Modulo Reduction for Paillier Encryptions and Application to Secure Statistical Analysis

Bart Mennink (K.U.Leuven)

Joint work with: Jorge Guajardo (Philips Research Labs) Berry Schoenmakers (TU Eindhoven)

Financial Cryptography '10, Tenerife, Spain January 25, 2010

Conclusions

Preliminaries

Secure Modulo Reduction

Efficiency Analysis

Applications

Conclusions

Threshold Homomorphic Cryptosystems (THCs)

 [[x]] is a probabilistic encryption: [[x]] = Enc_{pk}(x, r) under public key pk and for random r

Threshold Homomorphic Cryptosystems (THCs)

- [[x]] is a probabilistic encryption: [[x]] = Enc_{pk}(x, r) under public key pk and for random r
- Homomorphic properties:
 - Addition: [x][y] = [x + y]
 - Multiplication by constant: $[x]^c = [xc]$
 - Re-randomization: $\llbracket x \rrbracket \llbracket 0 \rrbracket = \llbracket x \rrbracket$

Threshold Homomorphic Cryptosystems (THCs)

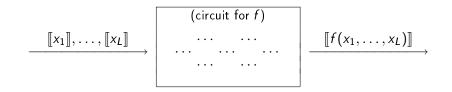
- [[x]] is a probabilistic encryption: [[x]] = Enc_{pk}(x, r) under public key pk and for random r
- Homomorphic properties:
 - Addition: [x][y] = [x + y]
 - Multiplication by constant: $[x]^c = [xc]$
 - Re-randomization: $\llbracket x \rrbracket \llbracket 0 \rrbracket = \llbracket x \rrbracket$
- (*t*, *n*)-threshold decryption
 - Private key is shared among *n* parties such that any *t* can decrypt

Threshold Homomorphic Cryptosystems (THCs)

- [[x]] is a probabilistic encryption: [[x]] = Enc_{pk}(x, r) under public key pk and for random r
- Homomorphic properties:
 - Addition: [x][y] = [x + y]
 - Multiplication by constant: $[x]^c = [xc]$
 - Re-randomization: $\llbracket x \rrbracket \llbracket 0 \rrbracket = \llbracket x \rrbracket$
- (t, n)-threshold decryption
 - Private key is shared among *n* parties such that any *t* can decrypt
- We use the Paillier cryptosystem [Pai99, DJ01]

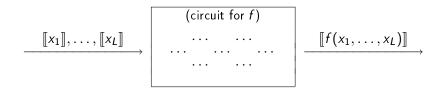
Secure Function Evaluation based on THCs

On input of [[x₁]],..., [[x_L]] and a function f, the parties jointly compute [[f(x₁,...,x_L)]]



Secure Function Evaluation based on THCs

On input of [[x₁]],..., [[x_L]] and a function f, the parties jointly compute [[f(x₁,...,x_L)]]



- Approach based on arithmetic circuits
 - Circuit for f consists of sequential evaluations of (+, -, *, /)

Secure Function Evaluation based on THCs (cont.)

- Addition and scalar multiplication by homomorphic properties: computation of [x + y] and [cx] given [x], [y], c
- Multiplication gate [CDN01]: outputs [xy] given [x], [y]

Secure Function Evaluation based on THCs (cont.)

- Addition and scalar multiplication by homomorphic properties: computation of [x + y] and [cx] given [x], [y], c
- Multiplication gate [CDN01]: outputs [xy] given [x], [y]
- Our contribution: efficient gate for [x mod a] given [x], a
 - Implies a gate for integer division $[x \operatorname{div} a]$

Secure Function Evaluation based on THCs (cont.)

- Addition and scalar multiplication by homomorphic properties: computation of [[x + y]] and [[cx]] given [[x]], [[y]], c
- Multiplication gate [CDN01]: outputs [xy] given [x], [y]
- Our contribution: efficient gate for [x mod a] given [x], a
 - Implies a gate for integer division [x div a]
- Several other efficient gates:
 - Random bit generation gate [CDN01, ST06]: outputs *[r]* for random *r* ∈ {0,1}
 - Comparison gate [DFK⁺06, GSV07]:
 - outputs [x < y] given the encrypted bits of x, y
 - Least significant bit gate [ST06]:

outputs [x mod 2] given [x]

$$x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$$
, with $0 \le x \operatorname{mod} a < a$

• By homomorphic properties, it suffices to determine x mod a

$$x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$$
, with $0 \le x \operatorname{mod} a < a$

- By homomorphic properties, it suffices to determine x mod a
- 1. Given [x], one decryption of a *blinded version* of x is required

$$x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$$
, with $0 \le x \operatorname{mod} a < a$

- By homomorphic properties, it suffices to determine x mod a
- 1. Given [x], one decryption of a *blinded version* of x is required
 - Generate [r] (bitwise) for $r \in_R [0, a)$, and [s] for random s
 - The blinded encryption [x r + as] is threshold decrypted

$$x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$$
, with $0 \le x \operatorname{mod} a < a$

- By homomorphic properties, it suffices to determine x mod a
- 1. Given [x], one decryption of a *blinded version* of x is required
 - Generate $[\![r]\!]$ (bitwise) for $r \in_R [0, a)$, and $[\![s]\!]$ for random s
 - The blinded encryption [x r + as] is threshold decrypted
- 2. The parties set $\bar{x} = (x r + as) \mod a = x r \mod a$
 - Notice that $x \equiv \overline{x} + r \mod a$ and $0 \leq \overline{x} + r < 2a$

$$x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$$
, with $0 \le x \operatorname{mod} a < a$

- By homomorphic properties, it suffices to determine x mod a
- 1. Given [x], one decryption of a *blinded version* of x is required
 - Generate $[\![r]\!]$ (bitwise) for $r \in_R [0, a)$, and $[\![s]\!]$ for random s
 - The blinded encryption [x r + as] is threshold decrypted
- 2. The parties set $\bar{x} = (x r + as) \mod a = x r \mod a$
 - Notice that $x \equiv \overline{x} + r \mod a$ and $0 \le \overline{x} + r < 2a$
- 3. Correction: the parties compute $[\![c]\!] = [\![a-1-\bar{x} < r]\!]$
 - Notice that $c = 0 \iff \bar{x} + r < a$

$$x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$$
, with $0 \le x \operatorname{mod} a < a$

- By homomorphic properties, it suffices to determine x mod a
- Given [[x]], one decryption of a blinded version of x is required

 Generate [[r]] (bitwise) for r ∈_R [0, a), and [[s]] for random s
 The blinded encryption [[x r + as]] is threshold decrypted

 The parties set x̄ = (x r + as) mod a = x r mod a

 Notice that x ≡ x̄ + r mod a and 0 ≤ x̄ + r < 2a

 Correction: the parties compute [[c]] = [[a 1 x̄ < r]]

 Notice that c = 0 ⇔ x̄ + r < a
- 4. Output $\llbracket x \mod a \rrbracket = \llbracket \overline{x} + r ca \rrbracket = \llbracket \overline{x} \rrbracket \llbracket r \rrbracket / \llbracket c \rrbracket^a$

Secure Modulo Reduction (cont.)

- Technical detail: x r + as should not exceed the Paillier modulus, to prevent wrap-arounds
 - x should be sufficiently small
- Using efficient zero-knowledge proofs, the protocol can be proven secure against *actively malicious* parties (in the security framework of [CDN01])
- How to securely generate $\llbracket r \rrbracket$ (bitwise) for $r \in_R [0, a)$?

How to Securely Generate [r] (bitwise) for $r \in_R [0, a)$?

• If
$$a = 2^{\ell_a}$$

- Write $r = \sum_{i=0}^{\ell_{a}-1} r_{i} 2^{i}$, with $r_{i} \in \{0,1\}$
- Generate random bits $[\![r_i]\!]$ and output $[\![r]\!] = \prod_{i=0}^{\ell_a 1} [\![r_i]\!]^{2^i}$

• If
$$2^{\ell_a - 1} < a < 2^{\ell_a}$$

How to Securely Generate [r] (bitwise) for $r \in_R [0, a)$?

• If
$$a = 2^{\ell_a}$$

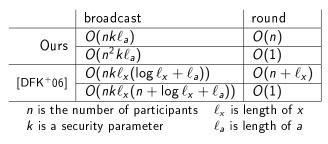
- Write $r = \sum_{i=0}^{\ell_{a}-1} r_{i} 2^{i}$, with $r_{i} \in \{0,1\}$
- Generate random bits $[\![r_i]\!]$ and output $[\![r]\!] = \prod_{i=0}^{\ell_o-1} [\![r_i]\!]^{2^i}$
- If $2^{\ell_a 1} < a < 2^{\ell_a}$
 - Repeat generating $\llbracket r \rrbracket$ for random $r \in [0, 2^{\ell_a})$, until r < a
 - At most 2 restarts on average

Efficiency Analysis

	broadcast	round
Ours	$O(nk\ell_a)$ $O(n^2k\ell_a)$	<i>O</i> (<i>n</i>)
	$O(n^2 k \ell_a)$	<i>O</i> (1)
[DFK ⁺ 06]	$O(nk\ell_x(\log \ell_x + \ell_a))$	$O(n+\ell_x)$
	$O(nk\ell_x(n+\log\ell_x+\ell_a))$	<i>O</i> (1)
<i>n</i> is the number of participants ℓ_x is length of <i>x</i>		
k is a security parameter ℓ_a is length of a		

- (Broadcast complexity represents the number of bits broadcasted.
 E.g., for O(nkℓ_a): each party needs to broadcast O(ℓ_a) encryptions)
- Always $\ell_a \leq \ell_x$, but often $\ell_a \ll \ell_x$

Efficiency Analysis



- (Broadcast complexity represents the number of bits broadcasted.
 E.g., for O(nkℓ_a): each party needs to broadcast O(ℓ_a) encryptions)
- Always $\ell_a \leq \ell_x$, but often $\ell_a \ll \ell_x$
 - 100 millionaires securely compute their mean fortune
 - $(\llbracket x_1 \rrbracket, \dots, \llbracket x_{100} \rrbracket) \mapsto \llbracket \frac{x_1 + \dots + x_{100}}{100} \rrbracket$. Say $x_i < 2^{30}$
 - Here, $x = \sum_{i=1}^{100} x_i$ and a = 100, so $\ell_x = 37$ and $\ell_a = 7$

Conclusions

Applications

- Integer division:
 - $x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$
 - $\llbracket x \operatorname{div} a \rrbracket = (\llbracket x \rrbracket / \llbracket x \mod a \rrbracket)^{1/a}$

Applications

- Integer division:
 - $x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$
 - $\llbracket x \operatorname{div} a \rrbracket = (\llbracket x \rrbracket / \llbracket x \mod a \rrbracket)^{1/a}$
- Access arbitrary bits of x:
 - $x_i = (x \operatorname{div} 2^i) \mod 2$

Applications

- Integer division:
 - $x = (x \operatorname{div} a)a + (x \operatorname{mod} a)$
 - $\llbracket x \operatorname{div} a \rrbracket = (\llbracket x \rrbracket / \llbracket x \mod a \rrbracket)^{1/a}$
- Access arbitrary bits of x:
 - $x_i = (x \operatorname{div} 2^i) \mod 2$
- Secure computation of statistics:
 - Mean, median, variance, ... require division
 - Concrete example: variance (where $\bar{x} = (x_1 + \cdots + x_L)/L$)

$$var(x_1,...,x_L) = \frac{1}{L-1} \sum_{i=1}^{L} (x_i - \bar{x})^2$$

$$\mathsf{var}(x_1, \dots, x_L) = \frac{1}{L-1} \sum_{i=1}^{L} (x_i - \bar{x})^2 = \frac{1}{L(L-1)} \left(\sum_{i=1}^{L} L x_i^2 - \left(\sum_{i=1}^{L} x_i \right)^2 \right)$$

• How to compute $\llbracket \operatorname{var}(x_1, \ldots, x_L) \rrbracket$ given $\llbracket x_1 \rrbracket, \ldots, \llbracket x_L \rrbracket$?

$$\operatorname{var}(x_1, \dots, x_L) = \frac{1}{L-1} \sum_{i=1}^{L} (x_i - \bar{x})^2 = \frac{1}{L(L-1)} \underbrace{\left(\sum_{i=1}^{L} Lx_i^2 - \left(\sum_{i=1}^{L} x_i\right)^2\right)}_{=:V}$$

- How to compute $\llbracket \operatorname{var}(x_1, \ldots, x_L) \rrbracket$ given $\llbracket x_1 \rrbracket, \ldots, \llbracket x_L \rrbracket$?
 - 1. Compute $[(\sum_{i=1}^{L} x_i)^2]$ and $[x_i^2]$ using L + 1 multiplications 2. Compute $[V] = [\sum_{i=1}^{L} Lx_i^2 - (\sum_{i=1}^{L} x_i)^2]$

$$\operatorname{var}(x_1, \dots, x_L) = \frac{1}{L-1} \sum_{i=1}^{L} (x_i - \bar{x})^2 = \frac{1}{L(L-1)} \underbrace{\left(\sum_{i=1}^{L} Lx_i^2 - \left(\sum_{i=1}^{L} x_i\right)^2\right)}_{=:V}$$

- How to compute $\llbracket \operatorname{var}(x_1, \ldots, x_L) \rrbracket$ given $\llbracket x_1 \rrbracket, \ldots, \llbracket x_L \rrbracket$?
 - 1. Compute $[(\sum_{i=1}^{L} x_i)^2]$ and $[x_i^2]$ using L+1 multiplications
 - 2. Compute $\llbracket V \rrbracket = \llbracket \sum_{i=1}^{L} Lx_i^2 (\sum_{i=1}^{L} x_i)^2 \rrbracket$
 - 3. Compute and output integer division $[V \operatorname{div} L(L-1)]$

$$\operatorname{var}(x_1, \dots, x_L) = \frac{1}{L-1} \sum_{i=1}^{L} (x_i - \bar{x})^2 = \frac{1}{L(L-1)} \underbrace{\left(\sum_{i=1}^{L} Lx_i^2 - \left(\sum_{i=1}^{L} x_i\right)^2\right)}_{=:V}$$

- How to compute $\llbracket \operatorname{var}(x_1, \ldots, x_L) \rrbracket$ given $\llbracket x_1 \rrbracket, \ldots, \llbracket x_L \rrbracket$?
 - 1. Compute $\llbracket (\sum_{i=1}^{L} x_i)^2 \rrbracket$ and $\llbracket x_i^2 \rrbracket$ using L + 1 multiplications 2. Compute $\llbracket V \rrbracket = \llbracket \sum_{i=1}^{L} Lx_i^2 - (\sum_{i=1}^{L} x_i)^2 \rrbracket$
 - 3. Compute and output integer division $[V \operatorname{div} L(L-1)]$
- O(Lnk) broadcast complexity and O(n) rounds

Conclusions

- Modulo reduction: computing [[x mod a]] given [[x]] and a
 - Integer division: computation of $[x \operatorname{div} a]$
- Applicable to secure computation of statistics (mean, variance, median, range, ...), packing of encrypted data, and many more!
- Our protocols improved performance. We take advantage of the fact that the modulus *a* is much smaller than *x*
 - Complexities are independent of the length of x
- Proof of security can be found in the paper (full version)

Secure Modulo Reduction

Conclusions

Questions?

Secure Modulo Reduction

Efficiency Analysis

Applications

Conclusions

HIDDEN SLIDES!!!

Sub-Protocol: Random Bitwise Value Generation

- Input: a with $2^{\ell_a-1} < a \leq 2^{\ell_a}$
- For generating [[r]] (bitwise) such that r ∈_R [0, a), the n servers do:
 - 1. Jointly construct ℓ_a random bit encryptions $\llbracket r_j \rrbracket$ (note that $r = \sum_{j=0}^{\ell_a - 1} r_j 2^j \in_R [0, 2^{\ell_a})$)
 - 2. Compute and decrypt [r < a]. If $r \ge a$, restart protocol
- If $a=2^{\ell_a}$, no restarts. Otherwise $2^{\ell_a}/a<2$ restarts on average

Secure Modulo Reduction: Protocol

- Input: $[\![x]\!], a$, with $x < 2^{\ell_x}$ and $2^{\ell_a 1} < a \le 2^{\ell_a}$
- Requirement: an $2^{\ell_x + \ell_s} < N^s$ for security parameter ℓ_s
- For computing [[x mod a]], the n servers do:
 - 1. Jointly construct $\llbracket r \rrbracket^{b(\ell_a)}$ for $r \in_R [0, a)$
 - 2. Individually construct $\llbracket s_i \rrbracket$ for $s_i \in_R \{0,1\}^{\ell_x + \ell_s}$
 - 3. Individually compute $[\tilde{x}] = [x] [r]^{-1} \prod_{i=1}^{n} [s_i]^a$ (note that $\tilde{x} = x - r + a \sum_{i=1}^{n} s_i$ and $0 \le \tilde{x} < N^s$)
 - 4. Jointly decrypt $\llbracket \tilde{x} \rrbracket$ and compute $\bar{x} = \tilde{x} \mod a \equiv x r \mod a$ (note that $\bar{x} + r \equiv x \mod a$ and $0 \leq \bar{x} + r < 2a$)
 - 5. Using comparison gate, compute $[\![c]\!] = [\![a-1-\bar{x} < r]\!]$ (note that $c = 0 \iff \bar{x} + r < a$)
 - 6. Individually compute output $[\bar{x}][r][c]^{-a}$
- Protocol can be simulated in framework of [CDN01]

Secure Modulo Reduction: Security Proof

- Simulated for $\llbracket x \rrbracket = \llbracket x^{(0)}(1-b) + x^{(1)}b \rrbracket$ given $x^{(0)}, x^{(1)}, \llbracket b \rrbracket$
 - Distinguisher for simulator is a distinguisher for bit-decryption
- *n* participants {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_n\$}\$ of which {\$\mathcal{P}_1, \ldots, \$\mathcal{P}_{t-1}\$} are malicious
 - 1. Simulator takes $r \in_R [0, a)$, but simulates this phase with $\tilde{r} = \tilde{r}^{(0)}(1-b) + \tilde{r}^{(1)}b$, where $\tilde{r}^{(b)} = (r + x^{(b)}) \mod a$
 - Simulator lets the malicious parties construct and prove s_i. For P_t,..., P_{n-1} he executes the protocol as is. For P_n he takes s_n ∈_R [0, 2^{ℓ_x+ℓ_s}), but simulates with [[š_n]] = [[š_n⁽⁰⁾(1-b) + š_n⁽¹⁾b]], where š_n^(b) = s_n (r + x^(b)) div a
 Executes this phase. He obtains [[x̃]] = [[x r̃ + a ∑_{i=1}ⁿ⁻¹ s_i + as̃_n]] = [[-r + a ∑_{i=1}ⁿ s_i]]
 Simulates the decryption on input [[x̃]] and -r + a ∑_{i=1}ⁿ s_i
 Comparison gate is simulated
- *r̃* and *s̃_n* indistinguishable from *r* and *s_n*