
Predicate Logic for Functors and Monads

Bart Jacobs

Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

Email: bart@cs.ru.nl URL: http://www.cs.ru.nl/˜bart

May 10, 2010

Abstract. This paper starts from the elementary observation that what is usually
called a predicate lifting in coalgebraic modal logic is in fact an endomap of
indexed categories. This leads to a systematic review of basic results in predicate
logic for functors and monads, involving induction and coinduction principles for
functors and compositional modal operators for monads.

1 Introduction

Functors form the starting point in the categorical study of datatypes (usually as al-
gebras) and state-based systems (as coalgebras). Sometimes the functors involved are
actually monads, capturing some form of computational effect. Logic is needed to rea-
son about datatypes, mainly via induction and equational logic, and about state-based
systems, mainly via coinduction and (coalgebraic) modal logic. Hence the logical study
of datatypes and state-based systems requires a systematic logical view on functors and
monads.

Part of this view is provided in [4], where induction and coinduction principles for
datatypes are described via a lifting of functors from categories of types to categories
of predicates and relations (using the language of fibrations), see also [9]. The lifting
used in [4] is defined by induction on the structure of polynomial functors.

Subsequently, in coalgebraic modal logic such liftings have been studied more sys-
tematically as certain natural transformations (see e.g. [11] or [2]), which are called
predicate (or relation) liftings. They typically have components of the form σX :℘(X)→
℘(F (X)), and give a way of “lifting” predicates on X to predicates on F (X). As said,
in simple cases this can be done by induction on the structure of F . The basic observa-
tion in this paper is that such a pair (F, σ) forms an endomap in a category of indexed
categories. Once this perspective is accepted, many (partially) known constructions in
the logic of datatypes and state-based computation become instances of general con-
structions on indexed categories. For instance, taking the category of (co)algebras of
such an endomap (F, σ) in the (2-categorical) setting of indexed categories yields a
new indexed category of predicates on the (co)algebras of F .

Within this indexed perspective the notion of “monad with predicate lifting” arises
naturally. It is . . . a monad in the 2-category of indexed categories. Taking for instance
the indexed Kleisli category of such a monad with predicate lifting (T, σ) yields an
indexed category of predicates to reason about the Kleisli category of T . In particular,

this indexed Kleili category involves modal operators (as substitution functors) that are
suitably compositional: �g◦f (Q) = �f�g(Q). This says: “Q holds after g after f” is
the same as “(Q holds after g) holds after f”.

Indexed categories—or, more or less equivalently, fibrations—give a systematic cat-
egorical account of predicate logics, in which predicates are indexed by (or fibred over)
types. Here we only use the basics, and will not go deeply into technicalities: the fo-
cus in this paper lies on developing logics for functors and monads, and not on the
2-categorial/indexed niceties. The standard reference is [10], but see also [7], for con-
nections with logic and type theory. The general framework of indexed categories that
we use here is not needed to handle the main examples. They are set-theoretic and can
also be described in a more concrete manner. However, the general framework is useful
precisely because it yields abstract transparancy: it clarifies which aspects are essential.

This paper has a simple structure. Section 2 recalls the basics of indexed categories
as categorical models of predicate logic, and introduces the 2-categorical structure. Sec-
tion 3 looks at functors with liftings, and basically describes the essentials of [4] but
parametrised by a predicate lifting. Section 4 applies the indexed framework to monads
and develops their logic with modal operators for Kleisli categories. It is only in Exam-
ple 5 that the general approach of this paper becomes more concrete and is applied to
specific modal logics, including dynamic logic.

2 Basics of indexed categories

For a set X , the predicates on X are given by the powerset of subsets of X . Its Boolean
algebra structure captures the logical operations on these predicates. Each function
f :X → Y yields a way of turning predicates on Y into predicates on X , namely
via pullback or substitution: for Q ⊆ Y we have f−1(Q) ⊆ X given as f−1(Q) =
{x ∈ X | f(x) ∈ Q}. This logic can thus be organised as a functor of the form
℘: Setsop → BA, where BA is the category of Boolean algebras. Notice that we write
℘(X), instead of P(X), when we wish to consider subsets as predicates on X . Tech-
nically, ℘ is a contravariant functor Setsop → BA, whereas P is used as a covariant
functor Sets→ Sets, and a monad.

More generally, a predicate logic for a category C is given by a functor of the form
Φ: Cop → PoSets. For X ∈ C in the base category one calls Φ(X) the fibre (category)
over X . It contains the predicates on X , with order P ≤ Q given by implication. The
fibres Φ(X) may have more algebraic structure, like in the Boolean algebra example
on Sets. One can drop the requirement that the fibres Φ(X) are posets and just require
that they are categories. A map P → Q between two predicates is then understood as
a proof of Q from P . This follows the “propositions-as-types” and “proofs-as-terms”
paradigm. Each map f :X → Y in C yields a “substitution” functor Φ(f):Φ(Y) →
Φ(X) between the fibres—in reversed direction. Often, when the context is clear, this
substitution functor Φ(f) is simply written as f∗.

In what follows there is no technical reason to restrict fibres to posets. Hence we
shall be working with functor of the form Cop → Cat. They are called indexed cate-
gories [10]. Nevertheless we shall think of them as providing a predicate logic on C.
For the record we list some examples.

2

Example 1. We already mentioned the indexed category of subsets ℘: Setsop → Cat.
More generally, for a category C with pullbacks (of monos) there is the indexed cate-
gory of subobjects Sub: Cop → Cat that sends an object X ∈ C to its poset (category)
Sub(X) of subobjects of X . Substitution is given by pullback. This subobject indexed
category captures the logic of subobjects of C, for instance when C is a topos. For some
special cases, like for metric spaces or for Hilbert spaces, one restricts to the closed
subobjects, so that one gets an indexed category of the form ClSub: Hilbop → Cat.

For an arbitrary category C and set I , let CI be the category of I-indexed families
in C. Its objects are families (Xi)i∈I of objects Xi ∈ C, and its morphisms (Xi)i∈I →
(Yi)i∈I are families (fi)i∈I of maps fi:Xi → Yi in C. The mapping I 7→ CI then
yields an indexed category Setsop → Cat.

We recall (e.g. from [7]) the so-called Grothendieck construction
∫
Φ for an indexed

category Φ: Aop → Cat; it is also known as the category of elements, or as the category
of predicates of Φ. It yields a split fibration

∫
Φ→ A, but we do not rely in an essential

way on the theory of fibrations. The category
∫
Φ has pairs (X,P) as objects, where

X ∈ A and P ∈ Φ(X). A morphism (X,P)→ (Y,Q) in
∫
Φ consists of a pair of maps

f :X → Y in A with a “proof” p:X → f∗(Q) in Φ(X). This yields a category with
composition (g, q) ◦ (f, p) = (g ◦ f, f∗(q) ◦ p). This category

∫
Φ can be understood

as the “total” category of all predicates on objects in A. It forms a fibration over A with
(split) cartesian maps of the form (f, id).

We also recall that an indexed categoryΦ: Aop → Cat has indexed finite (co)products
if each fibre Φ(X) has finite (co)products and substitution functors preserve them.
When the fibres Φ(X) are posets, these products and coproducts form conjunctions
and disjunctions of predicates. If Φ has an indexed final object—each fibre Φ(X) has
a final object 1(X) ∈ Φ(X) and these final object are preserved by reindexing—then
one can gets a “truth” functor 1: A →

∫
Φ. Comprehension for (the logic of) Φ is then

given by a right adjoint {−}:
∫
Φ→ A to 1.

Universal and existential quantification are handled by adjoints to (special) substi-
tution functors. In most general form it involves left and right adjoints to substitution,
as in: ∐

f a f∗ a
∏
f (1)

subject to the so-called Beck-Chevalley condition that regulates proper interaction be-
tween quantification and substitution (see [7] for details). From the pure logical per-
spective adjoints (1) are too much: only adjoints to weakening functors π∗1 and to
contraction functors δ∗ are enough, where the projections π1:X × Y → X and di-
agonals δ:X → X × X stem from Cartesian structure in the base category A. The
left adjoint to contraction δ∗ provides the logic with equality: for X ∈ A one writes
Eq(X) =

∐
δ(1X) ∈ Φ(X ×X) for the equality relation on X .

Example 2. We sketch some of the logical structure introduced above for the indexed
category ℘: Setsop → Cat of subsets on sets. Obviously, each fibre ℘(X) has finite
products and coproducts, given by meets and joins. These are preserved by substitution
functors, since f−1(U ∩ V) = f−1(U) ∩ f−1(V) etc. For each function f :X → Y

3

one has adjoints as in (1) given on a predicate P ⊆ X as:∐
f (P) = {y ∈ Y | ∃x ∈ X. f(x) = y ∧ x ∈ P}∏
f (P) = {y ∈ Y | ∀x ∈ X. f(x) = y ⇒ x ∈ P}.

Then indeed:∐
f (P) ⊆ Q⇐⇒ P ⊆ f−1(Q) and f−1(Q) ⊆ P ⇐⇒ Q ⊆

∏
f (P).

The category
∫
℘ has pairs (X,P) were P ⊆ X as objects. A morphism f : (P ⊆

X)→ (Q ⊆ Y) is a function f :X → Y satisfying f(x) ∈ Q for all x ∈ P . The “truth”
functor 1: Sets→

∫
℘ maps a set X to the “truth” predicate 1(X) = (X ⊆ X) ∈

∫
℘.

It has a right adjoint {−}:
∫
℘ → Sets that sends a predicate (P ⊆ X) to its extent P ,

considered as a set itself.
The same constructions are present in a subobject indexed category Sub: Cop → Cat

when C is a topos.

2.1 Indexed categories form 2-categories

In the remainder of this section we briefly consider morphisms between indexed cate-
gories (forming 1-cells), and also maps between these morphisms (forming 2-cells). A
morphism (

Bop Φ // Cat
)

(F,σ) //
(

Cop Ψ // Cat
)

(2)

between two indexed consists of a functor F : B → C between the base categories
together with a natural transformation σ:Φ ⇒ ΨF . One can compose such maps as
(G, τ) ◦ (F, σ) = (G ◦ F, τF ◦ σ).

These maps (2) between indexed categories can themselves be seen as objects (or
1-cells), between which morphisms (or 2-cells) may be defined. They are sometimes
called modifications. Such a 2-cell consists of a pair (α, β) in:

(
Bop Φ // Cat

) (F,σ)

**

(G,τ)

44⇓ (α, β)
(

Cop Ψ // Cat
)

(3)

where α is a natural transformation α:F ⇒ G and β = (βX)X∈C is a collection of
natural transformations βX :σX ⇒ (Ψ(αX) ◦ τX) in:

Φ(X)
σX

⇓ βX
//

τX
))SSSSSS Ψ(FX)

Ψ(GX) Ψ(αX)

55jjjjjj

4

commuting with substitution: for f :X → Y ,

σXΦ(f)
βXΦ(f) //

(naturality of σ)

Ψ(αX)τXΦ(f)
(naturality of τ)

Ψ(αX)Ψ(Gf)τY
(naturality of α, under Ψ)

Ψ(Ff)σY
Ψ(Ff)βY // Ψ(Ff)Ψ(αY)τY

For two such modifications:

(F, σ)
(α,β) // (G, τ)

(γ,δ) // (H, ρ)

their composition is defined as (γ ◦ α, δ • β), where (δ • β)X = Ψ(αX)δX ◦
βX :σX ⇒ Ψ(αX)τX ⇒ Ψ(αX)Ψ(γX)ρX = Ψ((γ ◦ α)X)ρX . It is not hard to see
that this commutes again with substitution. In this way we obtain a 2-category IndCat
of indexed categories.

For a general account of the theory of indexed categories, see [10]. It contains a
more general notion than we have sketched above, involving a “pseudo-functor” in-
stead of a functor Cop → Cat. This additional generality is not needed in the current
applications and so it will not be used. An alternative description in terms of fibrations,
in combination with logic and type theory, may be found in [7].

3 Predicate liftings for functors

The (categorical) theory of datatypes and state-based systems takes the notion of endo-
functor A→ A on a category as starting point. Here we wish to extend this approach in a
systematic manner to include logic. Hence it is natural to replace ‘category’ by ‘indexed
category’ and ‘endomap on a category’ by ‘endomap on an indexed category’. Thus, the
basic notion of this paper consists of an indexed category with an endomap. This may
be either just an ordinary endomap (this section), or a monad (in a 2-categorical sense,
see the next section).

Definition 1. Let Φ: Aop → Cat be an indexed category. A functor with predicate lifting
for Φ is an endomap of indexed categories Φ→ Φ. It is given by an endofunctor F : A→
A together with a natural transformation σ:Φ ⇒ ΦF ; the latter is often called the
predicate lifting.

The predicate lifting σ will be called truth preserving if each functor σX :Φ(X) →
Φ(FX) preserves final objects, if any.

For instance, the endofunctor F = (A×−) on Sets becomes a functor with predi-
cate lifting for the subset logic ℘: Setsop → Cat via the natural transformation:

℘(X) // ℘(A×X) given by Q � // {(a, x) ∈ A×X | x ∈ Q}.

Similarly, the obvious predicate lifting for the functor F = 1 + (A×−) is:

℘(X) // ℘(1 +A×X) given by Q � // {∗} ∪ {(a, x) ∈ A×X | x ∈ Q},

5

where ∗ is the (sole) element of the singleton set 1. Both these predicate liftings are
obviously truth preserving.

We shall later see, in Example 4.(1), that there may be multiple liftings σ for the
same functor F .

The first result about functors with predicate liftings is that they can be lifted to
categories of predicates. We shall formulate it for endomaps Φ → Φ like in the above
definition, but it can be extended to maps Φ→ Ψ between different indexed categories.

Lemma 1. Let Φ: Aop → Cat be an indexed category. A map of indexed categories
(F, σ):Φ → Φ gives rise to a lifting of the functor F : A → A to a (split) fibred functor
F , in a commuting diagram:

∫
Φ

��

F //
∫
Φ

��
A F // A

(4)

via:

F (X,P) = (F (X), σX(P)) and F (f, p) = (F (f), σ(p)).

The latter is well-defined since for p:P → f∗(Q) in Φ(X) we get σ(p):σ(P) →
σ(f∗(Q)) = F (f)∗(σ(Q)) in Ψ(FX) by naturality of σ.

If the indexed category Φ has indexed terminal objects, and σ:Φ→ ΨF preserves,
then the functor F :

∫
Φ→

∫
Ψ commutes with truth functors. �

Functoriality of F is an easy exercise. Notice that the dependence on σ in the nota-
tion F for lifting is left implicit.

Given this lifting F one can consider algebras or coalgebras of the functor F , but
also of the lifted functor F . Algebras of F may be understood as datatypes, and al-
gebras of F as suitably structured predicates on these datatypes: commutation of the
diagram (4) yields obvious functors:

Alg(F)

��

CoAlg(F)

��
Alg(F) CoAlg(F)

In the algebraic case a truth functor 1: A →
∫
Φ yields a functor Alg(F) → Alg(F),

also written as 1, by:(
FX

a // X
)

� //
(
F (1X) ∼= 1(FX)

1(a) // 1(X)
)

where we assume that the predicate lifting is truth preserving. Following [4] we say that
the logic Φ admits induction for (F, σ):Φ → Φ if this functor 1: Alg(F) → Alg(F)
preserves initial objects. One of the main results in [4] is that this is the case if Φ has
comprehension {−}.

6

Example 3. Consider the functor F = 1 + A × (−) on Sets. As already mentioned,
it comes with an obvious predicate lifting σX :℘(X) → ℘(FX) given by σX(Q) =
{∗} ∪ {(a, x) | Q(x)}, which is truth preserving. The initial algebra of F is the set A?

of finite lists of elements of A, with structure map:

F (A?) = 1 +A×A?
[nil,cons]
∼=

// A?

The lifting F :
∫
℘ →

∫
℘ sends a predicate (Q ⊆ X) to the predicate σ(Q) ⊆ F (X).

In particular, it sends the truth predicate (A∗ ⊆ A∗) to the truth predicate (F (A?) ⊆
F (A∗)), which is the initial F -algebra in

∫
℘. This means the following. Suppose we

have a predicate (Q ⊆ X) and an F -algebra on (Q ⊆ X), consisting of an F -algebra
[f, g]: 1 + A × X → X on X that satisfies f(∗) ∈ Q and x ∈ Q ⇒ g(a, x) ∈ Q,
for each a ∈ A. By initiality of A? there is the unique map of algebras h:A? → X
given by h(nil) = f(∗) and h(cons(a, α)) = g(a, h(α)). The initiality claim about
1(A?) = (A? ⊆ A∗) then says that h is a morphism 1(A?) → (Q ⊆ X), i.e. that
h(α) ∈ Q for all α ∈ A?.

In the coalgebraic case one does not reason with predicates but with (binary) rela-
tions. For an indexed category Φ: Aop → Cat we shall use the ad hoc notation Φ2 for
the indexed category Φ2: Aop → Cat of relations in Φ given by:

Φ2(X) = Φ(X ×X) and Φ2(f) = Φ(f × f).

The fibre Φ2(X) thus contains the binary relations on X in Φ.

Definition 2. A functor with relation lifting for an indexed category Φ: Aop → Cat
is an endomap of indexed categories (F, σ):Φ2 → Φ2. It is given by an endofunctor
F : A→ A together with a relation lifting σ:Φ2 ⇒ Φ2F .

The relation lifting σ will be called equality preserving if each functor σX :Φ(X ×
X)→ Φ(FX × FX) preserves the equality relation.

Such a functor (F, σ) with relation lifting gives rise to a lifted functor F :
∫
Φ2 →∫

Φ2 like in Lemma 1. If σ preserves equality, then F (Eq(X)) ∼= Eq(F (X)), so that
equality forms a functor Eq: CoAlg(F) → CoAlg(F). One then says, like in [4], that
(F, σ):Φ2 ⇒ Φ2 admits coinduction if this functor Eq: CoAlg(F) → CoAlg(F) pre-
serves final objects. This happens in the presence of quotients, see [4] for more infor-
mation.

Remark 1. So-called polynomial functors are built up inductively from the identity,
constants, products and coproducts. For such functors there is a canonical way to define
a predicate lifting, by induction on the structure. It can be defined quite generally, for
indexed categories with some basic structure (especially indexed (co)products), see [4].

Even more generally, for non-necessarily polynomial functors, there is a canonical
lifting in case the indexed category has comprehension, see [4, Remark 2.13]. This
lifting is used in [9] to generically formulate induction principles for many datatypes.

7

For the standard subset logic indexed category ℘: Setsop → Cat it looks as follows.
Given an arbitrary endofunctor F : Sets→ Sets define for Q ⊆ X ,

σ(Q) = {u ∈ F (X) | ∃u′ ∈ F (Q). F (Q ↪→ X)(u′) = u}.

This yields a natural transformation σ:℘ ⇒ ℘F in case the functor F preserves weak
pullbacks.

3.1 Lifted functor algebras form an indexed category

We have considered algebras and coalgebras of lifted functors (like in Lemma 1) as
predicates. This will be (further) justified below, by showing that these categories actu-
ally arise via the

∫
construction of suitably defined indexed categories.

Definition 3. Let (F, σ) be a functor with predicate lifting, i.e. an endomap Φ → Φ,
where Φ: Aop → Cat. Define new indexed categories

Alg(F)op Alg(F,σ) // Cat and CoAlg(F)op CoAlg(F,σ) // Cat

as follows.

1. Let Alg(F, σ)
(
FX

a→ X
)

be the fibre category which has pairs P ∈ Φ(X) with
α:σ(P)→ a∗(P) as objects. A morphism (σ(P) α→ a∗(P)) −→ (σ(Q)

β→ a∗(Q))
in this fibre is a map h:P → Q in Φ(X) making the following square in Φ(FX)
commute.

σ(P)
α ��

σ(h) // σ(Q)
β��

a∗(P)
a∗(h) // a∗(Q)

For a homomorphism of algebras (FX a→ X)
f−→ (FY b→ Y) we define a substi-

tution functor between such fibre categories:

Alg(F, σ)
(
FY

b // Y
) Alg(F,σ)(f) // Alg(F, σ)

(
FX

a // X
)

(Q,α) � // (f∗(Q), F (f)∗(α))

h
� // f∗(h)

This is well-defined, since if α:σ(P)→ a∗(P), then F (f)∗(α) yields a map:

σ(f∗(Q)) = F (f)∗(σ(P))
F (f)∗(α) // F (f)∗(a∗(P)) = b∗(f∗(P))

2. In the coalgebraic case one simply defines CoAlg(F, σ)
(
X

c→ FX
)

= CoAlg(c∗σ),
so that the fibre category is the category of coalgebras of the functor c∗σ:Φ(X)→

8

Φ(FX)→ Φ(X). A morphism f : (X c→ FX) −→ (Y d→ FY) in CoAlg(F) gives
rise to a substitution functor

CoAlg(d∗σ)
CoAlg(F,σ)(f) // CoAlg(c∗σ)(

Q
β // d∗(σ(Q))

) � //
(
f∗(Q)

f∗(β)// f∗(d∗(σ(Q)))
)

c∗(F (f)∗(σ(Q))) = c∗(σ(f∗(Q)))

The main observation is that the two previous constructions, namely talking predi-
cates of (indexed) (co)algebras of functors with predicate lifting and taking (co)algebras
of lifted functors coincide.

Proposition 1 (Predicates on (co)algebras are (co)algebras too). In the context of the
previous lemma there are equalities of categories:

∫
Alg(F, σ) = Alg(F) //

��

∫
Φ

��

CDFE F@G
��

CoAlg(F) =
∫

CoAlg(F, σ)oo

��
Alg(F) // A@GAB

F

CDbb CoAlg(F)oo

Proof. We shall do the algebra case. First note that on the one hand objects in the
category of predicates

∫
Alg(F, σ) are triples consisting of an algebra a:FX → X

together with a predicate P ∈ Φ(X) with a map α:σ(P)→ a∗(P). On the other hand,
objects in the category of algebras Alg(F) are given by a predicate P ∈ Φ(X) together
with an algebra map F (X,P) = (F (X), σ(P)) → (X,P). The latter consists of an
algebra a:F (X) → X together with a map α:σ(P) → a∗(P). Hence we have the
same data. �

The functor c∗σ in the coalgebraic part of this definition may be written as �c be-
cause it describes the ‘nexttime’ operator from modal logic. Intuitively, �c(Q) means:
nexttime, after applying the coalgebra c, Q holds. A coalgebra Q → �c(Q) is an in-
variant: a predicate that, once it holds, continues to hold after applications of c.

In presence of sums
∐

in the indexed category Φ—as in (1)—in the algebraic case
we can also describe the fibre category Alg(F, σ)(FX a→ X) as a category of algebras,
namely of the functor

∐
a σ:Φ(X) → Φ(X). There is no established terminology for

this functor, but one can read it as ‘previously’. An algebra
∐
a(σ(P)) → P makes P

into what is sometimes called an ‘inductive’ predicate, since it forms the assumption in
an induction statement, namely that P is closed under application of the algebra a.

The previous proposition also applies to functors with a relation lifting (F, σ):Φ2 →
Φ2. The category

∫
CoAlg(F, σ) = CoAlg(F) then contains as objects coalgebras

c:X → F (X) together with a relationR ∈ Φ(X×X) with a mapR→ (c×c)∗(σ(R)).
This map shows that R is closed underlying applying c, and thus forms a bisimulation.

9

4 Liftings for monads

We now extend the approach from the previous section from functors to monads. We
do not explicitly describe the comonad case because it is covered by duality.

Definition 4. A monad with a predicate lifting for an indexed category is defined as a
monad in the 2-category IndCat. More explicitly, for an indexed category Φ: Aop → Cat
it consists of a 1-cell (T, τ):Φ → Φ together with 2-cells (η, θ): (Id, id) ⇒ (T, τ) and
(µ, ν): (T, τ)2 ⇒ (T, τ) satisfying the familiar monad equations.

Even more explicitly, this means that we have the following data.

1. A functor T : A→ A with a predicate lifting τ :Φ⇒ ΦT ;
2. A natural transformation η: idA ⇒ T and a collection θ = (θX) of natural trans-

formations, where these θX : idΦ(X) ⇒ Φ(ηX)τX in

Φ(X)

id

**

τX
--
⇓ θX Φ(X)

Φ(TX) Φ(ηX)

55

must commute with substitution;
3. A natural transformation µ:T 2 ⇒ T and a collection ν = (νX) with νX : τTXτX ⇒
Φ(µX)τX in

Φ(TX) τT X

**
Φ(X)

τX 11

τX
--
⇓ νX Φ(T 2X)

Φ(TX) Φ(µX)

44

commuting with substitution;
4. Equations:

µX ◦ ηTX = idTX and Φ(ηTX)νX ◦ θTXτX = id : τX =⇒ τX

and:

µX ◦ T (ηX) = idTX and Φ(T (ηX))νX ◦ τXθX = id : τX =⇒ τX

and:

µX ◦ µTX = µX ◦ T (µX) and
Φ(µTX)νX ◦ νTXτX

= Φ(T (µX))νX ◦ τT 2(X)νX .

The equations on the left express that T : A → A with η, µ is a monad in the ordinary
sense. The equations on the right are a bit more complicated. Diagrammatically, they

10

look as follows.

Φ(X)
τX // Φ(TX) Φ(TX)

⇓ id ⇓ θTX
Φ(X)

τX

// Φ(TX)
τT X // Φ(T 2X)

Φ(ηT X)// Φ(TX)

⇓ ν ⇓ id

Φ(X)
τX

// Φ(TX)
Φ(µX)//

id

22Φ(T 2X)
Φ(ηT X)// Φ(TX)


=


Φ(X)

τX // Φ(TX)

⇓ id

Φ(X)
τX

// Φ(TX)





Φ(X) Φ(X)
τX // Φ(TX)

⇓ θX ⇓ id

Φ(X)
τX // Φ(TX)

Φ(ηX) // Φ(X)
τX // Φ(TX)

⇓ id ⇓ id

Φ(X)
τX

// Φ(TX)
τT X // Φ(T 2X)

Φ(T (ηX))// Φ(TX)

⇓ νX ⇓ id

Φ(X)
τX

// Φ(TX)
Φ(µX)//

id

22Φ(T 2X)
Φ(T (ηX))// Φ(TX)


=


Φ(X)

τX // Φ(TX)

⇓ id

Φ(X)
τX

// Φ(TX)





Φ(X)
τX // Φ(TX)

τT X // Φ(T 2X)
τT2X // Φ(TX)

⇓ id ⇓ νTX
Φ(X)

τX

// Φ(TX)
τT X // Φ(T 2X)

Φ(µT X)// Φ(T 3X)

⇓ ν ⇓ id

Φ(X)
τX

// Φ(TX)
Φ(µX)

// Φ(T 2X)
Φ(µT X)

// Φ(T 3X)



=



Φ(X)
τX // Φ(TX)

τT X // Φ(T 2X)
τT2X // Φ(TX)

⇓ νX ⇓ id

Φ(X)
τX // Φ(TX)

Φ(µX) // Φ(X)
τT2X // Φ(T 3X)

⇓ id ⇓ id

Φ(X)
τX

// Φ(TX)
τT X // Φ(T 2X)

Φ(T (µX))// Φ(T 3X)

⇓ νX ⇓ id

Φ(X)
τX

// Φ(TX)
Φ(µX)

// Φ(T 2X)
Φ(T (µX))

// Φ(T 3X)


Finally, we call such a monad with predicate lifting split when the θ’s and ν’s are all

identities. In that case these right-hand-side equations—and thus the above diagrams—
trivially hold.

Example 4. We shall consider several examples, and also a non-example, for the stan-
dard subset logic ℘: Setsop → Cat.

11

1. Recall that we write P for the powerset monad Sets → Sets, whose unit is given
by singletons and multiplication by unions. This monad P can be provided in a
standard way with a split predicate lifting for the indexed category ℘. It involves a
natural transformation with components:

℘(X)
πX // ℘(P(X))

(Q ⊆ X) � // {U ∈ P(X) | U ⊆ Q}

It is important to distinguish the contravariance of ℘ and the covariance of P in
order to see that π is natural: for each function f :X → Y one has a commuting
diagram:

℘(X)
πX // ℘(P(X))

℘(Y)

℘(f)=f−1
OO

πY // ℘(P(Y))

℘(P(f))=P(f)−1
OO

since for Q ⊆ Y one has:(
P(f)−1 ◦ πY

)
(Q) = {U ∈ P(X) | P(f)(U) ∈ πY (Q)}

= {U ∈ P(X) | {f(x) | x ∈ U} ⊆ Q}
= {U ∈ P(X) | ∀x ∈ U. f(x) ∈ Q}
= {U ∈ P(X) | U ⊆ f−1(Q)}
=
(
πX ◦ f−1

)
(Q).

This endomap (P, π):℘→ ℘ is a monad with split predicate lifting since we have
equalities (instead of inclusions):(

℘(η) ◦ πX
)
(Q) = {x ∈ X | η(x) ∈ πX(Q)}

= {x ∈ X | {x} ⊆ Q}
= Q(

℘(µ) ◦ πX
)
(Q) = {A ∈ P2(X) | µ(A) ∈ πX(Q)}

= {A ∈ P2(X) |
⋃
A ⊆ Q}

= {A ∈ P2(X) | ∀U ∈ A.U ⊆ Q}
= {A ∈ P2(X) | A ⊆ πX(Q)}
=
(
πP(X) ◦ πX

)
(Q)

The predicate lifting π can be combined with negation ¬:℘(X) → ℘(X). It leads
to another split predicate lifting ¬π¬ for the powerset monad P . Explicitly, it is
given by:

(¬π¬)X(Q) = ¬πX(¬Q) = {U ∈ P(X) | not: U ⊆ ¬Q}
= {U ∈ P(X) | U ∩Q 6= ∅}.

12

2. The ultrafilter monad UF : Sets→ Sets is given by:

UF(X) = {A ⊆ P(X) | A is an ultrafilter}.

It is relevant in topology, for instance because its Eilenberg-Moore algebras are
precisely the compact Hausdorff spaces (Manes’ theorem, see e.g. [8, III, 2.4]).
This ultrafilter monad carries a predicate lifting:

℘(X)
ϕX // ℘(UF(X))

(Q ⊆ X) � // {A ∈ UF(X) | Q ∈ A}

Like before this forms a split predicate lifting.
3. If M = (M, 1, ·) is a monoid, then M × (−): Sets → Sets is a monad. We can

apply the powerset, and get another monad P(M × −): Sets → Sets with unit η
and multiplication µ given on x ∈ X and A ⊆M × P(M ×X) by:

η(x) = {(1, x)}
µ(A) = {(m,x) | ∃(m1, U) ∈ A.∃m2. (m2, x) ∈ U ∧ m = m2 ·m1}.

There is an associated predicate lifting

℘(X)
ϕX // ℘(P(M ×X))

(Q ⊆ X) � // {U ∈ P(M ×X) | ∀(m,x) ∈ U.Q(x)}.

It interacts appropriately with the unit and multiplication of the monad P(M ×−),
making the latter a monad with predicate lifting.

4. Next we consider the distribution monad D on Sets, with

D(X) = {ϕ:X → [0, 1] | supp(ϕ) is finite, and
∑
x∈X ϕ(x) = 1}.

Here one write supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}. It is convenient to write ϕ as a
formal convex sum ϕ = r1x1 + · · · + rnxn where supp(ϕ) = {x1, . . . , xn} and
ri = ϕ(xi) is the probability of xi. One can then write D(f), for f :X → Y , as
D(f)(

∑
i rixi) =

∑
i rif(xi). The unit forD is η(x) = 1x, and the multiplication

is µ(Φ) = λx.
∑
ϕ Φ(ϕ) · ϕ(x).

There are several ways in which to associate a lifting with the distribution monad
D, but not all of them are predicate liftings. We start with a lifting that does work:

℘(X)
τX // ℘(D(X))

(Q ⊆ X) � // {ϕ ∈ D(X) | supp(ϕ) ⊆ Q}.

Hence this lifting expresses that all elements with non-empty probability of occur-
ring should be in P . It does not take the value of the probability into account, but
only distinguishes zero/non-zero. This forms a split predicate lifting.

13

There is also a more refined way in which one does take probability values into
account. Then one associates multiple liftings τ(q) with D, one for each q ∈ Q ∩
[0, 1], namely:

℘(X)
τ(q)X // ℘(D(X))

(Q ⊆ X) � // {ϕ ∈ D(X) | q ≤
∑
x∈Q ϕ(x)}.

Each τ(q) is a natural transformation, but the pairs (D, τ(q)) do not give rise to a
monad with predicate liftings. The reason is that in the multiplication case one does
have to allow variation in the q, within a single equation, as illustrated in:(
τ(q)D(X) ◦ τ(r)X

)
(Q). = {Φ ∈ D2(X) | q ≤

∑
ϕ∈τ(r)X(Q) Φ(ϕ)}

⊆ {Φ ∈ D2(X) | q · r ≤
∑
ϕ Φ(ϕ) · (

∑
x∈Q ϕ(x))}

= {Φ ∈ D2(X) | q · r ≤
∑
x∈Q

∑
ϕ Φ(ϕ) · ϕ(x)}

= {Φ ∈ D2(X) | q · r ≤
∑
x∈Q µ(Φ)(x)}

= {Φ ∈ D2(X) | µ(Φ) ∈ τ(q · r)X(Q)}
=
(
℘(µ) ◦ τ(q · r)X

)
(Q)

Hence in this case the (D, τ(q)) form a functor with predicate lifting but not a
monad with predicate lifting.

Monads with predicate liftings, like functors, can be lifted.

Lemma 2. Let (T, τ):Φ → Φ be a monad with predicate lifting, for Φ: Aop → Cat. It
can be lifted to T :

∫
Φ→

∫
Φ, like in Lemma 1. This yields a monad again, and a map

of monads in a square:

∫
Φ

��

T //
∫
Φ

and thus functors
��

K`(T)

��

Alg(T)

��
A T // A K`(T) Alg(T)

The lifting T is split in case the predicate lifting is split, whence the name.

The notation Alg is used here for the category of Eilenberg-Moore algebras of the
monad T—and not for the algebras of a functor, like in the previous section. We use
K`(T) to denote the Kleisli category of the monad T .

Proof. One defines a unit η(X,P) = (ηX , θX,P): (X,P)→ T (X,P) = (T (X), τX(P)).
It is well-defined because ηX :X → T (X) in A and θX,P :P → η∗X(τX(P)), as re-
quired. Similarly, one defines multiplication for T as:

(T 2(X), τTX(τX(P))) = T
2
(X,P)

µ(X,P)=(µX ,νX,P)
// T (X,P) = (T (X), τX(P)).

The monad equations for T boil down to the equations listed in Definition 4.(4). �

14

Our next step, like in the previous section is to define an indexed category whose
categories of predicate areK`(T) and Alg(T). In the Kleisli case this works for monads
with split predicate lifting.

Definition 5. Let (T, τ):Φ→ Φ be a monad with split predicate lifting, for an indexed
category Φ: Aop → Cat. We define a new indexed category:

K`(T)op K`(T,τ) // Cat

by setting K`(T)(X) = Φ(X) and for f :X → Y in K`(T), i.e. for f :X → T (Y) in
A, taking as substitution functor:

K`(T, τ)(f) =
(
K`(T, τ)(Y) = Φ(Y)

τY // Φ(TY)
Φ(f) // Φ(X) = K`(T, τ)(X)

)
.

In verifying that K`(T, τ) is a functor we use that that the predicate lifting is split:

K`(T, τ)(idX) = η∗X ◦ τX
= idΦ(X) since the predicate lifting is split

= idK`(T,τ)(X)

K`(T, τ)(g ◦ f) = (µ ◦ T (g) ◦ f)∗ ◦ τ
= f∗ ◦ T (g)∗ ◦ µ∗ ◦ τ
= f∗ ◦ T (g)∗ ◦ τ ◦ τ idem

= f∗ ◦ τ ◦ g∗ ◦ τ
= K`(T, τ)(f) ◦ K`(T, τ)(g).

This restriction to split predicate liftings is not needed in the case of algebras. We
shall not use this construction, but include it for reasons of completeness.

Definition 6. Let (T, τ):Φ→ Φ be a monad with an arbitrary predicate lifting, for an
indexed category Φ: Aop → Cat. We now define a new indexed category:

Alg(T)op Alg(T,τ) // Cat

basically by following Definition 3, except that some additional conditions are imposed
on objects in the fibres. The fibre category Alg(T, τ)(TX a→ X) now has as objects
maps α: τX(P)→ a∗(P) satisfying two conditions:

P
θX,P ��

P τTX(τX(P))
νX,P ��

τT X(α)// τTX(a∗(P)) T (a)∗(τX(P))
T (a)∗(α)��

η∗X(τX(P))
η∗X(α)

// η∗Xa
∗(P) µ∗X(τX(P))

µ∗(α)
// µ∗X(a∗(P)) T (a)∗(a∗(P))

A morphism h:α→ β in Alg(T, τ)(TX a→ X) is, like in Definition 3, a map satisfying
a∗(h) ◦ α = β ◦ τX(h). Substitution is also like in Definition 3.

15

Proposition 2. In the context of the previous definitions there are equalities of cate-
gories:

∫
K`(T, τ) = K`(T) //

(splitting assumed)��

∫
Φ

��

CDFE T@G
��

Alg(T) =
∫

Alg(T, τ)oo

��
K`(T) // A@GAB

T

CDbb Alg(T)oo

Proof. An object of K`(T) is an object (X,P) ∈
∫
Φ, where X ∈ A and P ∈

Φ(X) = K`(T, τ)(X). A morphism (f, p): (X,P) → (Y,Q) in K`(T) consists of a
map (f, p): (X,P) → T (X,P) in

∫
Φ; it involves f :X → T (Y) in A and p:P →

f∗(τY (Q)) in Φ(X). Hence f is a map X → Y in the category K`(T), and p is a map
P → K`(T, τ)(f)(Q). Thus (f, p) is a map in the category of predicates

∫
K`(T, τ).

An object of Alg(T) consists of a T -algebra (a, α):T (X,P) → (X,P). It thus
consists of maps a:TX → X in A and α: τX(P)→ a∗(P) in Φ(X) satisfying:

(a ◦ ηX , η∗X(η) ◦ θX,P) = (a, α) ◦ η(X,P)

= (id, id)

(a ◦ µX , µ∗X(α) ◦ νX,P) = (a, α) ◦ µ(X,P)

= (a, α) ◦ T (a, α)

= (a ◦ T (a), T (a)∗(α) ◦ τX(α)).

These equations express precisely that a a T -algebra and that α is a map in the fibre
category Alg(T, τ)(TX a→ X). �

We conclude with some examples of logics on Kleisli categories, in which it will
turn out that substitution functors are compositional modalities.

Example 5. We review some of the cases from Example 4.

1. The Kleisli category K`(P) of the powerset monad is of course the category of
sets and relations between them. The split predicate lifting (P, π):℘ → ℘ from
Example 4.(1) gives rise to an indexed categoryK`(P, π):K`(P)op → Cat. It sends
X 7→ ℘(X) and f :X → P(Y) to the substitution functor

℘(Y)
K`(P,π)(f)=�f // ℘(X)

described—according to Definition 5—by:

K`(P, π)(f)(Q ⊆ Y) = f−1(πY (Q))

= {x ∈ X | f(x) ∈ πY (Q)}
= {x ∈ X | f(x) ⊆ Q}
= �f (Q).

16

Thus �f (Q) is the predicate that says “Q holds everywhere after applying f”, i.e.
“Q holds for all successor states via f”. Notice that this modal operator is composi-
tional, in the sense that �g◦f = �f�g , where ◦ refers to (relation) composition in
the Kleisli category. This compositionality follows directly from the functoriality
of K`(P, π). These modalities preserve intersections because the predicate lifting
π does.
This is precisely the logic on relations that arises in the context of quantum logic
via daggers and kernels, see [5, §§3.1].
The modal operator associated with the predicate lifting ¬π¬ is of course the oper-
ator ♦ that expresses “for some successor state . . . ”. Indeed, for f :X → P(Y) we
have:

K`(P,¬π¬)(f)(Q ⊆ Y) = f−1((¬π¬)Y (Q))

= {x ∈ X | f(x) 6∈ πY (¬Q)}
= {x ∈ X | f(x) ∩Q 6= ∅}
= ♦f (Q).

2. The predicate lifting ϕ for the ultrafilter monad UF from Example 4.(2) yields a
similar compositional modality: for a map f :X → UF(Y) we get �f :℘(Y) →
℘(X) by:

�f (Q) = {x ∈ X | f(x) ∈ ϕY (Q)}
= {x ∈ X | Q ∈ f(x)}.

This modality preserves all Boolean operations because ϕ:℘(X) → ℘(UF(X))
does so.

3. The starting point for dynamic logic, see e.g. [3], is a set A of actions together
with a relation Ra ⊆ X × X , for each a ∈ A. We shall extend these relations to
sequences as Rα ⊆ X ×X , for α ∈ A?, in the obvious way:

R〈a1,...,an〉 = Ran
◦ · · · ◦ Ra1 .

Clearly, Rα;β = Rβ ◦ Rα, where ; is sequential composition of lists, and ◦ is re-
lational composition. Each such relation Rα yields a coalgebra Rα:X → P(A? ×
X), for the monad P(A?×−) from Example 4.(3), viaRα(x) = {(α, y) | (x, y) ∈
Rα}. It is then not hard to see that:

Rα ◦ Rβ = Rα;β , (5)

where the composition ◦ on the left-hand-side is in the Kleisli category of the
monad P(A? ×−).
Our general approach now gives a modality, namely �α(Q) =

(
Rα
)∗(Q), using

substitution (−)∗ in the “Kleisli” indexed category from Definition 5. It is of course

17

the same as the usual one, when specialised to a singleton sequence:

�a(Q) =
(
Ra
)∗(Q)

=
(
R
−1

a ◦ σ
)
(Q) with σ as in Example 4.(3)

= {x | Ra(x) ∈ σ(Q)}
= {x | ∀(α, y) ∈ Ra(x). Q(y)}
= {x | ∀y.Ra(x, y)⇒ Q(y)}.

The compositionality property follows from the general framework:

�β(�α(Q)) = R
∗
β

(
R
∗
α(Q)

)
=
(
Rα ◦ Rβ

)∗(Q)
(5)
=
(
Rα;β

)∗(Q)

= �α;β(Q).

Of course the general framework is a bit of an overkill for proving composition-
ality in this particular example. The point is rather to illustrate how the general
framework covers many known cases and clarifies the underlying structure.

At the end we briefly mention two possible topics for further research.

1. The current approach focuses on compositionality for sequential composition (in
Kleisli) categories. It remains open how to integrate other process theoretic opera-
tors, involving for instance parallel composition in component calculi like in [1,6].
One expects results about lifting products and coproducts to total categories

∫
Φ to

be useful here, see e.g. [4, Lemma 2.1].
2. The predicate lifting π:℘ ⇒ ℘P used in Example 4.(1) can be defined in the

predicate logic of the indexed category ℘ itself. In order to do so we use that the
inhabitation relation ∈X can be seen as an object of the fibre category ℘(P(X) ×
X), namely given by ∈X = {(U, x) | x ∈ U}. Then we can define the predicate
lifting π from Example 4.(1) internally via quantification (1) and fibred implication
⇒ as:

πX(Q) =
∏
π1

(
∈X⇒ π∗2(Q)

)
in ℘(P(X)),

= {U ∈ P(X) | ∀x ∈ X.x ∈ U ⇒ Q(x)}.

where P(X) π1←− P(X)×X π2−→ X . Indexed categories can thus be used to ex-
press when a predicate lifting (and thereby a modal operator) can be defined within
the predicate logic itself. This may be applied to any predicate logic Φ, and thus
gives a flexible, semantic approach to definability of modal operators in predicate
logic, see [12] for a more syntactic approach (and further references).

References

1. L.S. Barbosa. Towards a calculus of state-based software components. Journ. of Universal
Comp. Sci., 9(8):891–909, 2003.

18

2. C. Cı̈rstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are coalgebraic.
The Computer Journal, 2009. doi:10.1093/comjnl/bxp004.

3. R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes 7, Stanford, 2nd rev.
edition, 1992.

4. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Inf.
& Comp., 145:107–152, 1998.

5. C. Heunen and B. Jacobs. Quantum logic in dagger kernel categories. Order, 2010. doi:
10.1007/s11083-010-9145-5.

6. B. Jacobs I. Hasuo, C. Heunen and A. Sokolova. Coalgebraic components in a many-sorted
microcosm. In A. Kurz and A. Tarlecki, editors, Conference on Algebra and Coalgebra in
Computer Science (CALCO 2009), number 5728 in Lect. Notes Comp. Sci., pages 64–80.
Springer, Berlin, 2009.

7. B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.
8. P.T. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics.

Cambridge Univ. Press, 1982.
9. N. Ghani P. Johann and C. Fumex. Fibrational induction rules for initial algebras. Submitted

to CSL 2010, 2010.
10. R. Paré and D. Schumacher. Abstract families and the adjoint functor theorems. In P.T.

Johnstone and R. Paré, editors, Indexed Categories and their Applications, number 661 in
Lect. Notes Math., pages 1–125. Springer, Berlin, 1978.

11. D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theor. Comp. Sci., 309(1-3):177–193, 2003.

12. L. Schröder and D. Pattinson. Coalgebraic correspondence theory. In L. Ong, editor, Foun-
dations of Software Science and Computation Structures, number 6014 in Lect. Notes Comp.
Sci., pages 328–342. Springer, Berlin, 2010.

19

