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Abstract—Bayesian networks are around more than twenty
years by now. During the past decade they became quite
popular in the scientific community. Researchers from application
areas like psychology, biomedicine and finance have applied
these techniques successfully. In the area of control engineering
however, little progress has been made in the application of
Bayesian networks. We believe that these techniques are useful
for systems that dynamically adapt themselves at runtime to
a changing environment, which is usually uncertain. Moreover,
there is uncertainty about the underlying physical model of the
system, which poses a problem for modelling the system. In
contrast, using a Bayesian network the needed model can be
learned, or tuned, from data. In this paper we demonstrate the
usefulness of Bayesian networks for control by case studies in the
area of adaptable printing systems and compare the approach
with a classic PID controller. We show that it is possible to design
adaptive systems using Bayesian networks learned from data.

I. I NTRODUCTION

Many complex systems such as printers are required to
make dynamic in-product trade-offs between various qualities
of operation at the system level, which can be viewed as the
capability to adapt. While many definitions of adaptability
have appeared in literature (see [1] for a summary), we
here defineadaptability to be such system-wide trade-offs.
In printing systems, system-wide qualities include the power
division, the speed of printing, the power consumption, etc.
Such trade-offs heavily depend on the system’s environment,
e.g., humidity, temperature, available power, etc. Failure to
adapt adequately to the environment might result in faults or
suboptimal behaviour.

The area of adaptive control has a long tradition of over
50 years. Several approaches in this field exist. First, model-
reference adaptive control (MRAC) uses a reference model
that reflects the desired behaviour of the system. On the
basis of the observed output and of the reference model, the
system is tuned. The second type of adaptive controllers are
so called self-tuning controllers (STC), which estimate the
correct parameters of the system based on observations and
tunes the control accordingly. In the last few decades, also
techniques from the area of artificial intelligence (AI), such as
rule-based systems, fuzzy logic, neural networks, evolutionary
algorithms, etc. have been used in order to determine optimal
values for control parameters (see e.g. [2]).
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Fig. 1. Block diagram of an adaptive controller using a Bayesian network.

The problem of adaptability as defined above has two
typical characteristics. First, decisions are typically required
at a low frequency, i.e., it is not necessary and not even
desirable to change the speed or energy usage many times
per second. Second, there is a lot of uncertainty involved
when making decisions, in particular about the environment,
the state of the machine, but also about the exact dynamics
of the system. Complex systems usually cannot be modelled
accurately, whereas adaptability requires one to make system-
wide, complex, decisions. In order to deal with this uncer-
tainty, techniques where probability distributions are learned
from available data seem therefore appropriate. In this paper,
we explore the use of Bayesian networks [3] to tune setpoints
of local controllers of the system. The block diagram in Fig.1
offers an overview of this approach.

One advantage of Bayesian networks is that they contain
a qualitative part, which can be constructed using expert
knowledge, normally yielding an understandable, white-box
model. Moreover, the quantitative parameters of a Bayesian
network can be learned from data. Other AI learning tech-
niques, such as neural networks, resist providing insight into
why the machine changes its behaviour, as they are black-box
models. Furthermore, rules—possibly fuzzy—are difficult to
obtain and require extensive testing in order to check whether
they handle all the relevant situations.

The purpose of the present paper is to convey some of our
experience in building Bayesian-network based controllers in



the area of adaptive printing systems, which can be looked
upon as special stochastic controllers. In our view, as systems
get more and more complex, the embedded software will need
to be equipped with such reasoning capabilities for making
sound decisions. The paper is organised as follows. In the
next section, we will introduce the necessary preliminaries
with respect to Bayesian networks. In Section III, we will
look at a specific case study where we would like to estimate
the optimal setpoint under uncertainty. This example shows
that some of the logic that might be needed in a rule-based
system is implicitly encoded in the probability distribution.
Another case is considered in Section IV; here the goal is to
optimise the velocity of the engine. Both cases are compared
to a traditional controller. In Section V the results obtained
are compared to related approaches.

II. PRELIMINARIES

A Bayesian networkB = (G,P ) consists of a directed
acyclic graphG = (V,E), whereV is a set of vertices and
E ⊆ V × V is a set of directed arcs; with the probability
distributionP is associated a setX of random variables that
correspond one-to-one to the vertices ofG, i.e., each vertexv
corresponds exactly to one random variableXv and vice versa.
As the joint probability distributionP of the set of random
variablesX is factored in accordance to the structure of the
graphG:

P (X) =
∏

v∈V

P (Xv | Xπ(v)),

where π(v) is the set of parents ofv, P can also be
defined as a family of local conditional probability distri-
butions P (Xv | Xπ(v)), for each vertexv ∈ V . Bayesian
networks can encode various probability distributions. Most
often the variables are either all discrete or all continuous.
Hybrid Bayesian networks, however, contain both discrete and
continuous conditional probability distributions. A commonly
used type of hybrid Bayesian network is the conditional linear
Gaussian model (see [4], [5]). Efficient exact and approximate
algorithms have been developed to infer probabilities from
such networks (e.g., [6], [7], [8], and [9]). Also important
in the context of embedded systems is the fact that real-
time inference can be done using Bayesian networks, i.e.,
produce an approximate probability at any time (cf. [10] for
a comprehensive overview).

A Bayesian network can be constructed with the help of one
or more domain experts. However, building Bayesian networks
using expert knowledge, although by now known to be feasible
for some domains, can be very tedious and time consuming.
Learning a Bayesian network from data is also possible, a
task which can be separated into two subtasks: (1) structure
learning, i.e., identifying the topology of the network, and
(2) parameter learning, i.e., determining the associated joint
probability distribution,P , for a given network topology. In
this paper, we employ parameter learning. This is typically
done by computing the maximum likelihood estimates of
the parameters, i.e., the conditional probability distributions,
associated to the networks structure given data [11].
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Fig. 2. Simplified Bayesian network of the print domain.

Temporal Bayesian networksare Bayesian network where
the vertices of the graph are indexed with (discrete) time. All
vertices with the same time index form a so-calledtime slice.
Each time slice consists of a static Bayesian network and the
time slices are linked to represent the relationships between
states in time. If the structure and parameters of the static
Bayesian network are the same at every time slice (with the
exception of the first), one speaks of adynamic Bayesian
network, as such networks can be unrolled (cf. [12] for an
overview).

III. SETPOINT ESTIMATION

A. Description of the problem

For the type of printing system under consideration, various
temperatures during the printing process play an important
role. Low-level controllers make sure that the measurable
temperatures are kept on setpoint. Due to design issues and
considerations with respect to the cost price, it is not possible
to place sensors at all places of interest; therefore, estimations
have to be made.

In this section, we use a Bayesian network to estimate the
appropriate setpoint for a heating component with the goal to
influence the paper temperature when we can only measure
the temperature of media (paper) that has passed this heating
component. The temperature of the paper is influenced by
uncertain aspects, such as the environmental temperature,the
speed, the humidity of the paper, and the type of paper. In this
case we focus on the latter aspect and assume that the other
aspects are constant.

B. Experimental setup

The qualitative structure of the domain was elicited from
the domain experts. For the purpose of this paper, we focus
on certain relevant parts of the complete network dealing with
the specific problem of determining the correct setpoint of the



heater. The structure of the domain consisting of two time
slices is presented in Fig. 2.

The associated random variables for this network have been
modelled as discrete variables by discretising the values to
typical values that are used in the simulation. The setpoint
variables have a domain size of 12; media temperature has a
domain size of 16 and we consider three paper types:80, 120,
and160 g/m2 paper.

In order to acquire data and to test the system, a physical
model of the system was created using Simulink [13]. The data
that was generated was used to learn the conditional distribu-
tions of the model by calculating the parameters associatedto
the qualitative structure of the Bayesian network.

The adaptive control was implemented by a low-level PID
controller (see e.g., [14]) that controls the temperature of the
heater and a Bayesian network to manipulate the setpoint of
this controller.

C. Case 1: Keep paper temperature on setpoint

First, we use a Bayesian network to choose the next setpoint
such that the temperature of the paper will be at a setpoint
Tset based on observations of the paper temperature and the
setpoint at timet. Let OBSt = {PaperTemp

t
= T, Setpoint

t
=

SP}. We then calculate:

SP∗ = argmax
SP′

∈Setpoint
P (PaperTemp

t+1 = Tset |

OBSt, Setpoint
t+1 = SP′)

and adapt the setpoint of the heater controller toSP∗. The
Bayesian network is simplified, in particular by forgetting
about the history, except for the immediate history when
making decisions (first-order Markov assumption). Due to
this simplification, sometimes the interpretation of the mea-
surements can be misleading. There are several solutions to
this problem. For example, we may extend the model to
incorporate additional evidence of earlier states, or we may
sample less, i.e., by waiting to the system returns to a steady
situation. One simple heuristic that proved to be successful in
this situation is avoid making decisions when the interpretation
is highly uncertain, e.g., when:

P (PaperWeight
t
= w | OBSt) < k

for all paperweightsw and wherek is some tuning constant
less than 1. Of course, such a controller can also be im-
plemented well using a standard PID controller that controls
directly based on the measurement of the paper temperature.
The results of such a PID controller is compared to the
Bayesian network approach (withk = 0.9) and is presented
in Fig. 3. The PID controller seems smoother, which is most
likely due to the fact that we have discrete value for the
setpoint in the adaptive controlling setting. However, forthe
most part, the behaviour of the adaptive controller is similar
to the PID control.

For this control task, Bayesian networks do not provide
much benefit over PID controllers, and we can only hope
not to do worse than these standard, well-understood, PID

controllers. We are therefore aiming at more complex con-
trollers, where traditional control theory starts to become more
difficult. One example is discussed in the next section.

D. Case 2: Avoid faulty temperatures

As mentioned earlier, in order to get high quality prints, itis
of importance to have a lower threshold for some temperatures.
Fig. 3 shows that if we try to keep the paper at theTset

temperature, temperatures may drop below this value when the
media changes. This could lead to a system fault. One solution
is to put the setpoint at a higher temperature which provides
a buffer for the media changes; however, if it is unnecessarily
high, energy is lost and it may also cause problems at other
parts of the printing process.

The advantage of Bayesian networks is that various prob-
abilistic constraints can be put on the control signal. In this
case, we are interested in the lowest temperature that ensures
that we avoid dropping belowTset. Formally, to decide on the
next setpoint, we calculate the minimalSP′ such that

P (PaperTemp
t+1 < Tset | OBSt, Setpoint

t+1 = SP′) < ǫ

i.e., the probability that the resulting temperature will be lower
thanTset will be less than some thresholdǫ. The result can be
found in Fig. 4 (withǫ = 0.01). What is interesting here is
that the heater temperature is relatively high when the paper
weight is lower. This is because the system anticipates on
paper that might arrive with a high paper weight as this high
paper weight causes a sudden large drop in temperature. This
type of logic could be modelled by any system; however, it is
interesting to see here that this is implicit in the probability
distribution that has been learned from data.

IV. DYNAMIC SPEED ADJUSTMENT

A. Description of the problem

The productivity of printers is limited to the amount of
power available, in particular in environments which depend
on weak mains. If there is insufficient power available, then
temperature setpoints cannot be reached, which causes bad
print quality. To overcome this problem, it is either possible
to decide to always print at lower speeds or to adapt to the
available power dynamically. In the section, we explore the
latter option by a dynamic speed adjustment using a Bayesian
network.

B. Modelling

The structure of the fragment of the model at each time
slice is shown in Fig. 5. The requested power available is
an observable variable that depends on low-level controllers
that aim at maintaining the right setpoint for reaching a good
print quality. The error variable models the deviation of the
actual temperature from the ideal temperature, which can be
established in a laboratory situation, but not during run-time.
If this exceeds a certain threshold, then the print quality will
be below a norm that has been determined by the printer
manufacturer.
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Fig. 3. Top figure: weight of paper that is being printed on, which changes dynamically. Middle figure: paper temperature controlled by a PID controller.
Bottom figure: paper temperature controlled by an adaptive controller using a Bayesian network.
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Fig. 4. Faults are avoided using an adaptive controller. Paper weight changes are the same as in Fig. 3.
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Fig. 5. Structure of the Bayesian network of each time slice.

Both velocity and available power influence the power that
is or can be requested by the low-level controllers. Further-
more, the combination of the available power and the requested
power is a good predictor of the error according to the domain
experts.

For our experiments we again use two time slices with
the interconnections between the available power – which
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Fig. 6. Distribution of requested power.

models that the power supply on different time slices is not
independent – and requested power, which models the state of
the machine that influences the requested power.

In order to choose the family of distributions, we can
consider to model the variables as Gaussian variables. Thisis
reasonable as most variables are normally distributed, except
for the available power (see Fig. 6). Fitting a Gaussian distribu-
tion to such a distribution will typically lead to insufficient per-
formance. However, it can be interpreted as a mixture of two
Gaussian distribution, one with meanPlow(Watt) and one with
meanPhigh(Watt) with a small variance. Such a distribution can
be modelled using a hybrid network as follows. The network
is augmented with an additional (binary) parent nodeS with
values ‘high’ and ‘low’ for the requested power variable. For



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

0.96

0.97

0.98

0.99

1

false positive ratio

se
ns

iti
vi

ty

 

 

hybrid
continuous
discrete

Fig. 7. ROC curves of the three Bayesian networks. The hybridand discrete
versions show the best classification performance.

both states of this node, a Gaussian model is associated to
this variable. The marginal distribution of requested power is
obtained by basic probability theory as

P (Preq) =
∑

S

P (Preq | S)P (S).

C. Classification

One of the main reasoning tasks of the network is to esti-
mate the error, i.e., the deviation from the ideal temperature,
given a certain velocity and a certain observations. We could
consider this a classification performance, i.e., the printquality
is bad or good. This provides means to compare different
models and see how well it performs at distinguishing between
these two possibilities. A standard way to visualise and quan-
tify this is by means of a Receiver Operating Characteristic
(ROC) curve, which shows the relation between the false
positive ratio and the true positive ratio (sensitivity). The area
under the curve is a measure for its classification performance.

We have compared three models, i.e., a discrete model, a
fully continuous model and a hybrid model for modelling the
distribution of the requested power with two Gaussians. The
classification performance is outlined in Fig. 7. As expected,
the fully continuous model performs worse, whereas the hybrid
and discrete show a similar trend. The advantage of the
discrete version is that the probability distribution can easily
be inspected and it has no underlying assumptions about the
distribution, which makes it easier to use in practice. The hy-
brid version however allows for more efficient computation as
we need a large number of discrete to describe the conditional
distributions. For this reason, we have used the hybrid version
in the in following experiments.

D. Simulation of the Bayesian controller

As the error information is not available during runtime,
the marginal probability distribution of the error in the next
time slice is computed using the information about the power
available and power requested. This error is a Gaussian random
variable with meanµ and standard deviationσ. Given a
maximum error that we allow, denoted byEmax, we pick
the highest velocityv such that the marginal probability
distribution ofP (Errort+1) is such thatµ+kσ < Emax, where
k is a constant. Different values ofk correspond to different

points on the ROC curve as depicted in Fig. 7. For a Gaussian
variable, more than 99.73% of the real value of the error will
be within three standard deviations of the mean, so for example
k = 3 would imply that P (Errort+1 < Emax) > 99.87%.
However, the sensitivity, i.e., the chance that the paper iswarm
enough, can be chosen arbitrarily, by also increasing the false
positive ratio, i.e., by reducing the overall productivity.

In order to evaluate the approach, we compared the produc-
tivity of the resulting network with a rule-based approach that
incorporates some heuristics for choosing the right velocity.
The productivity is defined here simply as

∫ τ

0
v(t)dt, whereτ

is the simulation time.
In order to smooth the signal that the network produces, we

employ a a FIR (Finite Impulse Response) filter in which we
average the decisions of the last 10 seconds. The resulting
behaviour was simulated and is presented in Fig. 8 (with
k = 3). Compared to the rule-based approach, we improve
roughly 9% in productivity while keeping the error within an
acceptable range. While it could certainly be the case that the
rules could be improved and optimised, again, the point is
that the logic underlying the controller does not have to be
designed. What is required is a qualitative model, data, and a
probabilistic criterion that can be inferred.

V. D ISCUSSION ANDCONCLUSIONS

So far, adaptive controllers based on explicit Bayesian
networks have not been extensively investigated. The most
closely related work is by Deventer [15], who investigates
the use of dynamic Bayesian networks for controlling linear
and nonlinear systems. The main difference with his work is
that he estimates parameters from a Bayesian network using
a given model of the system. In contrast, we aim at using
models that were learned from data. Such data can come from
measurements during design time or during run-time of the
system.

Bayesian inference is well-known for trying to infer a
hidden state in a dynamic model. Typical applications are
filtering, i.e., trying to infer the current hidden state given the
observations in the past and smoothing where past states are
inferred. For example, the Kalman filter [16] is well-known
in stochastic control theory (see e.g., [17] for an overview)
and is a special case of a dynamic Bayesian networks, where
the model is the linear Gaussian variant of a hidden Markov
model, i.e., it describes a Markov process with noise parame-
ters on the input and output variables. Non-linear variants, such
as the extended Kalman filter or the unscented Kalman filter
(see e.g., [18]) are approximate inference algorithms for non-
linear Gaussian models by linearisation of the model. More
recently, particle filters [19], also known as sequential Monte
Carlo methods, have been proposed as an alternative, which
relies on sampling to approximate the posterior distribution.

The difference with these filtering approaches is that for
Bayesian networks there is an underlying domain model
which is understandable. As Bayesian networks are general
formalisms, they could also be used or re-used for diagnos-
tic purposes, where it is typically required that a diagnosis
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Fig. 8. In the centre figure, the available power is plotted, which is fluctuating. at the top, we compare the velocity of the engine which is controlled by
a rule-based system and by a Bayesian network. Below, we present the error that the controller based on the Bayesian network yields, which is within the
required limits.

can be represented in a human-understandable way so that
proper action can be taken. Furthermore, it is well-known
that the structure of the graphical part of a Bayesian network
facilitates the assessment of probabilities, even to the extent
that reliable probabilistic information can be obtained from
experts (see [20] in the medical domain). One other advantage
compared to black-box models is that the modelled probability
distribution can be exploited for decision theory. This is
particularly important if one wants to make real trade-offs
such as between productivity and energy consumption. This
is another direction that will be explored in the future.

With respect to the choice of the underlying distribution
that is associated to a Bayesian network, several choices can be
made. For exact inference, conditional linear Gaussian models
are the standard way to deal with continuous variables in
this area as exact inference can be used; however, they are
restricted to modelling linear systems. Discrete distributions
can then be used and have been successfully applied in, for
example, medicine. Another option is to model the distribution
on the basis of a mixture of truncated exponentials (MTE) [21],
which allow one to model non-linear systems and, furthermore,
allows for exact inference of required probabilities. Thisis a
direction which we will explore in the near future. Of course,
in particle filters, sampling methods can be employed for
approximating the posterior from a wide range of non-linear
distributions.

Bayesian networks have drawn attention in many different
research areas, such as AI, mathematics and statistics. In this
paper, we have explored the use of Bayesian networks for

designing an adaptable printing systems. We have shown that
the approach is feasible and can help to design an intelligent
system. We believe that these techniques can have a wide
application in the engineering sciences in particular for control
and fault detection. The latter has been investigated before,
e.g., [22], in which Bayesian networks were applied for both
consistency-based as well as abductive diagnosis. Resultsof
this paper provide evidence that explicit Bayesian networks
can also be useful for the development of adaptive control
systems.
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