
Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Modulo Reduction for Paillier Encryptions and
Application to Secure Statistical Analysis

Bart Mennink (K.U.Leuven)

Joint work with:
Jorge Guajardo (Philips Research Labs)
Berry Schoenmakers (TU Eindhoven)

Financial Cryptography '10, Tenerife, Spain

January 25, 2010

1 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Overview

Preliminaries

Secure Modulo Reduction

E�ciency Analysis

Applications

Conclusions

2 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Threshold Homomorphic Cryptosystems (THCs)

• JxK is a probabilistic encryption: JxK = Encpk(x , r) under
public key pk and for random r

• -

• Homomorphic properties:
• Addition: JxKJyK = Jx + yK
• Multiplication by constant: JxKc = JxcK
• Re-randomization: JxKJ0K = JxK

• -

• (t, n)-threshold decryption
• Private key is shared among n parties such that any t can
decrypt

• -

• We use the Paillier cryptosystem [Pai99, DJ01]

3 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Threshold Homomorphic Cryptosystems (THCs)

• JxK is a probabilistic encryption: JxK = Encpk(x , r) under
public key pk and for random r

• -

• Homomorphic properties:
• Addition: JxKJyK = Jx + yK
• Multiplication by constant: JxKc = JxcK
• Re-randomization: JxKJ0K = JxK

• -

• (t, n)-threshold decryption
• Private key is shared among n parties such that any t can
decrypt

• -

• We use the Paillier cryptosystem [Pai99, DJ01]

3 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Threshold Homomorphic Cryptosystems (THCs)

• JxK is a probabilistic encryption: JxK = Encpk(x , r) under
public key pk and for random r

• -

• Homomorphic properties:
• Addition: JxKJyK = Jx + yK
• Multiplication by constant: JxKc = JxcK
• Re-randomization: JxKJ0K = JxK

• -

• (t, n)-threshold decryption
• Private key is shared among n parties such that any t can
decrypt

• -

• We use the Paillier cryptosystem [Pai99, DJ01]

3 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Threshold Homomorphic Cryptosystems (THCs)

• JxK is a probabilistic encryption: JxK = Encpk(x , r) under
public key pk and for random r

• -

• Homomorphic properties:
• Addition: JxKJyK = Jx + yK
• Multiplication by constant: JxKc = JxcK
• Re-randomization: JxKJ0K = JxK

• -

• (t, n)-threshold decryption
• Private key is shared among n parties such that any t can
decrypt

• -

• We use the Paillier cryptosystem [Pai99, DJ01]

3 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Function Evaluation based on THCs

• On input of Jx1K, . . . , JxLK and a function f , the parties jointly
compute Jf (x1, . . . , xL)K

(circuit for f)

Jx1K, . . . , JxLK · · · · · · Jf (x1, . . . , xL)K
−−−−−−−−−−−−−→ · · · · · · · · · −−−−−−−−−−−−−→

· · · · · ·

• Approach based on arithmetic circuits
• Circuit for f consists of sequential evaluations of (+,−, ∗, /)

4 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Function Evaluation based on THCs

• On input of Jx1K, . . . , JxLK and a function f , the parties jointly
compute Jf (x1, . . . , xL)K

(circuit for f)

Jx1K, . . . , JxLK · · · · · · Jf (x1, . . . , xL)K
−−−−−−−−−−−−−→ · · · · · · · · · −−−−−−−−−−−−−→

· · · · · ·

• Approach based on arithmetic circuits
• Circuit for f consists of sequential evaluations of (+,−, ∗, /)

4 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Function Evaluation based on THCs (cont.)

• Addition and scalar multiplication by homomorphic properties:
computation of Jx + yK and JcxK given JxK, JyK, c

• Multiplication gate [CDN01]: outputs JxyK given JxK, JyK

• -

• Our contribution: e�cient gate for Jx mod aK given JxK, a
• Implies a gate for integer division Jx div aK

• -

• Several other e�cient gates:
• Random bit generation gate [CDN01, ST06]:

outputs JrK for random r ∈ {0, 1}
• Comparison gate [DFK+06, GSV07]:

outputs Jx < yK given the encrypted bits of x , y
• Least signi�cant bit gate [ST06]:

outputs Jx mod 2K given JxK

5 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Function Evaluation based on THCs (cont.)

• Addition and scalar multiplication by homomorphic properties:
computation of Jx + yK and JcxK given JxK, JyK, c

• Multiplication gate [CDN01]: outputs JxyK given JxK, JyK

• -

• Our contribution: e�cient gate for Jx mod aK given JxK, a
• Implies a gate for integer division Jx div aK

• -

• Several other e�cient gates:
• Random bit generation gate [CDN01, ST06]:

outputs JrK for random r ∈ {0, 1}
• Comparison gate [DFK+06, GSV07]:

outputs Jx < yK given the encrypted bits of x , y
• Least signi�cant bit gate [ST06]:

outputs Jx mod 2K given JxK

5 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Function Evaluation based on THCs (cont.)

• Addition and scalar multiplication by homomorphic properties:
computation of Jx + yK and JcxK given JxK, JyK, c

• Multiplication gate [CDN01]: outputs JxyK given JxK, JyK

• -

• Our contribution: e�cient gate for Jx mod aK given JxK, a
• Implies a gate for integer division Jx div aK

• -

• Several other e�cient gates:
• Random bit generation gate [CDN01, ST06]:

outputs JrK for random r ∈ {0, 1}
• Comparison gate [DFK+06, GSV07]:

outputs Jx < yK given the encrypted bits of x , y
• Least signi�cant bit gate [ST06]:

outputs Jx mod 2K given JxK

5 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction

x = (x div a)a + (x mod a), with 0 ≤ x mod a < a

• By homomorphic properties, it su�ces to determine x mod a

1. Given JxK, one decryption of a blinded version of x is required

• Generate JrK (bitwise) for r ∈R [0, a), and JsK for random s
• The blinded encryption Jx − r + asK is threshold decrypted

2. The parties set x̄ = (x − r + as) mod a = x − r mod a

• Notice that x ≡ x̄ + r mod a and 0 ≤ x̄ + r < 2a

3. Correction: the parties compute JcK = Ja − 1− x̄ < rK
• Notice that c = 0 ⇐⇒ x̄ + r < a

4. Output Jx mod aK = Jx̄ + r − caK = Jx̄KJrK/JcKa

6 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction

x = (x div a)a + (x mod a), with 0 ≤ x mod a < a

• By homomorphic properties, it su�ces to determine x mod a

1. Given JxK, one decryption of a blinded version of x is required

• Generate JrK (bitwise) for r ∈R [0, a), and JsK for random s
• The blinded encryption Jx − r + asK is threshold decrypted

2. The parties set x̄ = (x − r + as) mod a = x − r mod a

• Notice that x ≡ x̄ + r mod a and 0 ≤ x̄ + r < 2a

3. Correction: the parties compute JcK = Ja − 1− x̄ < rK
• Notice that c = 0 ⇐⇒ x̄ + r < a

4. Output Jx mod aK = Jx̄ + r − caK = Jx̄KJrK/JcKa

6 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction

x = (x div a)a + (x mod a), with 0 ≤ x mod a < a

• By homomorphic properties, it su�ces to determine x mod a

1. Given JxK, one decryption of a blinded version of x is required
• Generate JrK (bitwise) for r ∈R [0, a), and JsK for random s
• The blinded encryption Jx − r + asK is threshold decrypted

2. The parties set x̄ = (x − r + as) mod a = x − r mod a

• Notice that x ≡ x̄ + r mod a and 0 ≤ x̄ + r < 2a

3. Correction: the parties compute JcK = Ja − 1− x̄ < rK
• Notice that c = 0 ⇐⇒ x̄ + r < a

4. Output Jx mod aK = Jx̄ + r − caK = Jx̄KJrK/JcKa

6 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction

x = (x div a)a + (x mod a), with 0 ≤ x mod a < a

• By homomorphic properties, it su�ces to determine x mod a

1. Given JxK, one decryption of a blinded version of x is required
• Generate JrK (bitwise) for r ∈R [0, a), and JsK for random s
• The blinded encryption Jx − r + asK is threshold decrypted

2. The parties set x̄ = (x − r + as) mod a = x − r mod a

• Notice that x ≡ x̄ + r mod a and 0 ≤ x̄ + r < 2a

3. Correction: the parties compute JcK = Ja − 1− x̄ < rK
• Notice that c = 0 ⇐⇒ x̄ + r < a

4. Output Jx mod aK = Jx̄ + r − caK = Jx̄KJrK/JcKa

6 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction

x = (x div a)a + (x mod a), with 0 ≤ x mod a < a

• By homomorphic properties, it su�ces to determine x mod a

1. Given JxK, one decryption of a blinded version of x is required
• Generate JrK (bitwise) for r ∈R [0, a), and JsK for random s
• The blinded encryption Jx − r + asK is threshold decrypted

2. The parties set x̄ = (x − r + as) mod a = x − r mod a

• Notice that x ≡ x̄ + r mod a and 0 ≤ x̄ + r < 2a

3. Correction: the parties compute JcK = Ja − 1− x̄ < rK
• Notice that c = 0 ⇐⇒ x̄ + r < a

4. Output Jx mod aK = Jx̄ + r − caK = Jx̄KJrK/JcKa

6 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction

x = (x div a)a + (x mod a), with 0 ≤ x mod a < a

• By homomorphic properties, it su�ces to determine x mod a

1. Given JxK, one decryption of a blinded version of x is required
• Generate JrK (bitwise) for r ∈R [0, a), and JsK for random s
• The blinded encryption Jx − r + asK is threshold decrypted

2. The parties set x̄ = (x − r + as) mod a = x − r mod a

• Notice that x ≡ x̄ + r mod a and 0 ≤ x̄ + r < 2a

3. Correction: the parties compute JcK = Ja − 1− x̄ < rK
• Notice that c = 0 ⇐⇒ x̄ + r < a

4. Output Jx mod aK = Jx̄ + r − caK = Jx̄KJrK/JcKa

6 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction (cont.)

• Technical detail: x − r + as should not exceed the Paillier
modulus, to prevent wrap-arounds

• x should be su�ciently small

• -

• Using e�cient zero-knowledge proofs, the protocol can be
proven secure against actively malicious parties (in the security
framework of [CDN01])

• -

• How to securely generate JrK (bitwise) for r ∈R [0, a)?

7 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

How to Securely Generate JrK (bitwise) for r ∈R [0, a)?

• If a = 2`a

• Write r =
∑`a−1

i=0
ri2

i , with ri ∈ {0, 1}
• Generate random bits JriK and output JrK =

∏`a−1

i=0
JriK2

i

• -

• If 2`a−1 < a < 2`a

• Repeat generating JrK for random r ∈ [0, 2`a), until r < a
• At most 2 restarts on average

8 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

How to Securely Generate JrK (bitwise) for r ∈R [0, a)?

• If a = 2`a

• Write r =
∑`a−1

i=0
ri2

i , with ri ∈ {0, 1}
• Generate random bits JriK and output JrK =

∏`a−1

i=0
JriK2

i

• -

• If 2`a−1 < a < 2`a

• Repeat generating JrK for random r ∈ [0, 2`a), until r < a
• At most 2 restarts on average

8 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

E�ciency Analysis

broadcast round

Ours
O(nk`a) O(n)
O(n2k`a) O(1)

[DFK+06]
O(nk`x(log `x + `a)) O(n + `x)
O(nk`x(n + log `x + `a)) O(1)

n is the number of participants `x is length of x
k is a security parameter `a is length of a

• (Broadcast complexity represents the number of bits broadcasted.

E.g., for O(nk`a): each party needs to broadcast O(`a) encryptions)

• Always `a ≤ `x , but often `a � `x

• 100 millionaires securely compute their mean fortune
• (Jx1K, . . . , Jx100K) 7→ J x1+···+x100

100
K. Say xi < 230

• Here, x =
∑

100

i=1
xi and a = 100, so `x = 37 and `a = 7

9 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

E�ciency Analysis

broadcast round

Ours
O(nk`a) O(n)
O(n2k`a) O(1)

[DFK+06]
O(nk`x(log `x + `a)) O(n + `x)
O(nk`x(n + log `x + `a)) O(1)

n is the number of participants `x is length of x
k is a security parameter `a is length of a

• (Broadcast complexity represents the number of bits broadcasted.

E.g., for O(nk`a): each party needs to broadcast O(`a) encryptions)

• Always `a ≤ `x , but often `a � `x
• 100 millionaires securely compute their mean fortune
• (Jx1K, . . . , Jx100K) 7→ J x1+···+x100

100
K. Say xi < 230

• Here, x =
∑

100

i=1
xi and a = 100, so `x = 37 and `a = 7

9 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Applications

• Integer division:
• x = (x div a)a + (x mod a)

• Jx div aK = (JxK/Jx mod aK)1/a

• -

• Access arbitrary bits of x :
• xi = (x div 2i) mod 2

• -

• Secure computation of statistics:
• Mean, median, variance, ... require division
• Concrete example: variance (where x̄ = (x1 + · · ·+ xL)/L)

10 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Applications

• Integer division:
• x = (x div a)a + (x mod a)

• Jx div aK = (JxK/Jx mod aK)1/a

• -

• Access arbitrary bits of x :
• xi = (x div 2i) mod 2

• -

• Secure computation of statistics:
• Mean, median, variance, ... require division
• Concrete example: variance (where x̄ = (x1 + · · ·+ xL)/L)

10 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Applications

• Integer division:
• x = (x div a)a + (x mod a)

• Jx div aK = (JxK/Jx mod aK)1/a

• -

• Access arbitrary bits of x :
• xi = (x div 2i) mod 2

• -

• Secure computation of statistics:
• Mean, median, variance, ... require division
• Concrete example: variance (where x̄ = (x1 + · · ·+ xL)/L)

var(x1, . . . , xL) =
1

L− 1

L∑
i=1

(xi − x̄)2

10 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Computation of Statistics

var(x1, . . . , xL) =
1

L− 1

L∑
i=1

(xi − x̄)2 =
1

L(L− 1)

(
L∑

i=1

Lx2i −
(L∑

i=1

xi

)2)

• How to compute Jvar(x1, . . . , xL)K given Jx1K, . . . , JxLK?

1. Compute J(
∑L

i=1
xi)

2K and Jx2i K using L + 1 multiplications

2. Compute JV K =
r∑L

i=1
Lx2i − (

∑L

i=1
xi)

2

z

3. Compute and output integer division JV div L(L− 1)K

• -

• O(Lnk) broadcast complexity and O(n) rounds

11 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Computation of Statistics

var(x1, . . . , xL) =
1

L− 1

L∑
i=1

(xi − x̄)2 =
1

L(L− 1)

(
L∑

i=1

Lx2i −
(L∑

i=1

xi

)2)
︸ ︷︷ ︸

=:V

• How to compute Jvar(x1, . . . , xL)K given Jx1K, . . . , JxLK?

1. Compute J(
∑L

i=1
xi)

2K and Jx2i K using L + 1 multiplications

2. Compute JV K =
r∑L

i=1
Lx2i − (

∑L

i=1
xi)

2

z

3. Compute and output integer division JV div L(L− 1)K

• -

• O(Lnk) broadcast complexity and O(n) rounds

11 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Computation of Statistics

var(x1, . . . , xL) =
1

L− 1

L∑
i=1

(xi − x̄)2 =
1

L(L− 1)

(
L∑

i=1

Lx2i −
(L∑

i=1

xi

)2)
︸ ︷︷ ︸

=:V

• How to compute Jvar(x1, . . . , xL)K given Jx1K, . . . , JxLK?

1. Compute J(
∑L

i=1
xi)

2K and Jx2i K using L + 1 multiplications

2. Compute JV K =
r∑L

i=1
Lx2i − (

∑L

i=1
xi)

2

z

3. Compute and output integer division JV div L(L− 1)K

• -

• O(Lnk) broadcast complexity and O(n) rounds

11 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Computation of Statistics

var(x1, . . . , xL) =
1

L− 1

L∑
i=1

(xi − x̄)2 =
1

L(L− 1)

(
L∑

i=1

Lx2i −
(L∑

i=1

xi

)2)
︸ ︷︷ ︸

=:V

• How to compute Jvar(x1, . . . , xL)K given Jx1K, . . . , JxLK?

1. Compute J(
∑L

i=1
xi)

2K and Jx2i K using L + 1 multiplications

2. Compute JV K =
r∑L

i=1
Lx2i − (

∑L

i=1
xi)

2

z

3. Compute and output integer division JV div L(L− 1)K

• -

• O(Lnk) broadcast complexity and O(n) rounds

11 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Conclusions

• Modulo reduction: computing Jx mod aK given JxK and a

• Integer division: computation of Jx div aK

• -

• Applicable to secure computation of statistics (mean, variance,
median, range, ...), packing of encrypted data, and many more!

• -

• Our protocols improved performance. We take advantage of
the fact that the modulus a is much smaller than x

• Complexities are independent of the length of x

• -

• Proof of security can be found in the paper (full version)

12 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Q u e s t i o n s ?

13 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

HIDDEN SLIDES!!!

13 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Sub-Protocol: Random Bitwise Value Generation

• Input: a with 2`a−1 < a ≤ 2`a

• For generating JrK (bitwise) such that r ∈R [0, a), the n
servers do:

1. Jointly construct `a random bit encryptions JrjK
(note that r =

∑`a−1

j=0
rj2

j ∈R [0, 2`a))
2. Compute and decrypt Jr < aK. If r ≥ a, restart protocol

• If a = 2`a , no restarts. Otherwise 2`a/a < 2 restarts on average

13 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction: Protocol

• Input: JxK, a, with x < 2`x and 2`a−1 < a ≤ 2`a

• Requirement: an2`x+`s < Ns for security parameter `s
• For computing Jx mod aK, the n servers do:

1. Jointly construct JrKb(`a) for r ∈R [0, a)
2. Individually construct JsiK for si ∈R {0, 1}`x+`s

3. Individually compute Jx̃K = JxKJrK−1
∏n

i=1
JsiKa

(note that x̃ = x − r + a
∑n

i=1
si and 0 ≤ x̃ < Ns)

4. Jointly decrypt Jx̃K and compute x̄ = x̃ mod a ≡ x − r mod a

(note that x̄ + r ≡ x mod a and 0 ≤ x̄ + r < 2a)
5. Using comparison gate, compute JcK = J[a− 1− x̄ < r]K

(note that c = 0 ⇐⇒ x̄ + r < a)
6. Individually compute output Jx̄KJrKJcK−a

• Protocol can be simulated in framework of [CDN01]

13 / 13

Preliminaries Secure Modulo Reduction E�ciency Analysis Applications Conclusions

Secure Modulo Reduction: Security Proof

• Simulated for JxK = Jx (0)(1− b) + x (1)bK given x (0), x (1), JbK
• Distinguisher for simulator is a distinguisher for bit-decryption

• n participants {P1, . . . ,Pn} of which {P1, . . . ,Pt−1} are
malicious

1. Simulator takes r ∈R [0, a), but simulates this phase with
r̃ = r̃ (0)(1− b) + r̃ (1)b, where r̃ (b) =

(
r + x (b)

)
mod a

2. Simulator lets the malicious parties construct and prove si . For
Pt , . . . ,Pn−1 he executes the protocol as is. For Pn he takes
sn ∈R [0, 2`x+`s), but simulates with

Js̃nK = Js̃(0)
n (1− b) + s̃

(1)
n bK, where s̃

(b)
n = sn −

(
r + x (b)

)
div a

3. Executes this phase. He obtains
Jx̃K = Jx − r̃ + a

∑n−1

i=1
si + as̃nK = J−r + a

∑n

i=1
siK

4. Simulates the decryption on input Jx̃K and −r + a
∑n

i=1
si

5. Comparison gate is simulated

• r̃ and s̃n indistinguishable from r and sn

13 / 13

	Preliminaries
	Secure Modulo Reduction
	Efficiency Analysis
	Applications
	Conclusions

