Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Modulo Reduction for Paillier Encryptions and
Application to Secure Statistical Analysis
Bart Mennink (K.U.Leuven)

Joint work with:
Jorge Guajardo (Philips Research Labs)
Berry Schoenmakers (TU Eindhoven)

Financial Cryptography '10, Tenerife, Spain
January 25, 2010

1/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Overview

Preliminaries

Secure Modulo Reduction

Efficiency Analysis

Applications

Conclusions

2/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Threshold Homomorphic Cryptosystems (THCs)

e [x] is a probabilistic encryption: [x] = Encp(x, r) under
public key pk and for random r

3/13

Preliminaries

Threshold Homomorphic Cryptosystems (THCs)

e [x] is a probabilistic encryption: [x] = Encp(x, r) under
public key pk and for random r

e Homomorphic properties:

o Addition: [x][y] = [x + y]
e Multiplication by constant: [x]¢ = [xc]
e Re-randomization: [x][0] = [x]

3/13

Preliminaries

Threshold Homomorphic Cryptosystems (THCs)

e [x] is a probabilistic encryption: [x] = Encp(x, r) under
public key pk and for random r

e Homomorphic properties:
o Addition: [x][y] = [x + y]
e Multiplication by constant: [x]¢ = [xc]
¢ Re-randomization: [x][0] = [x]

e (t,n)-threshold decryption

o Private key is shared among n parties such that any ¢ can
decrypt

3/13

Preliminaries

Threshold Homomorphic Cryptosystems (THCs)

e [x] is a probabilistic encryption: [x] = Encp(x, r) under
public key pk and for random r

e Homomorphic properties:
o Addition: [x][y] = [x + y]
e Multiplication by constant: [x]¢ = [xc]
¢ Re-randomization: [x][0] = [x]

e (t,n)-threshold decryption

o Private key is shared among n parties such that any ¢ can
decrypt

e We use the Paillier cryptosystem [Pai99, DJ01]

/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Secure Function Evaluation based on THCs

e On input of [x1],...,[x.] and a function f, the parties jointly
compute [f(x1,...,x)]

(circuit for f)

[[Xl]]"nj[[XL]] [[f(Xh.”’XL)]]

4/13

Preliminaries

Secure Function Evaluation based on THCs

On input of [x1],..., [x.] and a function £, the parties jointly
compute [f(x1,...,x)]

(circuit for f)

[[Xl]]"nj[[Xd] [[f(XL.”?XL)H

Approach based on arithmetic circuits
o Circuit for f consists of sequential evaluations of (+, —, %, /)

4/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Secure Function Evaluation based on THCs (cont.)

e Addition and scalar multiplication by homomorphic properties:

computation of [x + y] and [cx] given [x], [¥], c
e Multiplication gate [CDNO1]: outputs [xy] given [x], [y]

5/13

Preliminaries

Secure Function Evaluation based on THCs (cont.)

e Addition and scalar multiplication by homomorphic properties:

computation of [x + y] and [cx] given [x], [¥], c
e Multiplication gate [CDNO1]: outputs [xy] given [x], [y]

e Our contribution: efficient gate for [x mod a] given [x], a
e Implies a gate for integer division [x div 4]

5/13

Preliminaries

Secure Function Evaluation based on THCs (cont.)

computation of [x + y] and [cx] given [x], [¥], c

Multiplication gate [CDNO1]: outputs [xy| given [x], [¥]

Our contribution: efficient gate for [x mod a] given [x], a
e Implies a gate for integer division [x div 4]

Several other efficient gates:
e Random bit generation gate [CDNO1, ST06]:
outputs [r] for random r € {0,1}
e Comparison gate [DFK*06, GSV07]:
outputs [x < y] given the encrypted bits of x,y
o Least significant bit gate [ST06]:
outputs [x mod 2] given [x]

Addition and scalar multiplication by homomorphic properties:

[C]

/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Secure Modulo Reduction
x = (xdiva)a+ (x mod a), with 0 < x mod a < a

e By homomorphic properties, it suffices to determine x mod a

6/13

Secure Modulo Reduction

Secure Modulo Reduction
x = (xdiva)a+ (x mod a), with 0 < x mod a < a

e By homomorphic properties, it suffices to determine x mod a

1. Given [x], one decryption of a blinded version of x is required

6/13

Secure Modulo Reduction

Secure Modulo Reduction
x = (xdiva)a+ (x mod a), with 0 < x mod a < a

e By homomorphic properties, it suffices to determine x mod a

1. Given [x], one decryption of a blinded version of x is required

o Generate [r] (bitwise) for r €g [0, a), and [s] for random s
e The blinded encryption [x — r + as] is threshold decrypted

/13

o

Secure Modulo Reduction

Secure Modulo Reduction
x = (xdiva)a+ (x mod a), with 0 < x mod a < a

e By homomorphic properties, it suffices to determine x mod a

1. Given [x], one decryption of a blinded version of x is required

o Generate [r] (bitwise) for r €g [0, a), and [s] for random s
e The blinded encryption [x — r + as] is threshold decrypted

2. The parties set x = (x — r + as) mod a = x — r mod a
e Noticethat x=x+rmodaand 0 < x+r < 2a

o

/13

Secure Modulo Reduction

Secure Modulo Reduction

x = (xdiva)a+ (x mod a), with 0 < x mod a < a

By homomorphic properties, it suffices to determine x mod a

. Given [x], one decryption of a blinded version of x is required

o Generate [r] (bitwise) for r €g [0, a), and [s] for random s
e The blinded encryption [x — r + as] is threshold decrypted

. The parties set X = (x —r +as) mod a=x — rmod a
e Noticethat x=x+rmodaand 0 < x+r < 2a

. Correction: the parties compute [c] =[a—1— X < 1]
e Noticethat c =0 <= X+r<a

/13

o

Secure Modulo Reduction

Secure Modulo Reduction
x = (xdiva)a+ (x mod a), with 0 < x mod a < a

By homomorphic properties, it suffices to determine x mod a

. Given [x], one decryption of a blinded version of x is required

o Generate [r] (bitwise) for r €g [0, a), and [s] for random s
e The blinded encryption [x — r + as] is threshold decrypted

. The parties set X = (x —r +as) mod a=x — rmod a
e Noticethat x=x+rmodaand 0 < x+r <2a

. Correction: the parties compute [c] =[a—1— X < 1]
e Noticethat c =0 <= X+r<a

. Output [x mod a] = [x + r — ca] = [x][r]/[c]?

o

/13

Secure Modulo Reduction

Secure Modulo Reduction (cont.)

e Technical detail: x — r 4 as should not exceed the Paillier
modulus, to prevent wrap-arounds

e x should be sufficiently small

e Using efficient zero-knowledge proofs, the protocol can be
proven secure against actively malicious parties (in the security
framework of [CDNO01])

e How to securely generate [r] (bitwise) for r €g [0, a)7

~

/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

How to Securely Generate [r] (bitwise) for r € [0, a)?
o If a =2
o Write r = Zf;al ri2", with r; € {0,1}

o Generate random bits [r;] and output [r] = Hf;gl[[r,-]]Qi

o If 26—l < 5 < 0fa

8/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

How to Securely Generate [r] (bitwise) for r € [0, a)?

o If a =2
o Write r = Zf;al r27, with r; € {0,1}
o Generate random bits [r;] and output [r] = Hf;gl[[r,-]]Q'

o If 26—l < g < 2fe
e Repeat generating [r] for random r € [0,2%), until r < a
e At most 2 restarts on average

8/13

Efficiency Analysis

Efficiency Analysis

broadcast round
O(nki) Otn)
Ours O(n2k€a) O(l)
O(nktx(log tx + £5)) O(n +)
N
[DFK™06] O(nklx(n +logtx +(3)) | O(1)

n is the number of participants £, is length of x
k is a security parameter £, is length of a

o (Broadcast complexity represents the number of bits broadcasted.
E.g., for O(nk(,): each party needs to broadcast O(¢;) encryptions)
e Always £, </, but often £, < £,

9/13

Efficiency Analysis

Efficiency Analysis

broadcast round
O(nki) Otn)
Ours O(n2k€a) O(l)
O(nktx(log tx + £5)) O(n +)
N
[DFK™06] O(nklx(n +logtx +(3)) | O(1)

n is the number of participants £, is length of x
k is a security parameter £, is length of a

o (Broadcast complexity represents the number of bits broadcasted.
E.g., for O(nk(,): each party needs to broadcast O(¢;) encryptions)
e Always £, </, but often £, < £,
e 100 millionaires securely compute their mean fortune
o ([x1],---,[xw00]) — [%ﬂ Say x; < 230
e Here, x = 2,12? xiand a=100,s0 ¢, =37and £, =7

9/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Applications
e Integer division:

e x = (xdiva)a+ (x mod a)

o [xdiva] = ([x]/[x mod a])**

10/13

Applications

Applications
e Integer division:
e x = (xdiva)a+ (x mod a)

o [xdiva] = ([x]/[x mod a])**

e Access arbitrary bits of x:
e x; = (xdiv2’) mod 2

10/13

Applications

Applications

e Integer division:
e x = (xdiva)a+ (x mod a)

o [xdiva] = ([x]/[x mod a])**

e Access arbitrary bits of x:
e x; = (xdiv2’) mod 2

e Secure computation of statistics:

e Mean, median, variance, ... require division
o Concrete example: variance (where X = (x; + -+ - + x.)/L)

L

1 _
var(xl, ... ,XL) = ﬁ Z(Xi _X)2

i=1

10/ 13

Preliminaries

var(xi, . ..

Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Computation of Statistics

=gt gt (Lot (50)

i=1

e How to compute [var(xy,...,x.)] given [x1], ..., [x.]7?

11/13

Applications

Computation of Statistics

var(xy,...,x) = Ll—lg()q —)‘()2 = ﬁ (; Lx,-2 — (Zx,->2>

i=1

=V

e How to compute [var(xy,...,x.)] given [xi], ..., [x.]?

1. Compute (35, x;)2] and [x2] using L + 1 multiplications
2. Compute [V] = [[2,?:1 Lx? — (le?zlx,-)z]]

11/13

Applications

Computation of Statistics

var(xy,...,x) = Ll—lg()q —)‘()2 = ﬁ (; Lx,-2 — (Zx,->2>

i=1

=V

e How to compute [var(xy,...,x.)] given [xi], ..., [x.]?

1. Compute (35, x;)2] and [x2] using L + 1 multiplications
2. Compute [V] = [[2,?:1 Lx? — (le?zlx,-)z]]
3. Compute and output integer division [V div L(L — 1)]

11/13

Applications

Computation of Statistics

var(xy,...,x) = Ll—lg()q —)‘()2 = ﬁ (; Lx,-2 — (Zx,->2>

i=1

=V

e How to compute [var(xy,...,x.)] given [xi], ..., [x.]?

1. Compute (35, x;)2] and [x2] using L + 1 multiplications
2. Compute [V] = [[2,?:1 Lx? — (le?zlx,-)z]]
3. Compute and output integer division [V div L(L — 1)]

e O(Lnk) broadcast complexity and O(n) rounds

11/13

Conclusions

Conclusions

Modulo reduction: computing [x mod a] given [x] and a
e Integer division: computation of [x div a]

Applicable to secure computation of statistics (mean, variance,
median, range, ...), packing of encrypted data, and many more!

Our protocols improved performance. We take advantage of
the fact that the modulus a is much smaller than x

o Complexities are independent of the length of x

Proof of security can be found in the paper (full version)

12/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

Questions?

13/13

Preliminaries Secure Modulo Reduction Efficiency Analysis Applications Conclusions

HIDDEN SLIDES!!!

13/13

Conclusions

Sub-Protocol: Random Bitwise Value Generation

e Input: a with 2671 < g < 2%

e For generating [r] (bitwise) such that r €g [0, a), the n
servers do:

1. Jointly construct ¢, random bit encryptions [r;]
(note that r = Ze 61 ;2 €g [0,2%))
2. Compute and decrypt [r < a]. If r > a, restart protocol

o If 2= 2%, no restarts. Otherwise 22 /a < 2 restarts on average

13/13

Conclusions

Secure Modulo Reduction: Protocol

o Input: [x],a, with x < 2% and 271 < 2 < 2%

e Requirement: an21fs < N* for security parameter /g

e For computing [x mod a], the n servers do:

1.
2.
3.
4.
5.

6.

Jointly construct [r]?() for r € [0, a)

Individually construct [s;] for s; €5 {0, 1}x+ts

Individually compute [x] = [x][r] ~* [T/, [si]®

(note that x =x—r+a) - ;siand 0 < X < N¥)

Jointly decrypt [X] and compute X =X mod a=x — r mod a
(note that X+ r =xmod aand 0 < X+ r < 2a)

Using comparison gate, compute [c] =[[a—1—X < r]]
(note that c =0 < X+ r < a)

Individually compute output [x][r][c] 2

e Protocol can be simulated in framework of [CDNO01]

13/13

Conclusions

Secure Modulo Reduction: Security Proof

o Simulated for [x] = [x(O(1 — b) + x(Vp] given x(O x(V) [p]
e Distinguisher for simulator is a distinguisher for bit-decryption
e n participants {Pi,...,P,} of which {P1,...,Pe_1} are
malicious

1. Simulator takes r €g [0, a), but simulates this phase with
F=FO(1 - b) + FVb, where #®) = (r + x(#)) mod a
2. Simulator lets the malicious parties construct and prove s;. For

Ps, ..., Pa_1 he executes the protocol as is. For P, he takes
sn €r [0, 2‘Z +6e), but simulates with
I5.] = 321 — b) + 51 b], where 37 =5, — (r+x®)diva

3. Executes this phase. He obtains

[¥] = [x — F+aXois) si+ a8 = [-r+a> [, si]
4. Simulates the decryption on input [X] and —r+a)_. s
5. Comparison gate is simulated

e 7 and §, indistinguishable from r and s,

13/13

	Preliminaries
	Secure Modulo Reduction
	Efficiency Analysis
	Applications
	Conclusions

