6= ¬failϕ.

In general, the definition of fail is such as to propagate to larger formulas.
This is summarised in Fig. 1. What is interesting is that the calculus rules of
the operational semantics of an imperative programming language described in
Section 3 can now be understood in terms of failure inside the logic. For example,
for sequential composition, the following calculus rule is sound with respect to
the semantics:

Γ ⊢ fail(ϕ)

Γ ⊢ fail(ϕ;ψ)

where ϕ is objective, which follow directly from item (3) of Fig. 1 and modus
ponens.

In order to describe acting on the basis of failure, we define an additional
operator:

ϕ orelseA ψ , ϕ ∧ ¬last; ◦ (failstateA ∧ ◦ψ)

where
failstateA =

∨

ai∈A

fail ai ∧
∧

ai∈A

¬ai

i.e., ϕ holds forever, or, an action fails at some point after which ψ holds. We
assume that ϕ is true in at least a unit interval, which prevents failures to occur
right away. In Fig. 2, a model where a failure occurs and is handled is sketched.
The definition of the failstate ensures that during this time no action can be
active, and thus no additional failures may occur. In some sense, this operator
may be read as an exception handling mechanism where failures of ‘type’ A are
caught in the execution of ϕ, such that ψ is executed when this occurs.



Finally, consider the robbing example of Subsection 2.1. The ITALF logic
allows one to reason elegantly about, for example the temporal description
fail(�threaten; flee). It is cumbersome to derive an equivalent formula in ITL,
which has to describe that in case the fleeing fails or that threatening fails before
fleeing, the robbing fails. It is not difficult to see however, that it is possible to
write down such formula. In fact, this is true for arbitrary formulas of the ITALF
language and is discussed next.

5.3 Reduction to ITL

In this subsection, we will show how ITALF can be translated to ITL. We thereby
give means to exploit the proof techniques that were developed for ITL. To
accomplish a reduction to ITL, additional propositional variables are required.
We assume we have an infinite number of propositional variables such that we
have a (unique) fresh proposition fa, standing for failure, for each a ∈ A.

Definition 2. Given a formula ϕ, define Φ(ϕ) as ϕ where every occurrence of

some action a ∈ A has been replaced with ¬fa.

Definition 3. The reduction of a formula ϕ is defined on the structure of ϕ as

follows:
reduce(p) = p

reduce(a) = a

reduce(¬ϕ) = ¬reduce(ϕ)
reduce(ϕ ∧ ψ) = reduce(ϕ) ∧ reduce(ψ)
reduce(skip) = skip

reduce(ϕ;ψ) = reduce(ϕ); reduce(ψ)
reduce(ϕ∗) = reduce(ϕ)∗

reduce(failϕ) = ¬reduce(ϕ) ∧ ¬Φ(reduce(ϕ))

Below, we refer to reduct(ϕ) as the ITALF formula that is found by applying
the definition exhaustively from left to right. The main result of this subsection
which provides the connection between ITL and ITALF follows.

Definition 4. Given a ITALF formula ϕ, intended meaning of the failure propo-

sitions is defined as follows:

I(ϕ) = �(a0 → ¬fa0
∧ · · · ∧ an → ¬fan

)

where {a0, . . . , an} ⊆ actions(ϕ), such that actions(ϕ) is defined as the set of

those a ∈ A that is a sub-formula of ϕ.

Note that I(ϕ) is finitely bounded by actions in a formula, which is important
as the total number of actions in the language may be infinite.

Then, we have the following result:

Theorem 1. |= ϕ iff I(ϕ) |=ITL reduct(ϕ)

The proof of this theorem can be found in Appendix A.



5.4 Robbing the Bank Revisited

As an illustration of the theory introduced above, we revisit the example dis-
cussed in Section 2.1. Suppose we would model robbing the bank as follows:

rob bank , (�threaten ∧ ♦collect money ∧ finite); get away

i.e., personnel is threatened for a finite amount of time, money is collected, after
which it is necessary to get away. Accepting the semantics of failures as presented
in this paper, we can now directly talk about failure of the logical sentence above,
possibly in combination with ‘�¬fail collect money’, as this action cannot fail
in the sense discussed in Section 2.1, i.e., failure to collect money does not lead
to an arrest.

To illustrate what it then means to fail to rob the bank in the language of
ITL, one can take the reduction of the sentence (we will omit the definition of
failure propositions defined by I in the formulas below, i.e., we will only consider
faithful models, see Appendix A) resulting in:

· · · ∧ ¬((�¬fthreaten ∧ ♦¬fcollect money ∧ finite); fget away)

Now supposing that the money is collected, this can be further simplified using
the semantics of the ITL operators, finally yielding models for which holds:

∀n ≤ |σ| : (∃i : (0 ≤ i ≤ n and σi |= fthreaten) or σn |= fget away)

i.e., either in the first part the threatening fails or, otherwise, the robber fails
to get away, which is arguably the intended meaning of failing to rob a bank in
this example.

This, however, is not easily specified in future-time temporal logic. While
we can obviously express this with the negated chop formula above, negated
chop formulas are difficult to interpret. Using a more standard linear temporal
operator, until (see e.g., [15]), the simplified formula can be rephrased as:

¬((¬fthreaten) until (¬fget away ∧ ¬fthreaten))

which is possibly slightly more understandable. Nevertheless, if the original tem-
poral specification is more complicated than the rather simple example that we
provide here, modelling failing behaviour quickly becomes a difficult task.

6 Application to a Medical Guideline

6.1 Introduction

As a more elaborate application of failures, we consider clinical guidelines, which
are extensive documents advising clinicians appropriate management of disease.
The guideline shown in Fig. 3 is part of the guideline for general practitioners
for the treatment of diabetes mellitus type 2 (DM2) [12], which aims at control-
ling the level of glucose in the blood. The knowledge in this fragment concerns



– Step 1: diet
– Step 2: if Quetelet Index (QI) ≤ 24, prescribe a sulfonylurea drug; otherwise,

prescribe a biguanide drug
– Step 3: combine a sulfonylurea drug and biguanide (replace one of these by a
α-glucosidase inhibitor if side-effects occur)

– Step 4: insulin

Fig. 3. Tiny fragment of a clinical guideline on the management of diabetes mellitus
type 2. If one of the steps k = 1, 2, 3 is ineffective (fails), the management moves to
step k + 1.

information about order and time of treatment (e.g., sulfonylurea in step 2),
about patients and their environment (e.g., Quetelet index lower than or equal
to 27), and finally which drugs are to be administered to the patient (e.g., a
sulfonylurea drug).

In order to reason about the quality of guidelines, we require additional
medical knowledge, which is based on a methodology for checking quality medical
guidelines proposed in [6]. While some of the below formalisation is also discussed
in that paper, here, the guideline is formalised in temporal logic, rather than a
specialised guideline representation language. In particular, we focus on the issue
of failure of treatments.

6.2 Modelling of Medical Knowledge

In order to represent the medical knowledge, a specific language is defined in this
section. We restrict ourselves to the knowledge which concerns itself with the
primary aim of a guideline, which is to have a certain positive effect on a patient.
To establish that this is indeed the case, knowledge concerning the physiology of
a patient is required. This is here formalised as a causal model describing effects
of the treatment.

We are interested in the prescription of drugs, taking into account their mode
of action. Abstracting from the dynamics of their pharmacokinetics, this can be
formalised in logic as follows:

(d ∧ r) → ◦ (m1 ∧ · · · ∧mn) (1)

where d is the name of a drug, r is a (possibly negative or empty) requirement

for the drug to take effect, and mk is a mode of action, such as decrease of release
of glucose from the liver, which holds at all future times.

Note that we assume that drugs are applied for an instant, here formalised
as ‘next’. This is reasonable if we think of the time instants as unspecified peri-
ods of time where certain propositions hold. Synergistic effects and interactions
amongst drugs can also be formalised along those lines, as required by the guide-
line under consideration. This can be done either by combining their joint mode
of action, by replacing d in the formula above by a conjunction of drugs, or



(1) insulin →
◦ (uptake(liver, glucose) = up ∧ uptake(peripheral-tissues, glucose) = up)

(2) uptake(liver, glucose) = up → release(liver, glucose) = down

(3) SU ∧ ¬capacity(b-cells, insulin) = exhausted) → ◦ secretion(b-cells, insulin) = up

(4) BG → ◦ release(liver, glucose) = down

(5) diet ∧ capacity(b-cells, insulin) = normal → ◦ Condition(normoglycaemia)
(6) (◦ secretion(b-cells, insulin) = up ∧ capacity(b-cells, insulin) = subnormal ∧

QI ≤ 27 ∧ Condition(hyperglycaemia)) → ◦ Condition(normoglycaemia)
(7) (◦ release(liver, glucose) = down ∧ capacity(b-cells, insulin) = subnormal ∧

QI > 27 ∧ Condition(hyperglycaemia)) → ◦ Condition(normoglycaemia)
(8) ((◦ release(liver, glucose) = down ∨ ◦ uptake(peripheral-tissues, glucose) = up) ∧

capacity(b-cells, insulin) = nearly-exhausted ∧ ◦ secretion(b-cells, insulin) = up ∧
Condition(hyperglycaemia)) → ◦ Condition(normoglycaemia)

(9) (◦ uptake(liver, glucose) = up ∧ ◦ uptake(peripheral-tissues, glucose) = up ∧
capacity(b-cells, insulin) = exhausted ∧ Condition(hyperglycaemia)) →
◦ (Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

(10) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia)) ∧ ¬ (Condition(normoglycaemia) ∧
Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

Fig. 4. Background knowledge BDM2 of diabetes mellitus type 2. An action α holds
iff drug x is being administered at that moment in time. The ⊕ operator denotes the
exclusive OR operator.

by reasoning about modes of actions. As we do not require this feature for the
clinical guideline considered in this chapter, we will not go into details.

The modes of action mk can be combined, together with an intention n

(achieving normoglycaemia, i.e., normal blood glucose levels, for example), a
particular patient condition c, and requirements rj for the modes of action to be
effective:

(◦mi1 ∧ · · · ∧ ◦mim
∧ r1 ∧ · · · ∧ rp ∧ c) → ◦n (2)

For example, if the mode describes that there is a stimulus to secrete more insulin
and the requirement that sufficient capacity to provide this insulin is fulfilled,
then the amount of glucose in the blood will decrease.

The fragment of DM2 is relatively simple, however, diabetes is in fact a com-
plicated disease: various metabolic control mechanisms are deranged and many
different organ systems may be affected by the disorder. Pathophysiologically,
there are two main phenomena, namely, insufficient secretion of the hormone
insulin due to a decreased production of insulin by B cells in the Langerhans
islets of the pancreas, and insulin resistance in liver, muscle and fat tissue. Parts
of these mechanisms are described in more detail in [6]. These physiological
mechanisms were modelled in temporal logic, which is described in Fig. 4.



6.3 Modelling of the Guideline

In this paper, we mainly focus on the modelling of the guideline fragment of
Fig. 3. The possible actions that can be performed is the set A consisting of
{diet,SU,BG, insulin}. Each treatment A is a subset of A. Treatment changes if
a treatment has failed, which can be conveniently be formalised in ITALF. The
main structure of the guideline, denoted by M, is then:

� treatment = {diet}
orelse{diet} (if QI < 27 then (�treatment = {SU})

else (�treatment = {BG})
orelse{SU,BG} (�treatment = {SU,BG}

orelse{SU,BG} �treatment = {insulin}))

where each term treatment = A is an abbreviation for:
∧

({α | α ∈ A} ∪ {¬α,¬fail α | α ∈ (A \A)})

i.e., the actions in A are activated, and all other actions are inactive (i.e., false
and have not failed). This formalisation includes the handling of the failures in
some sense, however, we also need to define in which cases these failures occur.
One can think of this as ‘throwing’ the exceptions during the management of
the disease. Define an abbreviation for this as follows:

failsϕ , ◦ failϕ

The guideline does not specify what amount of time is allowed to pass before it
can be concluded that the treatment is not effective. Clearly, if a failure occurs
immediately, then patients will all receive insulin treatment. Here, we assume the
property of the background knowledge that relevant effects with respect to the
condition of the patient are known in the next state. Hence, decisions whether
the treatment fails can be taken after one step in the execution. These failure
axioms are denoted as F and formalised as follows:

� (αi → ◦ ((αi ∧ Condition(hyperglycaemia)) ↔ failsαi))

for all α ∈ A.

6.4 Verification

Several tools for ITL have been developed, such as the interpreter Tempura [9]
and support for ITL in the theorem prover PVS [3]. For our experiments, we
have used the KIV system, an interactive theorem prover, designed for program
verification and capable of reasoning about algebraic specifications using classi-
cal, dynamic and (interval) temporal logic. The main proof strategy for temporal
logic is symbolic execution with induction. Symbolic execution unwinds formu-
las, e.g.,

� ϕ⇔ ϕ ∧ ◦ � ϕ



and induction is used to proof reason about recurring temporal states. Its theo-
retical background is described extensively in [2]. Below, we will write sequents
Γ ⊢ ∆ to denote I(Γ ∪∆) ⊢KIV reduce(

∧
Γ →

∨
∆), where ⊢KIV denotes the de-

ductibility relation defined by the sound (propositional and temporal) inference
rules implemented in KIV.

In the specification of properties presented, we made use of algebraic spec-
ification to specify the variables in the background knowledge, though it could
be translated to propositional logic if necessary. Furthermore, we made use of
some additional variables to represent each treatment (e.g., ‘treatmentdiet ’ de-
fined as ‘treatment = {diet}’), and both failure-states. In practice, this makes
the proofs more manageable. The relationship between the actions and these ad-
ditional variables are defined appropriately in the system, i.e., all the additional
propositional variables could be replaced by actions and failure of actions.

Example 1: Diet may be applied indefinitely The first example is the
following property. Let BDM2 be the background knowledge, M be the guideline
given in Section 6.3, and F failure axioms defined in Section 6.3, then:

BDM2, M,F , � capacity(b-cells, insulin) = normal

⊢ � • Condition(normoglycaemia)

i.e., in case the patient has B cells with sufficient capacity to produce insulin,
then diet is sufficient for lowering the level of glucose in the blood. As only the
failure of diet is relevant in the proof, M can be weakened to:

(�treatmentdiet) ∧ ¬ last; fdiet

Symbolic execution, in the context of the background knowledge, leads to the
situation where:

(�treatmentdiet; fdiet) ∧ Condition(normoglycaemia)

Since we have Condition(normoglycaemia), it can be derived that diet does not
fail, thus in the next step it can be derived that the condition is still normogly-
caemia, which is exactly the same situation as we had before. By induction, we
can then reason that this will always be the case. A more detailed proof can be
found in Appendix B.

Example 2: Reasoning about the patient in case of failure Guidelines
are not applied blindly by physicians, as the physician has to make a decision for
an individual patient on the basis of all known information. As a consequence, a
physician might be interested in reasons of failure. Suppose we have an arbitrary
patient, then we can prove the following:

BDM2, M,F ⊢ fail(� diet) → ♦capacity(b-cells, insulin) 6= normal

i.e., if always applying diet fails, then apparently the patient has non-normal ca-
pacity of its B cells at a certain moment in time. M is needed here to derive that
in case diet stops, a failure has occurred rather than a non-failing termination
of diet. Proving this in KIV is similar as the previous example.



Example 3: Level of sugar in the blood will decrease As a third exam-
ple, we use one of the quality criteria for the diabetes guideline from [6]. This
property says that the guideline reaches its intention, namely, the level of sugar
in the blood will be lowered for any patient group. This property is formalised
as follows:

BDM2, M, F ,� (capacity(b-cells, insulin) = capacity(b-cells, insulin)′′) ∧
� QI = QI′′ ⊢ ♦ ¬ Condition(hyperglycaemia)

where V ′′ denotes the value of the variable V in the next step. Our proof strategy
consisted of splitting the patient group into groups which are cured by the same
treatment, e.g., similar to the previous example, when the capacity is normal,
then diet is sufficient.

Consider the example where the capacity of insulin in the B cells is nearly-
exhausted. KIV derives from the failure axioms that:

� (αi → ◦ (αi ↔ ◦ (¬αi ∧ fαi
)))

as we may assume that � ¬ Condition(hyperglycaemia), because the negation
of this formula immediately proves the property. Furthermore, reasoning with
the background knowledge, we can derive that proving ♦ (SU∧BG) is sufficient
to prove this property, because for this patient group a treatment consisting
of SU and BG is sufficient to conclude Condition(normoglycaemia). It is then
easy to see how to complete this proof as the failure axioms specify that all
the treatments will fail (after two steps), hence symbolic execution shows that
eventually the third step will be activated.

7 Related Work

Failure has received little attention in formal theories of action. Of course, reason-
ing of actions had always taken into account the notion of failure, as illustrated
by the logic of Rao & Georgeff, but it is assumed that failure can be added in a
relatively straightforward manner. One notable example of where the notion of
failure is part of both the syntax and semantics is the approach of Giunchiglia
et al. [4]. Its primitive syntactic structure is:

iffail α then β else γ

And from this, abbreviations are defined such that it allows one to reason con-
veniently about failures. The semantics is defined in terms of behaviours where
it said that some behaviours have failed, while others are successful. Behaviours
are defined technically in terms of linear models.

What this language lacks is the notion of time, as behaviours are simply
considered a sequence of actions which either fail or do not fail. For medical
management, this poses a problem, as failure may occur after a longer period of
time. This means that the notion of failure needs a richer structure, so that it is
possible to interact between time and failure.



Another important shortcoming for using this language in the context of
medical management is that failures are considered properties of a behaviour. As
said before, in medical management, actions are often performed in parallel, for
example, the administering of a combination of drugs. In such cases, some drugs
may fail to reach the required effects, while others may be successful. Hence, in
the language decisions need to be made on, not only if a failure has occurred,
but also what action has failed. We believe we have clearly demonstrated this in
the previous section.

8 Discussion and Conclusions

In this paper, we have introduced semantics of failures in interval temporal logic
inspired by the exception mechanism that can be found in many programming
languages. The practical usefulness of our approach has been validated using
medical guidelines by showing the verification of a fragment of diabetes melli-
tus type 2 which was formalised elegantly using this logic. However, we think
that the results could be used in a much wider context. First, the reasoning
about failures can have its applications in agent-based systems. Failures to per-
form tasks are an important aspect for decision making by agents, so having a
reasonably rich language for modelling these failures seems justified. Second, in
the context of program refinement, the process of (high-level) specifications to
implementations of systems, exceptions are introduced at some point to model
failure of components. The results of this paper makes it possible to abstract of
concrete programming construct to describe how control of flow should change
in case exceptions occur.

The logic that is proposed here can be seen as a three-valued logic, i.e., for-
mulas are true, false, or failed. Some work has been done to link three-valued
logics idea to temporal reasoning [7], which is based on Kleen’s three-valued
calculus that deals with ‘unknown’ values. This results in different logical prop-
erties compared to ITALF, e.g., unknown values propagate over a disjunctions,
while failures do not.

Compared to [6], the verification of the investigated properties required sig-
nificantly less effort. This is mainly due to the fact that in [6] the guideline was
formalised in the guideline representation language Asbru [13], which yields over-
head in complexity due to a complicated semantics. On the other hand, many of
the steps that are required in ITALF were done manually, as it is not obvious to
predict the correct next step in the proof. For example, it is important during
verification to ‘weaken’ the irrelevant parts of the guideline, making the symbolic
execution more efficient. Moreover, failure propositions on the sequent introduce
additional complexity, as the human needs to remember the semantics of these
propositions in order to apply the relevant axioms. These facts combined makes
it interesting to consider more automatic techniques, such as automated theorem
proving or model checking. This will a subject of further research.



A Proof of Theorem 1

A helpful semantic notion is faithfulness, which means that the failure proposi-
tions correspond exactly to the failure of the the action it has been introduced
for.

Definition 5. σ is called faithful iff for all a ∈ A and all i s.t. 0 ≤ i ≤ |σ|
holds αi(a) = failed iff πi(fa) = ⊤.

In the following two lemmas, it is proven that the reduction is found with
respect to those faithful models. In the first lemma, we show that Φ acts as
failmodel on the syntactic level, which is then used to prove equivalence of for-
mulas with its reduction.

Lemma 1. For all faithful σ and ϕ:

failmodel(σ) |= ϕ iff σ |= Φ(ϕ)

Proof. By induction on the structure of ϕ. First suppose ϕ = a: (⇒) suppose
failmodel(σ) |= a then α0(a) 6= failed. By faithfulness πi(fa) = ⊥, thus σ |= ¬fa.
All steps can be reversed. The rest of the cases follow almost immediately, taking
into account that if the model is faithful, so is every interval within this model,
and vice versa.

Lemma 2. For all faithful models σ it holds that σ |= ϕ↔ reduce(ϕ).

Proof. By induction on the structure of ϕ. In this case, the only interested case
is for ϕ = fail(ψ): (⇒) σ |= fail(ψ) iff σ 6|= ψ and failmodel(σ) 6|= ψ. By I.H.
on the first part, it follows that σ 6|= reduce(ϕ). As σ is faithful, it follows that
failmodel(σ) is faithful. Therefore failmodel(σ) 6|= reduce(ϕ). Using Lemma 1, we
get σ 6|= Φ(reduce(ϕ)). Therefore σ |= ¬reduce(ϕ)∧¬Φ(reduce(ϕ)). By definition,
σ |= reduce(fail(ϕ)). All steps are valid in the other direction as well.

These results do not hold for any model, e.g., it is not for all models the case
that fa → ¬a. A weak form of faithfulness can be encoded as an ITL formula,
bounded by the number of actions in some formula. The fact it is bounded
by actions in a formula is relevant, because we may have an infinite number
of actions in the language, while each formula has a finite length in standard
temporal logic.

Using Definition 4, we can then proof the main lemma, which characterises
the relation between a formula and its reduction for any model.

Lemma 3. |= ϕ iff |= I(ϕ) → reduce(ϕ)

Proof. Without loss of generality, this property can be reformulated as

|= ¬ϕ iff I(ϕ) |= reduce(¬ϕ)



as every formula can be stated as a negation and I(¬ϕ) = I(ϕ). Using the
definition of reduce, and taking negation on both sides, rewrite this to:

∃σσ |= ϕ iff ∃σσ |= I(ϕ) ∧ reduce(ϕ)

(⇒) Suppose there is some σ such that σ |= ϕ. Construct a σ′ such that π′
i(fa) =

⊤ iff αi(a) = failed, for all 0 ≤ i ≤ |σ|, actions a, and all fresh variables fa

introduced in the reduction. Let σ′ be the same as σ in every other respect. As
ϕ does not contain any variables fa, it is clear that then σ′ |= ϕ. As σ′ is faithful
(by construction), it then follows by Lemma 2 that σ′ |= reduce(ϕ). Moreover,
by construction, it follows that σ′ |= I(ϕ).
(⇐) Suppose for some σ, σ |= I(ϕ) ∧ reduce(ϕ). Construct σ′ such that for all i
such that 0 ≤ i ≤ |σ|, and all actions a:

– if πi(fa) = ⊤ then α′
i(a) = failed

– if πi(fa) = ⊥ and αi(a) = active then α′
i(a) = active

– if πi(fa) = ⊥ and αi(a) 6= active then α′
i(a) = inactive

In all other respects (length, valuation of atomic propositions), σ and σ′ are the
same. We then prove for all i and a ∈ actions(ϕ):

αi(a) = active ⇔ α′
i(a) = active

(⇒) αi(a) = active. Then, by the fact σ |= I(ϕ), we know that πi(fa) = ⊥.
Thus, by definition α′

i(a) = active. (⇐) Suppose αi(a) 6= active. Then either
α′

i(a) = failed (if πi(fa) = ⊤) or α′
i(a) = inactive (if πi(fa) = ⊥). In any case, we

conclude: α′
i(a) 6= active.

As reduce(ϕ) does not contain a fail operator, it cannot distinguish if an action
is inactive or failed. Hence, it follows that σ′ |= reduce(ϕ). It is easy to see that
σ′ is faithful, so by Lemma 2 it follows that σ′ |= ϕ.

Now, Theorem 1 is proved in the following way. By Lemma 3, we know
|= ϕ iff |= I(ϕ) → reduce(ϕ). Observe that the right side does not contain the
fail operator, hence it cannot distinguish between failures and inactivations.
Therefore, |= I(ϕ) → reduce(ϕ) if all actions are interpreted as propositions.
By doing this, I(ϕ) → reduce(ϕ) is also an ITL formula. Finally, note that the
semantics of ITL and ITALF coincide for the language of ITL.

B Proof of Example 1

This appendix provides an outline of the proof performed in KIV. The first
steps of the proof consists of simple manipulation of the formulas in order to put
them in a comfortable form for presenting the proof. Note that we implicitly use
axiom (10) of the background knowledge for making sure that normo-, hyper-
, and hypoglycaemia are mutually exclusive. First, recall that the translated
failure axiom for diet is:

� (diet → ◦ ((diet ∧ Condition(hyperglycaemia) ↔ ◦ fail diet))



Reduction of this to an ITL formula yields:

� (diet → ◦ ((diet ∧ Condition(hyperglycaemia) ↔ ◦ (¬diet ∧ fdiet)))

which, by the use of Γ , can be written as:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)) (3)

Second, from the background knowledge, we know that:

� (diet ∧ capacity(b-cells, insulin) = normal → ◦ Condition(normoglycaemia))

which, together with the fact that � capacity(b-cells, insulin) = normal, it can
be automatically derived that:

� (diet → ◦ Condition(normoglycaemia)) (4)

Finally, note that the proof obligation can be presented as

• � Condition(normoglycaemia) (5)

By weakening all the uninteresting parts for proving the property, we finally end
up with the main proof obligation:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)), Eq.(3)
� (diet → ◦ Condition(normoglycaemia)), Eq.(4)
(� treatmentdiet ∧ ¬ last); ◦ fdiet, M
� (treatmentdiet → diet),
⊢ • � Condition(normoglycaemia) Eq.(5)

Symbolically executing this sequent requires only one possible situation that
needs to be proven:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)),
� (diet → ◦ Condition(normoglycaemia)),
(� treatmentdiet); ◦ fdiet,
� (treatmentdiet → diet),
Condition(normoglycaemia),¬ ◦ fdiet

⊢ � Condition(normoglycaemia)

This sequent represents the situation where diet has been applied in the first step.
From this it was derived that then the condition is normoglycaemia. Using this
fact, the failure axiom is used to derive that ¬ ◦ fdiet, i.e., diet will not fail in the
next step. The rest of the proof consists of the claim that this temporal situation
will remain as it is. So we reason by induction that � Condition(normoglycaemia).
Abbreviate the sequent above as Γ ⊢ ∆: then the sequent is rewritten to:

� (diet → (◦ (diet ∧ Condition(hyperglycaemia)) ↔ ◦ ◦ fdiet)),
� (diet → ◦ Condition(normoglycaemia)),
(� treatmentdiet); ◦ fdiet,
� (treatmentdiet → diet),
Condition(normoglycaemia),¬ ◦ fdiet,

t = N,N = N ′′ + 1 until ¬ Condition(normoglycaemia), IND-HYP ⊢



where IND-HYP , t < N → (
∧
Γ →

∨
∆), N a fresh dynamic variable and

t a static variable. The remaining steps consists of symbolically executing this
sequent, which ends up in the same sequent with t = N −1. Then, the induction
hypothesis can be applied, which finishes the proof.
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