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Abstract—Bayesian networks are around more than twenty Requirements )
years by now. During the past decade they became quite on?)ehaviour Bayesian network
popular in the scientific community. Researchers from application )
areas like psychology, biomedicine and finance have applied control observation

Decision engine =

these techniques successfully. In the area of control engineegn parameters
however, little progress has been made in the application of
Bayesian networks. We believe that these techniques are useful
for systems that dynamically adapt themselves at runtime to
a changing environment, which is usually uncertain. Moreover,
there is uncertainty about the underlying physical model of the
system, which poses a problem for modelling the system. In
contrast, using a Bayesian network the needed model can be
learned, or tuned, from data. In this paper we demonstrate the
usefulness of Bayesian networks for control by case studies ingh
area of adaptable printing systems and compare the approach
with a classic PID controller. We show that it is possible to design
adaptive systems using Bayesian networks learned from data.
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Fig. 1. Block diagram of an adaptive controller using a Baesetwork.

The problem of adaptability as defined above has two
I. INTRODUCTION typical characteristics. First, decisions are typicakyjuired

Many complex systems such as printers are required b @ low frequency, i.e., it is not necessary and not even
make dynamic in-product trade-offs between various gjealit d€sirable to change the speed or energy usage many times
of operation at the system level, which can be viewed as tR8" second. Second, there is a lot of uncertainty involved
capability to adapt. While many definitions of adaptabilit)‘/"he” making decisions, in particular about the environment

have appeared in literature (see [1] for a summary) wae state of the machine, but also about the exact dynamics

here defineadaptability to be such system-wide trade-offsOf the system. Complex systems usually cannot be modelled

In printing systems, system-wide qualities include the ow?accurately, whereas adaptability requires one to makesyst
division, the speed of printing, the power consumption, et¥ide, complex, decisions. In order to deal with this uncer-
Such trade-offs heavily depend on the system'’s environmel@inty: teghnlques where probability d|str|bu_t|ons ararlhed
e.g., humidity, temperature, available power, etc. Failto from available data seem therefore appropriate. In thi®pap

adapt adequately to the environment might result in fauits ¥ explore the use of Bayesian networks [3] to tune setpoints
suboptimal behaviour. of local Controllgrs of the_z system. The block diagram in Hig.
The area of adaptive control has a long tradition of ov&lffers an overview of this approach.
50 years. Several approaches in this field exist. First, thode One advantage of Bayesian networks is that they contain
reference adaptive control (MRAC) uses a reference modelqualitative part, which can be constructed using expert
that reflects the desired behaviour of the system. On tkgowledge, normally yielding an understandable, white-bo
basis of the observed output and of the reference model, thedel. Moreover, the quantitative parameters of a Bayesian
system is tuned. The second type of adaptive controllers &etwork can be learned from data. Other Al learning tech-
so called self-tuning controllers (STC), which estimate thniques, such as neural networks, resist providing insigtat i
correct parameters of the system based on observations ¥ the machine changes its behaviour, as they are black-box
tunes the control accordingly. In the last few decades, algtpdels. Furthermore, rules—possibly fuzzy—are difficult to
techniques from the area of artificial intelligence (Al)chuas ©Obtain and require extensive testing in order to check véreth
rule-based systems, fuzzy logic, neural networks, evariatiy they handle all the relevant situations.
algorithms, etc. have been used in order to determine optimaThe purpose of the present paper is to convey some of our
values for control parameters (see e.g. [2]). experience in building Bayesian-network based contrslier



the area of adaptive printing systems, which can be looked

upon as special stochastic controllers. In our view, asegyst

get more and more complex, the embedded software will need

to be equipped with such reasoning capabilities for making

sound decisions. The paper is organised as follows. In the

next section, we will introduce the necessary prelimirgarie Heater Heater
with respect to Bayesian networks. In Section Ill, we will "\ Temp Temp
look at a specific case study where we would like to estimate
the optimal setpoint under uncertainty. This example shows
that some of the logic that might be needed in a rule-based

system is implicitly encoded in the probability distribori Paper Paper
Another case is considered in Section IV; here the goal is to Temp Temp

optimise the velocity of the engine. Both cases are compared
to a traditional controller. In Section V the results ob&ln

are compared to related approaches.
Paper Paper
I[l. PRELIMINARIES oo weignt S \weign /T -
A Bayesian networkB = (G, P) consists of a directed

acyclic graphG = (V, E), whereV is a set of vertices and
E C V xV is a set of directed arcs; with the probability
distribution P is associated a set of random variables that

correspond one-to-one to the vertices(ifi.e., each vertex Temporal Bayesian networlkare Bayesian network where
corresponds exactly to one random variakileand vice versa. the vertices of the graph are indexed with (discrete) time. A
As the joint probability distribution” of the set of random yertices with the same time index form a so-caltizde slice
variablesX is factored in accordance to the structure of theach time slice consists of a static Bayesian network and the

Fig. 2. Simplified Bayesian network of the print domain.

graphG: time slices are linked to represent the relationships betwe
P(X) = H P(Xy | Xx()), states in time. If the structure and parameters of the static
veV Bayesian network are the same at every time slice (with the

where 7(v) is the set of parents ob, P can also be exception of the first), one speaks ofdynamic Bayesian
defined as a family of local conditional probability distri-network, as such networks can be unrolled (cf. [12] for an
butions P(X, | X (), for each vertexv € V. Bayesian overview).
networks can encode various probability distributions.siMo
often the variables are either all discrete or all contirsuou
Hybrid Bayesian networks, however, contain both discretk aA. Description of the problem
continuous conditional probability distributions. A coranty For the type of printing system under consideration, variou
used type of hybrid Bayesian network is the conditionaldine temperatures during the printing process play an important
Gaussian model (see [4], [5]). Efficient exact and appro¥marole. Low-level controllers make sure that the measurable
algorithms have been developed to infer probabilities froremperatures are kept on setpoint. Due to design issues and
such networks (e.g., [6], [7], [8], and [9]). Also importaniconsiderations with respect to the cost price, it is not ijpbess
in the context of embedded systems is the fact that reabplace sensors at all places of interest; therefore, atitims
time inference can be done using Bayesian networks, i.eave to be made.
produce an approximate probability at any time (cf. [10] for In this section, we use a Bayesian network to estimate the
a comprehensive overview). appropriate setpoint for a heating component with the gmal t

A Bayesian network can be constructed with the help of omefluence the paper temperature when we can only measure
or more domain experts. However, building Bayesian neta/orthe temperature of media (paper) that has passed this featin
using expert knowledge, although by now known to be feasild@mponent. The temperature of the paper is influenced by
for some domains, can be very tedious and time consumingcertain aspects, such as the environmental temperétere,
Learning a Bayesian network from data is also possible,speed, the humidity of the paper, and the type of paper. n thi
task which can be separated into two subtasks: (1) structgegse we focus on the latter aspect and assume that the other
learning, i.e., identifying the topology of the network,danaspects are constant.
(2) parameter learning, i.e., determining the associated | ]
probability distribution, P, for a given network topology. In B- Experimental setup
this paper, we employ parameter learning. This is typically The qualitative structure of the domain was elicited from
done by computing the maximum likelihood estimates dhe domain experts. For the purpose of this paper, we focus
the parameters, i.e., the conditional probability disttitns, on certain relevant parts of the complete network dealirt wi
associated to the networks structure given data [11]. the specific problem of determining the correct setpointef t

IIl. SETPOINT ESTIMATION



heater. The structure of the domain consisting of two tinmontrollers. We are therefore aiming at more complex con-
slices is presented in Fig. 2. trollers, where traditional control theory starts to beeamore

The associated random variables for this network have bedifficult. One example is discussed in the next section.
modelled as discrete variables by discretising the valoes t _
typical values that are used in the simulation. The setpofit Case 2: Avoid faulty temperatures
variables have a domain size of 12; media temperature has As mentioned earlier, in order to get high quality printssit
domain size of 16 and we consider three paper typ@s120, of importance to have a lower threshold for some temperature
and 160 g/m? paper. Fig. 3 shows that if we try to keep the paper at thg:

In order to acquire data and to test the system, a physita@perature, temperatures may drop below this value when th
model of the system was created using Simulink [13]. The datgedia changes. This could lead to a system fault. One sblutio
that was generated was used to learn the conditional distrilis to put the setpoint at a higher temperature which provides
tions of the model by calculating the parameters assoctateda buffer for the media changes; however, if it is unnecelgsari
the qualitative structure of the Bayesian network. high, energy is lost and it may also cause problems at other

The adaptive control was implemented by a low-level Plparts of the printing process.
controller (see e.g., [14]) that controls the temperatdrthe The advantage of Bayesian networks is that various prob-
heater and a Bayesian network to manipulate the setpointadfilistic constraints can be put on the control signal. lis th
this controller. case, we are interested in the lowest temperature thatemsur
that we avoid dropping beloWse. Formally, to decide on the
next setpoint, we calculate the minin&P’ such that

First, we use a Bayesian network to choose the next setpoint )
such that the temperature of the paper will be at a setpoint”’(PaperTemp ; < Tset| OBS;, Setpoint, ; = SP') < ¢

Tser bgsed on observations of the paper temperature and it.%?, the probability that the resulting temperature wéllbwer
setpoint at time. Let OBS = {PaperTemp= T, Setpoinf =

We th lculate: thanTset Will be less than some threshold The result can be
SP}. We then calculate: found in Fig. 4 (withe = 0.01). What is interesting here is

C. Case 1: Keep paper temperature on setpoint

SP* = argmax P(PaperTemP+1 = Tset| that the heater temperature is relatively high when the mpape
SP’ €Setpoint ] , weight is lower. This is because the system anticipates on
OBS;, Setpoint, ; = SP’) paper that might arrive with a high paper weight as this high

and adapt the setpoint of the heater controllelSRS. The Paper weight causes a sudden large drop in temperature.. This
Bayesian network is simplified, in particular by forgettindYP€ ©f logic could be modelled by any system; however, it is
about the history, except for the immediate history Whéﬁter_estl_ng to see here that this is implicit in the prokiapil
making decisions (first-order Markov assumption). Due ¢diStribution that has been learned from data.
this simplification, sometimes the interpretation of theame
surements can be misleading. There are several solutions to
this problem. For example, we may extend the model & Description of the problem
incorporate additional evidence of earlier states, or W& ma The productivity of printers is limited to the amount of
sample less, i.e., by waiting to the system returns to a gtegsbwer available, in particular in environments which depen
situation. One simple heuristic that proved to be successfu on weak mains. If there is insufficient power available, then
this situation is avoid making decisions when the integifeh  temperature setpoints cannot be reached, which causes bad
is highly uncertain, e.g., when: print quality. To overcome this problem, it is either possib
—— to decide to always print at lower speeds or to adapt to the
P(Papereight=1w | OBS) < k available power dynamically. In the section, we explore the
for all paperweightav and wherek is some tuning constant latter option by a dynamic speed adjustment using a Bayesian
less than 1. Of course, such a controller can also be imetwork.
plemented well using a standard PID controller that costrol
directly based on the measurement of the paper temperatﬁe.
The results of such a PID controller is compared to the The structure of the fragment of the model at each time
Bayesian network approach (with= 0.9) and is presented slice is shown in Fig. 5. The requested power available is
in Fig. 3. The PID controller seems smoother, which is moah observable variable that depends on low-level contsolle
likely due to the fact that we have discrete value for thihat aim at maintaining the right setpoint for reaching adyoo
setpoint in the adaptive controlling setting. However, floe  print quality. The error variable models the deviation of th
most part, the behaviour of the adaptive controller is similactual temperature from the ideal temperature, which can be
to the PID control. established in a laboratory situation, but not during riamet
For this control task, Bayesian networks do not providé this exceeds a certain threshold, then the print quality w
much benefit over PID controllers, and we can only hodee below a norm that has been determined by the printer
not to do worse than these standard, well-understood, Ptianufacturer.

IV. DYNAMIC SPEED ADJUSTMENT

Modelling
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Fig. 3. Top figure: weight of paper that is being printed onjoihichanges dynamically. Middle figure: paper temperaturdroted by a PID controller.
Bottom figure: paper temperature controlled by an adaptivercller using a Bayesian network.
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Fig. 4. Faults are avoided using an adaptive controllerePagight changes are the same as in Fig. 3.
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Fig. 6. Distribution of requested power.

models that the power supply on different time slices is not
independent — and requested power, which models the state of
the machine that influences the requested power.

In order to choose the family of distributions, we can
consider to model the variables as Gaussian variables.ighis
reasonable as most variables are normally distributedepxc
) . ) for the available power (see Fig. 6). Fitting a Gaussiarridist

Both velocity and available power influence the power thghn, to such a distribution will typically lead to insuffigieper-
is or can be requested by the low-level controllers. Furthgprmance. However, it can be interpreted as a mixture of two
more, the combination of the available power and the reedest;aussian distribution, one with med,,(Watt) and one with
power is a good predictor of the error according to the domaifeanp,y,(Watt) with a small variance. Such a distribution can
experts. be modelled using a hybrid network as follows. The network

For our experiments we again use two time slices wifls augmented with an additional (binary) parent néteiith
the interconnections between the available power — whighlues ‘high’ and ‘low’ for the requested power variabler Fo

Fig. 5. Structure of the Bayesian network of each time slice.



sensitivity

1 points on the ROC curve as depicted in Fig. 7. For a Gaussian

““““““ : variable, more than 99.73% of the real value of the error will
0-997 T wel | be within three standard deviations of the mean, so for elamp
098k ——dsaete | |k = 3 would imply that P(Error,y; < Emax) > 99.87%.

However, the sensitivity, i.e., the chance that the papemaisn
0.97F ; 1 enough, can be chosen arbitrarily, by also increasing tise fa
oosl : | positive ratio, i.e., by reducing the overall productivity
' : In order to evaluate the approach, we compared the produc-
0.95 £ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ tivity of the resulting network with a rule-based approalehtt
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fase positve ato incorporates some heuristics for choosing the right vejoci
The productivity is defined here simply # v(t)dt, wherer
is the simulation time.

In order to smooth the signal that the network produces, we
employ a a FIR (Finite Impulse Response) filter in which we
both states of this node, a Gaussian model is associatecRtérage the decisions of the last 10 seconds. The resulting
this variable. The marginal distribution of requested poige behaviour was simulated and is presented in Fig. 8 (with

Fig. 7. ROC curves of the three Bayesian networks. The hydmiidiscrete
versions show the best classification performance.

obtained by basic probability theory as k = 3). Compared to the rule-based approach, we improve
roughly 9% in productivity while keeping the error within an

P(Preg) = Z P(Preq| S)P(S5). acceptable range. While it could certainly be the case tlat th

s rules could be improved and optimised, again, the point is

C. Classification that the logic underlying the controller does not have to be

One of the main reasoning tasks of the network is to eSqESiQHEd. What is required is a qualitative model, data, and a
mate the error, i.e., the deviation from the ideal tempeeatuProbabilistic criterion that can be inferred.
given a certain velocity and a certain observations. Wectoul
consider this a classification performance, i.e., the gyiratity
is bad or good This provides means to compare different SO far, adaptive controllers based on explicit Bayesian
models and see how well it performs at distinguishing betwe8€tworks have not been extensively investigated. The most
these two possibilities. A standard way to visualise anchguaclosely related work is by Deventer [15], who investigates
tify this is by means of a Receiver Operating Characteristige use of dynamic Bayesian networks for controlling linear
(ROC) curve, which shows the relation between the falgd nonlinear systems. The main difference with his work is
positive ratio and the true positive ratio (sensitivitypeTarea that he estimates parameters from a Bayesian network using
under the curve is a measure for its classification perfooman@ given model of the system. In contrast, we aim at using

We have compared three models, i.e., a discrete modelM@dels that were learned from data. Such data can come from
fully continuous model and a hybrid model for modelling thé&e€asurements during design time or during run-time of the
distribution of the requested power with two Gaussians. T§¥stem.
classification performance is outlined in Fig. 7. As expdcte Bayesian inference is well-known for trying to infer a
the fully continuous model performs worse, whereas theitlybfidden state in a dynamic model. Typical applications are
and discrete show a similar trend. The advantage of tHlering, i.e., trying to infer the current hidden state gjivthe
discrete version is that the probability distribution casiy ©bservations in the past and smoothing where past states are
be inspected and it has no underlying assumptions about tht€rred. For example, the Kalman filter [16] is well-known
distribution, which makes it easier to use in practice. Tie hin stochastic control theory (see e.g., [17] for an overyiew
brid version however allows for more efficient computatien &2nd is a special case of a dynamic Bayesian networks, where
we need a large number of discrete to describe the conditiofffe model is the linear Gaussian variant of a hidden Markov
distributions. For this reason, we have used the hybridiaers model, i.e., it describes a Markov process with noise parame

V. DIscussION ANDCONCLUSIONS

in the in following experiments. ters on the input and output variables. Non-linear variasush
. ] ) as the extended Kalman filter or the unscented Kalman filter
D. Simulation of the Bayesian controller (see e.g., [18]) are approximate inference algorithms &or-n

As the error information is not available during runtimelinear Gaussian models by linearisation of the model. More
the marginal probability distribution of the error in thexte recently, particle filters [19], also known as sequentialnitéo
time slice is computed using the information about the pow&arlo methods, have been proposed as an alternative, which
available and power requested. This error is a Gaussiammandelies on sampling to approximate the posterior distrdouti
variable with meany and standard deviatiomr. Given a The difference with these filtering approaches is that for
maximum error that we allow, denoted b¥nax, We pick Bayesian networks there is an underlying domain model
the highest velocityv such that the marginal probabilitywhich is understandable. As Bayesian networks are general
distribution of P(Error,, 1) is such thaj.+ ko < Emax, Where formalisms, they could also be used or re-used for diagnos-
k is a constant. Different values @f correspond to different tic purposes, where it is typically required that a diagsosi
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Fig. 8. In the centre figure, the available power is plottetijciv is fluctuating. at the top, we compare the velocity of thgime which is controlled by
a rule-based system and by a Bayesian network. Below, wesmréise error that the controller based on the Bayesian mktwields, which is within the
required limits.

can be represented in a human-understandable way so thestigning an adaptable printing systems. We have shown that
proper action can be taken. Furthermore, it is well-knowihe approach is feasible and can help to design an intetligen
that the structure of the graphical part of a Bayesian ndtwasystem. We believe that these techniques can have a wide
facilitates the assessment of probabilities, even to thenéx application in the engineering sciences in particular fontool
that reliable probabilistic information can be obtainednir and fault detection. The latter has been investigated bgfor
experts (see [20] in the medical domain). One other advantagg., [22], in which Bayesian networks were applied for both
compared to black-box models is that the modelled proligbiliconsistency-based as well as abductive diagnosis. Results
distribution can be exploited for decision theory. This ithis paper provide evidence that explicit Bayesian network
particularly important if one wants to make real trade-offsan also be useful for the development of adaptive control
such as between productivity and energy consumption. Tlsigstems.
is another direction that will be explored in the future.

With respect to the choice of the underlying distribution
that is associated to a Bayesian network, several choicelseca This work has been carried out as part of the OCTOPUS
made. For exact inference, conditional linear Gaussianetisodproject under the responsibility of the Embedded Systems
are the standard way to deal with continuous variables linstitute. This project is partially supported by the Netheds
this area as exact inference can be used; however, they Ministry of Economic Affairs under the Embedded Systems
restricted to modelling linear systems. Discrete distidns Institute program. We would like to thank the anonymous
can then be used and have been successfully applied in, fariewers and the members of the OCTOPUS project for their
example, medicine. Another option is to model the distitout helpful suggestions and feedback. We also thank Marcel van
on the basis of a mixture of truncated exponentials (MTE),[21Gerven for making his Bayesian network toolbox available.
which allow one to model non-linear systems and, furtheemor
allows for exact inference of required probabilities. Thisa
direction which we will explore in the near future. Of course [1] M. Chmarra, L. Arts, and T. Tomiyama, “Towards adaptableharc
in particle filters, sampling methods can be employed for tecture,” in ASME 2008 International Design Engineering Technical
appr_OXimating the posterior from a wide range of norl_”nea‘fZ] Eoggf:gncae’rfgol\sl)éb%ﬁlzgézoij:[?tz/t Approximation Based Control:
distributions. Unifying Neural, Fuzzy and Traditional Adaptive Approxtina Ap-

Bayesian networks have drawn attention in many different Proaches ser. Adaptive and Learing Systems for Signal Processing,

. BTN Communications and Control Series. Wiley-Interscience 6200

research areas, such as Al, mathematics and statistidsisin t[3] J. Pearl, Probabilistic Reasoning in Inteligent Systems: Networks o
paper, we have explored the use of Bayesian networks for Plausible Inference Morgan Kaufmann, 1988.

ACKNOWLEDGEMENTS

REFERENCES



(4]
(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

R. Cowell, A. Dawid, S. Lauritzen, and D. SpiegelhaltBrpbabilistic
Networks and Expert SystemsSpringer, 1999.

S. Lauritzen, “Propagation of probabilities, means aratiances in
mixed graphical association models,” Am. Stat. Assacvol. 87, pp.
1098-1108, 1992.

S. Lauritzen and D. Spiegelhalter, “Local computationshvprobabil-
ities on graphical structures and their application to exggstems,”
Journal of the Royal Statistical Societyol. 50, pp. 157-224, 1988.
G. Casella and C. Robem/onte Carlo Statistical Methods Springer-
Verlag, 1999.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “Anddtiction to
variational methods for graphical model$fachine Learningvol. 37,
no. 2, pp. 183-233, 1999.

U. Lerner and R. Parr, “Inference in hybrid networks: dhetical
limits and practical algorithms,” ibdncertainty in Artificial Intelligence
J. Breese and D. Koller, Eds., vol. 17. San Francisco, CA:gdor
Kaufmann, 2001, pp. 310-318.

H. Guo and W. Hsu, “A survey of algorithms for real-time Bajan
network inference,” irAAAI/KDD/UAIO2 Joint Workshop on Real-Time
Decision Support and Diagnosis SystessDarwiche and N. Friedman,
Eds., Edmonton, Canada, 2002.

S. Lauritzen, “The EM algorithm for graphical assomatmodels with
missing data,’‘Computational Statistics and Analysigl. 19, pp. 191—
201, 1995.

K. Murphy, “Dynamic bayesian networks: Representatioference and

[13]
(14]

(18]

(16]
(17]
(18]

(29]

(20]

(21]

[22]

learning,” Ph.D. dissertation, UC Berkeley, 2002.

MATLAB, “The MathWorks Inc.” 2008, version R2008A.

K. Ogata, Modern Control Engineering4th ed. Prentice-Hall, Inc,
2002.

R. Deventer, “Modeling and control of static and dynamystems with
Bayesian networks,” Ph.D. dissertation, University EgemNirnberg,
Chair for Pattern recognition, 2004.

R. Kalman, “A new approach to linear filtering and prettintproblems,”
Journal of Basic Engineeringsol. 82, no. 1, pp. 35-45, 1960.

K. Astrom, Introduction to Stochastic Control TheoryAcademic Press,
1970.

P. Maybeck,Stochastic models, estimation, and control Academic
Press, 1979.

J. Liu and R. Chen, “Sequential Monte Carlo methods fonadyic
systems,”Journal of the American Statistical Associatiorol. 93, pp.
1032-1044, 1998.

P. Lucas, H. Boot, and B. Taal, “Computer-based decisiguport in the
management of primary gastric non-Hodgkin lymphonMéth Inform
Med vol. 37, pp. 206-219, 1998.

S. Moral, R. Ruriy and A. Samadn, “Mixtures of truncated exponen-
tials in hybrid Bayesian networks,” iSixth European Conference on
Symbolic and Quantitative Approaches to Reasoning withetdamty,
ser. LNAI, vol. 2143, 2001, pp. 156-167.

I. Flesch, “On the use of independence relations in Ba&yenetworks,”
Ph.D. dissertation, University of Nijmegen, 2008.



