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e [x] is a probabilistic encryption: [x] = Encp(x, r) under
public key pk and for random r

e Homomorphic properties:
o Addition: [x][y] = [x + y]
e Multiplication by constant: [x]¢ = [xc]
¢ Re-randomization: [x][0] = [x]

e (t,n)-threshold decryption

o Private key is shared among n parties such that any ¢ can
decrypt

e We use the Paillier cryptosystem [Pai99, DJ01]
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Secure Function Evaluation based on THCs

On input of [x1],..., [x.] and a function £, the parties jointly
compute [f(x1,...,x)]

(circuit for f)

[[Xl]]"nj[[Xd] [[f(XL.”?XL)H

Approach based on arithmetic circuits
o Circuit for f consists of sequential evaluations of (+, —, %, /)

4/13



Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Secure Function Evaluation based on THCs (cont.)
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Secure Function Evaluation based on THCs (cont.)

computation of [x + y] and [cx] given [x], [¥], c

Multiplication gate [CDNO1]: outputs [xy| given [x], [¥]

Our contribution: efficient gate for [x mod a] given [x], a
e Implies a gate for integer division [x div 4]

Several other efficient gates:
e Random bit generation gate [CDNO1, ST06]:
outputs [r] for random r € {0,1}
e Comparison gate [DFK*06, GSV07]:
outputs [x < y] given the encrypted bits of x,y
o Least significant bit gate [ST06]:
outputs [x mod 2] given [x]

Addition and scalar multiplication by homomorphic properties:

[C]
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Secure Modulo Reduction
x = (xdiva)a+ (x mod a), with 0 < x mod a < a

By homomorphic properties, it suffices to determine x mod a

. Given [x], one decryption of a blinded version of x is required

o Generate [r] (bitwise) for r €g [0, a), and [s] for random s
e The blinded encryption [x — r + as] is threshold decrypted

. The parties set X = (x —r +as) mod a=x — rmod a
e Noticethat x=x+rmodaand 0 < x+r <2a

. Correction: the parties compute [c] =[a—1— X < 1]
e Noticethat c =0 <= X+r<a

. Output [x mod a] = [x + r — ca] = [x][r]/[c]?

o
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Secure Modulo Reduction (cont.)

e Technical detail: x — r 4 as should not exceed the Paillier
modulus, to prevent wrap-arounds

e x should be sufficiently small

e Using efficient zero-knowledge proofs, the protocol can be
proven secure against actively malicious parties (in the security
framework of [CDNO01])

e How to securely generate [r] (bitwise) for r €g [0, a)7

~
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How to Securely Generate [r] (bitwise) for r € [0, a)?
o If a =2
o Write r = Zf;al ri2", with r; € {0,1}

o Generate random bits [r;] and output [r] = Hf;gl[[r,-]]Qi

o If 26—l < 5 < 0fa
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How to Securely Generate [r] (bitwise) for r € [0, a)?

o If a =2
o Write r = Zf;al r27, with r; € {0,1}
o Generate random bits [r;] and output [r] = Hf;gl[[r,-]]Q'

o If 26—l < g < 2fe
e Repeat generating [r] for random r € [0,2%), until r < a
e At most 2 restarts on average
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Efficiency Analysis

broadcast round
O(nki) Otn)
Ours O(n2k€a) O(l)
O(nktx(log tx + £5)) O(n + )
N
[DFK™06] O(nklx(n +logtx +(3)) | O(1)

n is the number of participants £, is length of x
k is a security parameter £, is length of a

o (Broadcast complexity represents the number of bits broadcasted.
E.g., for O(nk(,): each party needs to broadcast O(¢;) encryptions)
e Always £, </, but often £, < £,
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O(nki) Otn)
Ours O(n2k€a) O(l)
O(nktx(log tx + £5)) O(n + )
N
[DFK™06] O(nklx(n +logtx +(3)) | O(1)

n is the number of participants £, is length of x
k is a security parameter £, is length of a

o (Broadcast complexity represents the number of bits broadcasted.
E.g., for O(nk(,): each party needs to broadcast O(¢;) encryptions)
e Always £, </, but often £, < £,
e 100 millionaires securely compute their mean fortune
o ([x1],---,[xw00]) — [%ﬂ Say x; < 230
e Here, x = 2,12? xiand a=100,s0 ¢, =37and £, =7
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Applications
e Integer division:
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o [xdiva] = ([x]/[x mod a])**
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Applications

Applications

e Integer division:
e x = (xdiva)a+ (x mod a)

o [xdiva] = ([x]/[x mod a])**

e Access arbitrary bits of x:
e x; = (xdiv2’) mod 2

e Secure computation of statistics:

e Mean, median, variance, ... require division
o Concrete example: variance (where X = (x; + -+ - + x.)/L)

L

1 _
var(xl, ... ,XL) = ﬁ Z(Xi _X)2

i=1

10/ 13



Preliminaries

var(xi, . ..

Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Computation of Statistics

=gt gt (Lot (50)

i=1

e How to compute [var(xy,...,x.)] given [x1], ..., [x.]7?
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Applications

Computation of Statistics

var(xy,...,x) = Ll—lg()q —)‘()2 = ﬁ (; Lx,-2 — (Zx,->2>

i=1

=V

e How to compute [var(xy,...,x.)] given [xi], ..., [x.]?

1. Compute (35, x;)2] and [x2] using L + 1 multiplications
2. Compute [V] = [[2,?:1 Lx? — (le?zlx,-)z]]
3. Compute and output integer division [V div L(L — 1)]

e O(Lnk) broadcast complexity and O(n) rounds
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Conclusions

Modulo reduction: computing [x mod a] given [x] and a
e Integer division: computation of [x div a]

Applicable to secure computation of statistics (mean, variance,
median, range, ...), packing of encrypted data, and many more!

Our protocols improved performance. We take advantage of
the fact that the modulus a is much smaller than x

o Complexities are independent of the length of x

Proof of security can be found in the paper (full version)
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Questions?
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HIDDEN SLIDES!!!
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Conclusions

Sub-Protocol: Random Bitwise Value Generation

e Input: a with 2671 < g < 2%

e For generating [r] (bitwise) such that r €g [0, a), the n
servers do:

1. Jointly construct ¢, random bit encryptions [r;]
(note that r = Ze 61 ;2 €g [0,2%))
2. Compute and decrypt [r < a]. If r > a, restart protocol

o If 2= 2%, no restarts. Otherwise 22 /a < 2 restarts on average
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Conclusions

Secure Modulo Reduction: Protocol

o Input: [x],a, with x < 2% and 271 < 2 < 2%

e Requirement: an21fs < N* for security parameter /g

e For computing [x mod a], the n servers do:

1.
2.
3.
4.
5.

6.

Jointly construct [r]?() for r € [0, a)

Individually construct [s;] for s; €5 {0, 1}x+ts

Individually compute [x] = [x][r] ~* [T/, [si]®

(note that x =x—r+a) - ;siand 0 < X < N¥)

Jointly decrypt [X] and compute X =X mod a=x — r mod a
(note that X+ r =xmod aand 0 < X+ r < 2a)

Using comparison gate, compute [c] =[[a—1—X < r]]
(note that c =0 < X+ r < a)

Individually compute output [x][r][c] 2

e Protocol can be simulated in framework of [CDNO01]
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Secure Modulo Reduction: Security Proof

o Simulated for [x] = [x(O(1 — b) + x(Vp] given x(O x(V) [p]
e Distinguisher for simulator is a distinguisher for bit-decryption
e n participants {Pi,...,P,} of which {P1,...,Pe_1} are
malicious

1. Simulator takes r €g [0, a), but simulates this phase with
F=FO(1 - b) + FVb, where #®) = (r + x(#)) mod a
2. Simulator lets the malicious parties construct and prove s;. For

Ps, ..., Pa_1 he executes the protocol as is. For P, he takes
sn €r [0, 2‘Z +6e), but simulates with
I5.] = 321 — b) + 51 b], where 37 =5, — (r+x®)diva

3. Executes this phase. He obtains

[¥] = [x — F+aXois) si+ a8 = [-r+a> [, si]
4. Simulates the decryption on input [X] and —r+a)_. s
5. Comparison gate is simulated

e 7 and §, indistinguishable from r and s,
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