
Two-Permutation-Based Hashing
with Binary Mixing

Atul Luykx, Bart Mennink, Bart Preneel, and Laura Winnen

Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds, Belgium
{atul.luykx,bart.mennink,bart.preneel}@esat.kuleuven.be

Abstract. We consider the generic design of compression functions based on
two n-bit permutations and XOR-based mixing functions. It is known that
any such function mapping n + α to α bits, with 1 ≤ α ≤ n, can achieve at
most min{2α/2, 2n/2−α/4} collision security. Using techniques similar to Men-
nink and Preneel (CRYPTO 2012), we show that there is only one equivalence
class of these functions achieving optimal collision security, and additionally
min{2α, 2n/2} preimage security. The equivalence class compares well with exist-
ing functions based on two or three permutations, and is well-suited for wide-pipe
hashing.

Keywords. hash function, permutation-based, wide-pipe, collision resistance,
preimage resistance.

1 Introduction

The classical approach to hash function design is blockcipher-based. The first
appearance of this idea is the construction F (h,m) = DESm(h) by Rabin [8]
using the Data Encryption Standard, but many other constructions and further
analysis followed; see, for instance, [4, 7] for an extensive discussion of the most
basic modes. Yet these designs assume that blockciphers are close to ideal, which
in particular means having a strong key schedule.

An increasingly popular approach removes the need for a key schedule by bas-
ing hash functions on a limited number of permutations, at the cost of increasing
the primitive calls per message block. Concretely, Black et al. [3] demonstrated
that a 2n-to-n-bit compression function F using one n-bit permutation π can-
not be secure. A generalization of this result by Rogaway and Steinberger [11]
showed that for any (n + α)-to-α-bit compression function using r n-bit per-

mutations, collisions can be found in about 2
(r−1)n−α/2

r queries and preimages in

about 2
(r−1)n

r , provided the function satisfies a “uniformity assumption.”
If a 2n-to-n-bit compression function is optimally collision resistant, then

Rogaway and Steinberger’s bounds imply that its efficiency must be limited to
at least three permutation calls per message block. Many three permutation
compression functions have been constructed, including those by Rogaway and
Steinberger (RS) [10], Shrimpton and Stam (SS) [12], and Mennink and Preneel
(MP) [6].

Yet, taking efficiency as priority, it becomes natural to ask what level of se-
curity a 2n-to-n-bit compression function can achieve if it only uses two permu-
tations. The bounds of Rogaway and Steinberger dictate at most 2n/4 security,

11

12

13

14

21

22

23

24

31

32

33

34

41

42

43

44

51

52

53

54u1

u2

F
v

/
n

/
n

/
5n
3

/
n
3

/
2n
3 /

n

Fig. 1: Expanding a 5n/3-to-2n/3-bit compression function to a 2n-to-n-bit com-
pression function with no security loss.

but Stam [13] showed how a violation of the uniformity assumption can result
in a compression function secure beyond this bound. In more detail, he observed
that increasing α actually reduces the security. For example a 5n/3-to-2n/3-bit
compression function using two permutations can achieve security up to 2n/3

queries, whereas a 2n-to-n-bit function can only achieve security up to 2n/4

queries. In contrast, if one converts the 5n/3-to-2n/3-bit compression function
to a 2n-to-n-bit compression function by leaving part of the input unprocessed,
as depicted in Figure 1, then no security is lost.

This example suggests that one should fix the number of permutations r,
and derive α to maximize the security. For r = 2, Figure 2 plots the Rogaway-
Steinberger bound and the classical birthday bound. It shows that the former
bound only improves over the birthday bound for α ≥ 2n/3. Based on this, Stam
proved that if f1, f2 are uniformly random functions, the compression function

F (u1, u2) = msb2n/3

(
f2(f1(u1)⊕ u20n/3)

)
⊕ u2 , (1)

depicted in Figure 3, achieves approximately 2n/3 security. By forwarding n/3
bits of u′2, as in Figure 1, we can expand F to a 2n-to-n-bit function:

F ′(u1, u
′
2) = F (u1,msb2n/3(u

′
2)) ‖ lsbn/3(u′2) .

As a matter of fact, Stam generally conjectured that collisions can typically be

found in about 2
n(r−1)
r+1 queries, a bound later proven by Steinberger et al. [14,

15]. This bound is intuitively explained by the observation that the Rogaway-

Steinberger bound and the birthday bound meet for α = 2n(r−1)
r+1 .

Our Contribution

We consider the generic design of (n+ α)-to-α-bit compression functions based
on two permutations and XOR-based mixing functions. According to Figure 2,

2

0
0 α

log2(queries)

RS bound

birthday bound

2n/3

n/3

n/2

n

n/4

Fig. 2: The Rogaway and Steinberger bound only improves on the birthday
bound when α ≥ 2n/3, for r = 2.

11

12

21

22

31

32

41

42

51

52

61

62

71

72

81

82u1

u2 ‖ 0n/3

f1 f2 v/
n

/
2n
3

/
2n
3

Fig. 3: Stam’s scheme achieving 2n/3 security.

the optimal security for any such function is 2α/2 for 1 ≤ α ≤ 2n/3 and 2n/2−α/4

for 2n/3 ≤ α ≤ n, ignoring the input-forwarding trick, which shows that the
bound at α = 2n/3 can be extended to larger values of α.1 We consider all
possible functions of above-mentioned form (512 in total), and identify the ones
that achieve optimal collision security. Our approach is to analyze functions as
equivalence classes, similar to Mennink and Preneel [6]. We also inherit some
equivalence reductions, but the analysis in this work is more complex than the
one in [6] because we do not restrict α to n.

We show that out of the 512 functions, there is exactly one class of functions
that achieves optimal collision security for 1 ≤ α ≤ 2n/3, namely the class

1 We remark that if the input-forwarding trick were not ignored, the optimal security bound
for the region 2n/3 ≤ α ≤ n would be 2n/3, as explained before.

3

11

12

21

22

31

32

41

42

51

52

61

62

71

72

81

82u1

u2 ‖ 0n−α

π1 π2 v/
n

/
α

/
α

Fig. 4: The class of schemes achieving optimal collision security for 1 ≤ α ≤ 2n/3.

Table 1: Collision security comparison of F2n/3 with existing permutation-based
functions.

design input output #calls security reference

RS/SS/MP 2n n 3 n/2 [6, 10,12]

Grøstl 2n n 2 n/4 [5]

F2n/3 5n/3 2n/3 2 n/3 this work

defined by:

Fα(u1, u2) = msbα (u2 ⊕ π2(u1 ⊕ u2 ⊕ π1(u1))) , (2)

where u2 = u2‖0n−α ∈ {0, 1}n, depicted in Figure 4. Any scheme not equivalent
to Fα allows for collisions in about 22(n−α)/3 queries or less. In particular, the
permutation-based equivalent of (1) — with fi(x) = x ⊕ πi(x) — is not equiv-
alent to Fα. Additionally, we show that Fα achieves relatively good preimage
resistance, up to about 2min{α/2,n/2} queries.

Comparison

The approaches of RS [10], SS [12], and MP [6] give 2n-to-n-bit compression
functions with n/2-bit security based on three permutations. The function F2n/3

from equation (2) is a 5n/3-to-2n/3-bit compression function based on two per-
mutations, that achieves 2n/3 security. We note that F2n/3 is particularly suited
to be employed in a wide-pipe mode of operation. For example, to design a hash
function with output size m bits, one could use F2n/3 for n = 3m/2 and obtain
optimal security using two primitives of size 3m/2 bits. The same approach is
followed by the 2n-to-n-bit Grøstl compression function, which uses two permu-
tations and achieves n/4-bit security, resulting in a permutation of size n = 2m.
These results are summarized in Table 1.

4

Outline

The security model is outlined in Section 2. Our generic two-call permutation-
based compression function is introduced in Section 3. Then, in Section 4, we
synthetically analyze each of these functions.

2 Security Model

Throughout, we have α, n ∈ N with 1 ≤ α ≤ n. By {0, 1}n we denote the set
of bit strings of length n. We denote by P(n) the set of all permutations on
n bits. The concatenation of two bit strings x and y is denoted x‖y, and if
they are of the same size their bitwise XOR is denoted x ⊕ y. For x ∈ {0, 1}α,
we write x = x‖0n−α ∈ {0, 1}n. For x ∈ {0, 1}n, msbα(x) denotes the α most
significant bits of x and lsbα(x) the α least significant bits, in such a way that
x = msbα(x)‖lsbn−α(x). For 0 ≤ i < 2n, by 〈i〉n we denote the encoding of i as

an n-bit string. For a set X , x
$←− X denotes the uniformly random sampling of

an element from X . For a matrix A, by ai,∗ we denote the ith row of A, and by
a∗,j its jth column.

Let F : {0, 1}m → {0, 1}n be a compression function based on 2 permu-
tations. We consider the security of F in the ideal permutation model, where

π1, π2
$←− P(n). An adversary A is a probabilistic algorithm that has oracle ac-

cess to πi, π
−1
i . It is information-theoretic and its complexity is measured by the

number of queries it makes to its oracles. The queries made by A are stored
in a query history Q as tuples of the form (±, xk, yk), where πk(xk) = yk and
the query is made in forward (+) or inverse (−) direction. We denote by Qq
the history after q ≥ 0 queries. We require that Qq always contains the queries
required for the attack, and, without loss of generality, we assume that A never
makes duplicate queries.

We consider the definitions of security and preimage resistance which were
also used in [6].

Definition 1. Let F : {0, 1}n+α → {0, 1}α be a compression function. The
advantage of a collision-finding adversary A for F is defined as

Advcol
F (A) = Pr

(
π1, π2

$←− P(n), u, u′ ← Aπi,π−1
i : u 6= u′ ∧ F (u) = F (u′)

)
.

By Advcol
F (q) we define the maximum advantage taken over all adversaries mak-

ing q queries.

For preimage resistance, we use everywhere preimage resistance [9], which implies
preimage security for every range point.

Definition 2. Let F : {0, 1}n+α → {0, 1}α be a compression function. The
advantage of a preimage-finding adversary A for F is defined as

Advpre
F (A) = max

v∈{0,1}α
Pr
(
π1, π2

$←− P(n), u← Aπi,π−1
i (v) : F (u) = v

)
.

By Advpre
F (q) we define the maximum advantage taken over all adversaries mak-

ing q queries.

5

11

12

13

14

15

21

22

23

24

25

31

32

33

34

35

41

42

43

44

45

51

52

53

54

55

61

62

63

64

65

71

72

73

74

75

81

82

83

84

85

91

92

93

94

95

101

102

103

104

105

111

112

113

114

115

121

122

123

124

125u1

u2 ‖ 0n−α

a11 a21 a31

a12 a22 a32

a23 a33

a34

π1

π2

v

/
n

/
α

/
α

Fig. 5: The permutation-based compression function Fα,A of (4).

3 Generic Two-Call Construction

Let π1, π2 ∈ P(n) be two n-bit permutations. Let A ∈ ({0, 1})3×4 be a matrix
of the form

A =

a11 a12 0 0
a21 a22 a23 0
a31 a32 a33 a34

 . (3)

We define the compression function Fα,A : {0, 1}n+α → {0, 1}α as

Fα,A(u1, u2) = v , where y1 ← π1(a11u1 ⊕ a12u2) ,
y2 ← π2(a21u1 ⊕ a22u2 ⊕ a23y1) ,
v ← msbα (a31u1 ⊕ a32u2 ⊕ a33y1 ⊕ a34y2) ,

(4)

depicted in Figure 5. The construction is that of Mennink and Preneel [6] re-
stricted to two permutations, but generalized to any output size with the pa-
rameter α.

4 Classification of Secure Functions

We consider all possible compression functions of the form (4), for arbitrary
α,A, and derive a classification based on their collision and preimage secu-
rity guarantees. There are, however, many schemes that are related by simple
transformations on the inputs or permutations. We therefore group compression
functions together in equivalence classes via security as done by Mennink and
Preneel [6].

Definition 3. Two compression functions Fα,A and Fα,A′ are equivalent if for
both collision and preimage security there exist tight reductions between Fα,A and
Fα,A′. Formally, they are equivalent if there is a small constant c ∈ N such that

Adv
col/pre
Fα,A

(q) ≤ Adv
col/pre
Fα,A′

(q + c) and Adv
col/pre
Fα,A′

(q) ≤ Adv
col/pre
Fα,A

(q + c).

6

The definition is similar to random-oracle reducibility [1,2]. Using Definition 3,
we derive our main result.

Theorem 1. Let Fα,A be as in (4). If Fα,A is equivalent to Fα,B with B =(
1 0 0 0
1 1 1 0
0 1 0 1

)
, then

Advcol
Fα,A

(q) ≤

nq3

2n
+
n2q2

2α
+

(
4eq

n2n−α

)n
if α ≤ 2n/3 ,

nq3

23n/2−3α/4
+

n2q2

2n−α/2
+

(
4eq

n2n/2−α/4

)n
if α ≥ 2n/3 .

Otherwise,

Advcol
Fα,A

(2q) ≥ q
(
q

2

)
/22(n−α) .

The theorem states that there is only one class of functions of the form (4)
achieving optimal collision security (cf. Figure 2). Remarkably, the permutation-
based equivalent of Stam’s construction (1) is not equivalent to Fα,B, but Fα,C
(where C is described in the theorem’s proof), and collisions can be found in
roughly 22(n−α)/3 queries.

We remark that the lower bound of Theorem 1 for Fα,A being in-equivalent
to Fα,B is not necessarily tight for all α. Indeed, for α < 4n/7 it is worse than
the trivial 2α/2 security bound. It may be possible that any function Fα,A that
is not equivalent to Fα,B may still achieve optimal security for some values α.

We also prove that Fα,B achieves good preimage security.

Theorem 2. Let Fα,A be as in (4). If Fα,A is equivalent to Fα,B with B =(
1 0 0 0
1 1 1 0
0 1 0 1

)
, then

Advpre
Fα,A

(q) ≤

q2

2n
+

2nq

2α
+

(
4eq

n2n−α

)n
if α ≤ n/2 ,

q2

2n
+

2nq

2n/2
+

(
4eq

n2n/2

)n
if α ≥ n/2 .

The proofs start by considering any possible matrix A, leaving 512 schemes
to be analyzed per α. In Section 4.1 three reductions on permutation-based
compression functions from [6] are described. Then, in Section 4.2 we derive
attacks on various schemes and reduce the number of classes. This analysis leaves
one scheme, Fα,B. In Section 4.3, this remaining scheme is proven collision and
preimage secure.

4.1 Equivalence Reductions

Four reductions were introduced in [6]: the x-, ⊕-, π-swap-, and π-inverse-
reduction. Since one input is padded with 0’s in Fα,A, the x-reduction is not
applicable and the other reductions are only applicable to the input u1. We intro-
duce the ⊕-reduction, π-swap-reduction, and π-inverse-reduction to our setting.
The proofs of [6] apply to the reductions in the current setting.

7

Proposition 1 (⊕-reduction). Consider a matrix A =
(
a∗,1 ; a∗,2 ; a∗,3 ; a∗,4

)
,

and let k be the row number of the first non-zero coefficient of u1, that is k =
min{ i | ai1 6= 0 }. Let c1, c2, c3 ∈ {0, 1}. Consider the matrix

A′ = A⊕
(
0 ; c1a∗,1 ; [k ≥ 2]c2a∗,1 ; [k ≥ 3]c3a∗,1 ; 0

)
,

where [X] = 1 if X holds and 0 otherwise. Then, the compression functions Fα,A
and Fα,A′ are equivalent.

The π-swap-reduction corresponds to swapping the roles of π1 and π2. This is
only possible if π1’s output is input to π2.

Proposition 2 (π-swap-reduction). Consider a matrix A with a23 = 0. Con-
sider the matrix A′ obtained from A by swapping rows a1,∗ and a2,∗ and swap-
ping columns a∗,3 and a∗,4. Then, the compression functions Fα,A and Fα,A′ are
equivalent.

The π-inverse-reduction corresponds to replacing π1 by π−11 , which can only be
done if the input to π1 is independent of u2.

Proposition 3 (π-inverse-reduction). Consider a matrix A with (a11, a12) =
(1, 0). Consider the matrix A′ obtained from A by swapping (a21, a31) and (a23, a33).
Then, the compression functions Fα,A and Fα,A′ are equivalent.

The ⊕-reduction corresponds to replacing u1 by u1 ⊕ c1u2 for c1 ∈ {0, 1}. If
the first permutation, π1, does not have u1 as input, i.e. a11 = 0, then the ⊕-
reduction corresponds to replacing u1 by u1 ⊕ c1u2 ⊕ c2y1 for c1, c2 ∈ {0, 1},
where y1 is π1’s output. The case where additionally π2 does not take u1 as
input is similar. Note that the ⊕-reduction is asymmetric, as swapping the roles
of u1 and u2 may make the reduction incompatible with the definition of Fα,A.

4.2 Elimination of Insecure Classes

Our aim is to classify the security of Fα,A for various A, but for some choices
the scheme is trivially insecure. As a first step, we “rule out” matrices for which
the resulting construction can be generically attacked in a constant number of
queries.

Lemma 1. If

– the matrix
(a11 a12
a21 a22

)
is non-invertible, or

– the third or fourth column of A is zero,

then Advcol
Fα,A

(4) = 1.

Proof. Firstly, note that
(a11 a12
a21 a22

)
=
(1 1
1 1

)
is equivalent to

(1 0
1 0

)
because of an

⊕-reduction. Therefore, we assume A satisfies one of the following properties:

(i) a11 = a21 = 0 or a12 = a22 = 0;
(ii) a11 = a12 = 0 or a21 = a22 = 0;
(iii) a23 = a33 = 0 or a34 = 0.

8

If a11 = a21 = 0, then u1 is not used as input to π1 or π2, and a collision can be
found in at most 2 queries: u1, u2, u

′
2 are chosen arbitrarily such that u2 6= u′2

(if a31 6= 0) or such that u2 = u′2 (if a31 = 0), and u1 is adapted to satisfy the
collision. Similar analysis holds for the case a12 = a22 = 0.

Assume A does not satisfy property (i), and consider (ii). If a11 = a12 =
0, then π1 is evaluated on 0 and the construction is a function based on 1
permutation,

Fα,A(u1, u2) = msbα (a31u1 ⊕ a32u2 ⊕ a33π1(0)⊕ a34y2) ,

where y2 = π2(u1 ⊕ u2 ⊕ a23π1(0)). By an ⊕-reduction, it is equivalent to

Fα,A(u1, u2) = msbα (a31u1 ⊕ (a31 ⊕ a32)u2 ⊕ a33π1(0)⊕ a34y2) ,

where y2 = π2(u1 ⊕ a23π1(0)). Since a21 = 0 and a22 = 0, the function satisfies
property (i), and a collision can be found easily. For the second case of property
(ii), when a21 = a22 = 0, if a23 = 0 we can apply similar reasoning as when
a11 = a12 = 0. If a23 = 1 we have

Fα,A(u1, u2) = msbα (a31u1 ⊕ a32u2 ⊕ a33y1 ⊕ a34π2(y1)) ,

where y1 = π1(u1 ⊕ u2). The attack is the same as before with a34y2 replaced
by (a33id⊕ a34π2)(y1).

Finally, the analysis of property (iii) is the same as for (ii). ut

Using this lemma, we apply reductions to show that it suffices to consider ma-
trices with first row (1, 0, 0, 0).

Lemma 2. Any compression function Fα,A can be reduced to a compression
function Fα,A′ where the matrix A′ satisfies one of the properties of Lemma 1,
or has a′11a

′
12 = 10.

Proof. Assume a11a12 6= 10. If a11a12 = 00, Lemma 1 applies, and the claim
holds. If a11a12 = 11, we perform an ⊕-reduction to find A′ with a′11a

′
12 =

10. Finally, the case a11a12 = 01 is a bit harder to analyze. Note that by the
conditions of Lemma 1, a21 = 1. The second row thus satisfies a21a22a23 ∈
{100, 101, 110, 111}, all of which are equivalent to the first element in the set
by the ⊕-reduction. In other words, A is equivalent to A′ with a′11a

′
12 = 01 and

a′21a
′
22a
′
23 = 100. A π-swap-reduction gives the required result. ut

Lemmas 1 and 2 imply that it suffices to consider matrices of the form

A =

 1 0 0 0
a21 1 a23 0
a31 a32 a33 1

 ,

where a23 + a33 ≥ 1. We continue with the second row.

Lemma 3. If a21 = 0 or a23 = 0, then Advcol
Fα,A

(2q) ≥
(
q
2

)2
/2α.

9

Proof. Both cases are equivalent by the π-inverse-reduction, and we focus on
the case a23 = 0. By Lemma 1, we can assume that a33 = 1. In other words,

Fα,A(u1, u2) = msbα (a31u1 ⊕ a32u2 ⊕ π1(u1)⊕ π2(a21u1 ⊕ u2)) .

Collision-finding adversary A proceeds as follows. For i = 1, . . . , q, it queries

x
(i)
1 = 〈i〉α0n−α to π1 to obtain y

(i)
1 . Similarly, for j = 1, . . . , q, it queries x

(j)
2 =

〈j〉α0n−α to π2 to obtain y
(j)
2 . A collision for Fα,A is found if for some i, i′, j, j′,

msbα
(
a31x

(i)
1 ⊕ a32(x

(j)
2 ⊕ a21x

(i)
1)⊕ y(i)1 ⊕ y

(j)
2

)
= msbα

(
a31x

(i′)
1 ⊕ a32(x(j

′)
2 ⊕ a21x(i

′)
1)⊕ y(i

′)
1 ⊕ y(j

′)
2

)
.

This is a generalized birthday problem, and any such collision happens with
probability at least

(
q
2

)2
/2α. ut

By Lemma 3, it suffices to consider

A =

 1 0 0 0
1 1 1 0
a31 a32 a33 1

 .

These are eight matrices (or in fact six due to the π-inverse-swap, but we refrain
from using that one right now).

Lemma 4. If a31a32a33 ∈ {000, 100, 110, 001, 011, 111}, then Advcol
Fα,A

(q) ≥(
q
2

)
/2n−α.

Proof. Note that

Fα,A(u1, u2) = msbα (a31u1 ⊕ a32u2 ⊕ a33π1(u1)⊕ π2(u1 ⊕ u2 ⊕ π1(u1))) .

We consider a collision-finding adversary A that aims at finding (u1, u2) and
(u′1, u

′
2) that collide on the input to π2 as well as in the remaining term, or in

other words such that(
u1 ⊕ u2 ⊕ π1(u1)

msbα (a31u1 ⊕ a32u2 ⊕ a33π1(u1))

)
=

(
u′1 ⊕ u′2 ⊕ π1(u′1)

msbα
(
a31u

′
1 ⊕ a32u′2 ⊕ a33π1(u′1)

)) .

Adding the first to the second row and/or using the π-inverse-reduction, it suf-
fices to consider the cases a31a32a33 ∈ {000, 100}, for which

Fα,A(u1, u2) = msbα (a31u1 ⊕ π2(u1 ⊕ u2 ⊕ π1(u1))) .

Adversary A proceeds as follows. For i = 1, . . . , q, it queries x
(i)
1 = 0α〈i〉n−α to

π1 to obtain y
(i)
1 . A collision for Fα,A is found if for some i, i′,

lsbn−α
(
x
(i)
1 ⊕ y

(i)
1

)
= lsbn−α

(
x
(i′)
1 ⊕ y(i

′)
1

)
,

as in this case, we put u1 = x
(i)
1 , u2 = msbα

(
x
(i)
1 ⊕ y

(i)
1

)
, and similarly for u′1, u

′
2.

Any such collision happens with probability at least
(
q
2

)
/2n−α. ut

10

We note that for α < n/2, the trivial birthday bound of
(
q
2

)
/2α is tighter than

the one of Lemma 4. We are eventually left with two matrices:

B =

1 0 0 0
1 1 1 0
0 1 0 1

 , C =

1 0 0 0
1 1 1 0
1 0 1 1

 .

Notice that the permutation-based equivalent of Stam’s construction, or in more
detail (1) with f1(x) = x ⊕ π1(x) and f2(x) = x ⊕ π2(x), is equivalent to C. It
turns out that in the permutation-based setting, this scheme does not achieve
optimal security.

Lemma 5. We have Advcol
Fα,C

(2q) ≥ q
(
q
2

)
/22(n−α).

Proof. Note that

Fα,C(u1, u2) = msbα (u1 ⊕ π1(u1)⊕ π2(u1 ⊕ u2 ⊕ π1(u1))) .

We consider a collision-finding adversary A that restricts itself to u1 = u′1. In
other words, the goal is to find u1, u2, u

′
2 such that

msbα (π2(u1 ⊕ u2 ⊕ π1(u1))) = msbα
(
π2(u1 ⊕ u′2 ⊕ π1(u1))

)
.

For i = 1, . . . , q, it queries x
(i)
1 = 〈i〉n to π1 to obtain y

(i)
1 . For j = 1, . . . , q, it

queries y
(j)
2 = 0α〈j〉n−α to π−12 to obtain x

(j)
2 . A collision for Fα,A is found if for

some i, j, j′,

lsbn−α
(
x
(i)
1 ⊕ y

(i)
1

)
= lsbn−α

(
x
(j)
2

)
= lsbn−α

(
x
(j′)
2

)
,

as in this case, we put u1 = u′1 = x
(i)
1 , u2 = msbα

(
x
(i)
1 ⊕ y

(i)
1 ⊕ x

(j)
2

)
, and simi-

larly for u′2. Any such collision happens with probability at least q
(
q
2

)
/22(n−α).

ut

Again, for α < 4n/7, the trivial birthday bound of
(
q
2

)
/2α is tighter than the

one of Lemma 5.

4.3 Collision and Preimage Security of Fα,B

The only surviving scheme is (see also Figure 4):

Fα,B(u1, u2) = msbα (u2 ⊕ π2(u1 ⊕ u2 ⊕ π1(u1))) .

We prove that it indeed achieves optimal security.

11

Collision Resistance (Theorem 1)

Finding a collision for Fα,B corresponds to finding queries (±, x1, y1), (±, x′1, y′1),
(±, x2, y2), and (±, x′2, y′2) such that

(x1, x2) 6= (x′1, x
′
2) , (5a)

lsbn−α (x1 ⊕ y1 ⊕ x2) = 0 , (5b)

lsbn−α
(
x′1 ⊕ y′1 ⊕ x′2

)
= 0 , (5c)

msbα (x1 ⊕ y1 ⊕ x2 ⊕ y2) = msbα
(
x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2

)
. (5d)

Indeed, in this case we have

Fα,B(x1,msbα(x1 ⊕ y1 ⊕ x2)) = Fα,B(x′1,msbα(x′1 ⊕ y′1 ⊕ x′2)) .

We define the event that A finds a solution to (5) by col(Qq). We make a further
distinction depending on whether x1 equals x′1 or not, and whether x2 equals x′2
or not. Clearly, the case (x1, x2) = (x′1, x

′
2) violates (5a) and can be omitted. In

other words,

Pr (col(Qq)) ≤ Pr
(
col(Qq) ∧ x1 = x′1 ∧ x2 6= x′2

)
+

Pr
(
col(Qq) ∧ x1 6= x′1 ∧ x2 = x′2

)
+

Pr
(
col(Qq) ∧ x1 6= x′1 ∧ x2 6= x′2

)
,

and these probabilities are analyzed in Lemmas 6-8.

Lemma 6. We have Pr (col(Qq) ∧ x1 = x′1 ∧ x2 6= x′2) ≤
(
q
2

)
2n−α

2n−q .

Proof. Finding a solution to (5) is at least as hard as finding a solution to

msbα (x2 ⊕ y2) = msbα
(
x′2 ⊕ y′2

)
.

Note that for any query A makes to π2, the response is randomly drawn from a
set of size at least 2n − q. Hence, after q queries to π2, it finds a solution to this
equation with probability at most

(
q
2

)
2n−α

2n−q . ut

Lemma 7. We have Pr (col(Qq) ∧ x1 6= x′1 ∧ x2 = x′2) ≤
(
q
2

)
2n−α

2n−q .

Proof. The proof is identical to the one of Lemma 6, and henceforth omitted. ut

Lemma 8. Let τ ≥ n be an integral threshold. We have

Pr
(
col(Qq) ∧ x1 6= x′1 ∧ x2 6= x′2

)
≤ (τ − 1)q3

2(2n − q) +
2n−α(τ − 1)2q2

2(2n − q) +

(
2e2αq

τ(2n − q)

)τ
.

Proof. Write the event as col 6=,6=(Qq). Denote by X(Qq) the event

X(Qq) : max
v∈{0,1}n−α

∣∣{(±, xk, yk) ∈ Qq
∣∣ lsbn−α(xk ⊕ yk) = v

}∣∣ ≥ τ .
12

Then, by basic probability theory,

Pr (col 6=, 6=(Qq)) ≤ Pr (col 6=,6=(Qq) | ¬X(Qq)) + Pr (X(Qq)) . (6)

We start with Pr (X(Qq)). Let v ∈ {0, 1}n−α. Any query (±, xk, yk) to πk satisfies
lsbn−α(xk ⊕ yk) = v with probability at most 2α

2n−q . At least τ solutions to this

equation are found with probability at most
(
q
τ

) (
2α

2n−q

)τ
. This term is at most(

e2αq
τ(2n−q)

)τ
by Stirling’s approximation. Considering any choice of v, we find

Pr (X(Qq)) ≤ 2n−α
(

e2αq

τ(2n − q)

)τ
≤
(

2e2αq

τ(2n − q)

)τ
,

as τ ≥ n.
We proceed with the first probability of (6). We run over all queries i =

1, . . . , q, and consider the probability the ith query (±, xk, yk) causes col 6=,6=(Qi)
given that it does not set X(Qi) (and no earlier query set X(Qj) for j < i).

Case: ith query is a forward or inverse query to π1. The cases are equiv-
alent by symmetry, consider a forward query (+, x1, y1). There are at most i− 1
choices for both (±, x2, y2) and (±, x′2, y′2). By ¬X(Qi), there are at most τ − 1
choices for (±, x′1, y′1) to satisfy (5c). For any such combination of choices, the
new query makes (5) satisfied if

x1 ⊕ y1 = msbα
(
x2 ⊕ y2 ⊕ x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2

)
‖ lsbn−α (x2) .

This happens with probability at most (τ−1)(i−1)2
2n−q .

Case: ith query is a forward query to π2. Consider a forward query
(+, x2, y2). There are at most i − 1 choices for (±, x′2, y′2). By ¬X(Qi), there
are at most τ − 1 choices for (±, x1, y1) to satisfy (5b) and for (±, x′1, y′1) to sat-
isfy (5c). For any such combination of choices, the new query makes (5) satisfied
if

msbα(y2) = msbα
(
x1 ⊕ y1 ⊕ x2 ⊕ x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2

)
.

This happens with probability at most 2n−α(τ−1)2(i−1)
2n−q .

Case: ith query is an inverse query to π2. Consider an inverse query
(−, x2, y2). There are at most i − 1 choices for both (±, x1, y1) and (±, x′2, y′2).
By ¬X(Qi), there are at most τ − 1 choices for (±, x′1, y′1) to satisfy (5c).2 For
any such combination of choices, the new query makes (5) satisfied if

x2 = msbα
(
x1 ⊕ y1 ⊕ y2 ⊕ x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2

)
‖ lsbn−α (x1 ⊕ y1) .

This happens with probability at most (τ−1)(i−1)2
2n−q .

2 As the value x2 (cf. (5b)) is not yet fixed, we cannot rely on ¬X(Qi) to claim that there are
at most τ − 1 choices for (±, x1, y1).

13

Taking the maximum over all possible queries, we obtain

Pr (col 6=, 6=(Qq) | ¬X(Qq)) ≤
q∑
i=1

[
(τ − 1)(i− 1)2

2n − q +
2n−α(τ − 1)2(i− 1)

2n − q

]
≤ (τ − 1)q3

2(2n − q) +
2n−α(τ − 1)2q2

2(2n − q) .

The lemma is completed via (6). ut

Combining Lemmas 6-8, we see that A finds a collision for Fα,B with probability
at most

Advcol
Fα,A

(q) ≤ 2

(
q

2

)
2n−α

2n − q +
(τ − 1)q3

2(2n − q) +
2n−α(τ − 1)2q2

2(2n − q) +

(
2e2αq

τ(2n − q)

)τ
.

Recall that we require τ ≥ n. Observing that 2n − q ≥ 2n−1 for q ≤ 2n−1, we
find

Advcol
Fα,A

(q) ≤ τq3

2n
+
τ2q2

2α
+

(
4eq

τ2n−α

)τ
.

The proof of Theorem 1 is completed by putting τ = n ·max{1, 23α/4−n/2}.

Preimage Resistance (Theorem 2)

Let v ∈ {0, 1}α. Finding a preimage for Fα,B corresponds to finding queries
(±, x1, y1), (±, x2, y2) such that

lsbn−α (x1 ⊕ y1 ⊕ x2) = 0 , (7a)

msbα (x1 ⊕ y1 ⊕ x2 ⊕ y2) = v . (7b)

Indeed, in this case we have

Fα,B(x1,msbα(x1 ⊕ y1 ⊕ x2)) = v .

We define the event that A finds a solution to (7) by pre(Qq).
Lemma 9. Let τ ≥ n be an integral threshold. We have Pr (pre(Qq)) ≤ q2

2(2n−q)+

2n−α(τ−1)q
2n−q +

(
2e2αq
τ(2n−q)

)τ
.

Proof. We inherit X(Qq) from Lemma 8. By basic probability theory,

Pr (pre(Qq)) ≤ Pr (pre(Qq) | ¬X(Qq)) +

(
2e2αq

τ(2n − q)

)τ
. (8)

We proceed with the remaining probability, the same way as in Lemma 8.

Case: ith query is a forward or inverse query to π1. The cases are equiv-
alent by symmetry, consider a forward query (+, x1, y1). There are at most i− 1
choices for (±, x2, y2). For any such choice, the new query makes (7) satisfied if

x1 ⊕ y1 = (msbα (x2 ⊕ y2)⊕ v) ‖ lsbn−α (x2) .

14

This happens with probability at most i−1
2n−q .

Case: ith query is a forward query to π2. Consider a forward query
(+, x2, y2). By ¬X(Qi), there are at most τ − 1 choices for (±, x1, y1) to sat-
isfy (7a). For any such choice, the new query makes (7) satisfied if

msbα(y2) = msbα (x1 ⊕ y1 ⊕ x2)⊕ v .

This happens with probability at most 2n−α(τ−1)
2n−q .

Case: ith query is an inverse query to π2. Consider an inverse query
(−, x2, y2). There are at most i − 1 choices for (±, x1, y1). For any such choice,
the new query makes (7) satisfied if

x2 = (msbα (x1 ⊕ y1 ⊕ y2)⊕ v) ‖ lsbn−α (x1 ⊕ y1) .

This happens with probability at most i−1
2n−q .

Taking the maximum over all possible queries, we obtain

Pr (pre(Qq) | ¬X(Qq)) ≤
q∑
i=1

[
i− 1

2n − q +
2n−α(τ − 1)

2n − q

]
≤ q2

2(2n − q) +
2n−α(τ − 1)q

2n − q .

The lemma is completed via (8). ut

Observing that 2n − q ≥ 2n−1 for q ≤ 2n−1, we find

Advpre
Fα,A

(q) ≤ q2

2n
+

2τq

2α
+

(
4eq

τ2n−α

)τ
.

Recall that we require τ ≥ n. The proof of Theorem 2 is completed by putting
τ = n ·max{1, 2α−n/2}.

Acknowledgments. This work was supported in part by the Research Coun-
cil KU Leuven: GOA TENSE (GOA/11/007). Atul Luykx is supported by a
Ph.D. Fellowship from the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen). Bart Mennink is a Post-
doctoral Fellow of the Research Foundation – Flanders (FWO). The authors
would like to thank the anonymous reviewers of the Journal of Mathematical
Cryptology for their comments and suggestions.

References

1. Baecher, P., Farshim, P., Fischlin, M., Stam, M.: Ideal-cipher (ir)reducibility for
blockcipher-based hash functions. In: Advances in Cryptology - EUROCRYPT 2013. Lec-
ture Notes in Computer Science, vol. 7881, pp. 426–443. Springer, Heidelberg (2013)

15

2. Baecher, P., Fischlin, M.: Random oracle reducibility. In: Advances in Cryptology -
CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841, pp. 21–38. Springer, Hei-
delberg (2011)

3. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient blockcipher-
based hash functions. In: Advances in Cryptology - EUROCRYPT 2005. Lecture Notes in
Computer Science, vol. 3494, pp. 526–541. Springer-Verlag, Berlin (2005)

4. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-based
hash functions from PGV. Journal of Cryptology 23(4), 519–545 (2010)

5. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M.,
Thomsen, S.: Grøstl – a SHA-3 candidate (2011), submission to NIST’s SHA-3 competition

6. Mennink, B., Preneel, B.: Hash functions based on three permutations: A generic security
analysis. In: Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science,
vol. 7417, pp. 330–347. Springer, Heidelberg (2012)

7. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A syn-
thetic approach. In: Advances in Cryptology - CRYPTO ’93. Lecture Notes in Computer
Science, vol. 773, pp. 368–378. Springer-Verlag, Berlin (1993)

8. Rabin, M.: Digitalized signatures. In: Foundations of Secure Computation ’78. pp. 155–166.
Academic Press, New York (1978)

9. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications,
and separations for preimage resistance, second-preimage resistance, and collision resis-
tance. In: Fast Software Encryption 2004. Lecture Notes in Computer Science, vol. 3017,
pp. 371–388. Springer-Verlag, Berlin (2004)

10. Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-key
blockciphers. In: Advances in Cryptology - CRYPTO 2008. Lecture Notes in Computer
Science, vol. 5157, pp. 433–450. Springer-Verlag, Berlin (2008)

11. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing.
In: Advances in Cryptology - EUROCRYPT 2008. Lecture Notes in Computer Science,
vol. 4965, pp. 220–236. Springer-Verlag, Berlin (2008)

12. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-
compressing primitives. In: International Colloquium on Automata, Languages and Pro-
gramming - ICALP (2) 2008. Lecture Notes in Computer Science, vol. 5126, pp. 643–654.
Springer-Verlag, Berlin (2008)

13. Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression func-
tions. In: Advances in Cryptology - CRYPTO 2008. Lecture Notes in Computer Science,
vol. 5157, pp. 397–412. Springer-Verlag, Berlin (2008)

14. Steinberger, J.: Stam’s collision resistance conjecture. In: Advances in Cryptology - EURO-
CRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 597–615. Springer-Verlag,
Berlin (2010)

15. Steinberger, J.P., Sun, X., Yang, Z.: Stam’s conjecture and threshold phenomena in colli-
sion resistance. In: Advances in Cryptology - CRYPTO 2012. Lecture Notes in Computer
Science, vol. 7417, pp. 384–405. Springer, Heidelberg (2012)

16

