Towards Tight Security of Cascaded LRW2

Bart Mennink
Radboud University (The Netherlands)

Theory of Cryptography Conference 2018
November 13, 2018
Tweakable Blockciphers

Diagram:

- m entered into E with key k produces c.
Tweakable Blockciphers

- Tweak: flexibility to the cipher
- Each tweak gives different permutation
Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]
Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

- Internally based on tweakable blockcipher \tilde{E}
 - Tweak (N,index) is unique for every evaluation
 - Different blocks always transformed under different tweak
Tweakable Blockciphers in OCBx

• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
 • Internally based on tweakable blockcipher \tilde{E}
 • Tweak (N, index) is unique for every evaluation
 • Different blocks always transformed under different tweak
 • Security of mode often dictated by that of \tilde{E}
Tweakable Blockcipher Security

- \tilde{E}_k should look like random permutation for every t
- Different tweaks \rightarrow pseudo-independent permutations

\[
\text{Adv}^{\text{stprp}}_{\tilde{E}_k}(D) = \left| \Pr[D \tilde{E}_k, \tilde{E}_k^{-1}] - \Pr[D \tilde{p}, \tilde{p}^{-1}] \right|
\]
Tweakable Blockcipher Security

- \(\tilde{E}_k \) should look like random permutation for every \(t \)
- Different tweaks \(\rightarrow \) pseudo-independent permutations
- \(\mathcal{D} \) tries to determine which oracle it communicates with

\[
\text{Adv}_{\tilde{E}}^{\text{stprr}}(\mathcal{D}) = \left| \Pr \left[\mathcal{D}^{\tilde{E}_k, \tilde{E}_k^{-1}} = 1 \right] - \Pr \left[\mathcal{D}^{\tilde{\pi}, \tilde{\pi}^{-1}} = 1 \right] \right|
\]
Original Constructions

- LRW₁ and LRW₂ by Liskov et al. [LRW02]:

• h is XOR-universal hash
• Related: XEX [Rog04] and relatives
• Tightly secure up to $2^{n/2}$ queries
Cascading LRW$_2$’s

- LRW$_2[\rho]$: concatenation of ρ LRW$_2$’s
- k_1, \ldots, k_ρ and h_1, \ldots, h_ρ independent

\[E_{k_1} \oplus E_{k_2} \oplus \cdots \oplus E_{k_\rho} \]

• Concatenation of ρ LRW$_2$’s
• k_1, \ldots, k_ρ and h_1, \ldots, h_ρ independent
Cascading LRW$_2$’s

$\begin{align*}
\text{LRW}_2[\rho] & : \text{concatenation of } \rho \text{ LRW}_2\text{'s} \\
& = LRW_2[2] \\
\text{k}_1, \ldots, \text{k}_\rho \text{ and } \text{h}_1, \ldots, \text{h}_\rho \text{ independent} \\
\rho = 2 & : \text{secure up to } 2^{2n/3} \text{ queries [LST12,Pro14]} \\
\rho \geq 2 \text{ even} & : \text{secure up to } 2^{\rho n/(\rho+2)} \text{ queries [LS13]} \\
\text{Best attack} & : 2^n \text{ queries}
\end{align*}$
Cascading TEM’s

- TEM[ρ]: concatenation of ρ TEM’s
- P_1, \ldots, P_ρ and h_1, \ldots, h_ρ independent
Cascading TEM’s

- TEM[ρ]: concatenation of ρ TEM’s
- P₁, ..., Pₖ and h₁, ..., hₖ independent

- ρ = 2: secure up to $2^{2n/3}$ queries [CLS15]
- ρ ≥ 2 even: secure up to $2^{\rho n/(\rho+2)}$ queries [CLS15]
- Best attack: $2^{\rho n/\rho+1}$ queries [BKL+12]
State of the Art

LRW$_2$[1]
LRW$_2$[2]
LRW$_2$[3]
LRW$_2$[4]
LRW$_2$[5]
LRW$_2$[6]
LRW$_2$[7]
LRW$_2$[8]
LRW$_2$[9]
LRW$_2$[10]
LRW$_2$[11]

TEM[1]
TEM[2]
TEM[3]
TEM[4]
TEM[5]
TEM[6]
TEM[7]
TEM[8]
TEM[9]
TEM[10]
TEM[11]
Tight Security of Cascaded LRW2?

\[m \oplus h_1(t) \rightarrow E_{k_1} \oplus h_1(t) \oplus h_2(t) \rightarrow E_{k_2} \oplus h_2(t) \rightarrow c \]
Tight Security of Cascaded LRW$_2$?
Tight Security of Cascaded LRW$_2$?

\[
m \oplus h_1(t) \rightarrow E_{k_1} \oplus h_1(t) \oplus h_2(t) \rightarrow E_{k_2} \oplus h_2(t) \rightarrow c
\]

Improved bound (conditionally)

Improved attack (generalized construction)

n/2 \quad 2n/3 \quad 3n/4 \quad n
Tight Security of Cascaded LRW$_2$?

\[
m \oplus h_1(t) \rightarrow E_{k_1} \oplus h_1(t) \oplus h_2(t) \rightarrow E_{k_2} \oplus h_2(t) \rightarrow c
\]

\[
m/2 \rightarrow 2n/3 \rightarrow 3n/4 \rightarrow n
\]

improved bound (conditionally)

improved attack (generalized construction)

Improved Attack

- GCL (Generalized Cascaded LRW$_2$):

\[m \rightarrow E_{k_1} \rightarrow E_{k_2} \rightarrow c \]

\(f_1(t) \)
\(f_2(t) \)
\(f_3(t) \)

- \(f_i \) are arbitrary functions
- \(p_i := E_{k_i} \) are random permutations
Improved Attack

- GCL (Generalized Cascaded LRW$_2$):

\[m \oplus E_{k_1} \oplus E_{k_2} \oplus c \]

- f_i are arbitrary functions
- $p_i := E_{k_i}$ are random permutations

Generic distinguishing attack in $2^{n^{1/2}}2^{3n/4}$ evaluations
• Distinguisher \mathcal{D} makes various queries for two different tweaks: t and t'
Improved Attack: Rationale

- Distinguisher \mathcal{D} makes various queries for two different tweaks: t and t'
- Suppose it makes 4 queries such that
 \[m_1 \oplus f_1(t) = m'_2 \oplus f_1(t') \]
 \[c'_2 \oplus f_3(t') = c_3 \oplus f_3(t) \]
 \[m_3 \oplus f_1(t) = m'_4 \oplus f_1(t') \]
Improved Attack: Rationale

- Distinguisher D makes various queries for two different tweaks: t and t'
- Suppose it makes 4 queries such that:
 \[m_1 \oplus f_1(t) = m'_2 \oplus f_1(t') \]
 \[c'_2 \oplus f_3(t') = c_3 \oplus f_3(t) \]
 \[m_3 \oplus f_1(t) = m'_4 \oplus f_1(t') \]
- Necessarily, \[c_1 \oplus f_3(t) = c'_4 \oplus f_3(t') \]
Improved Attack: Rationale

- Distinguisher D makes various queries for two different tweaks: t and t'
- Suppose it makes 4 queries such that
 \[
 m_1 \oplus f_1(t) = m'_2 \oplus f_1(t') \\
 c'_2 \oplus f_3(t') = c_3 \oplus f_3(t) \\
 m_3 \oplus f_1(t) = m'_4 \oplus f_1(t')
 \]
- Necessarily,
 \[
 c_1 \oplus f_3(t) = c'_4 \oplus f_3(t')
 \]
- Stated differently:
 \[
 m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t') \\
 c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t')
 \]
Improved Attack: Rationale

- Stated differently:
 \[m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t') \]
 \[c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t') \]
Improved Attack: Rationale

- Stated differently:
 \[m_1 \oplus m_2' = m_3 \oplus m_4' = f_1(t) \oplus f_1(t') \]
 \[c_2' \oplus c_3 = c_1 \oplus c_4' = f_3(t) \oplus f_3(t') \]
- But \(D \) does not know \(f_1(t) \oplus f_1(t') \)
Improved Attack: Rationale

• Stated differently:
 \[m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t') \]
 \[c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t') \]

• But \(\mathcal{D} \) does not know \(f_1(t) \oplus f_1(t') \)

• Choose the \(m_i \)'s and \(m'_i \)'s such that for any \(d \), there are \(2^n \) quadruples such that \(m_1 \oplus m'_2 = m_3 \oplus m'_4 = d \)
 (costs \(2^{3n/4} \) queries for both \(t \) and \(t' \))
Improved Attack: Rationale

- Stated differently:
 \[m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t') \]
 \[c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t') \]

- But \(D \) does not know \(f_1(t) \oplus f_1(t') \)

- Choose the \(m_i \)'s and \(m'_i \)'s such that for any \(d \), there are \(2^n \) quadruples such that \(m_1 \oplus m'_2 = m_3 \oplus m'_4 = d \) (costs \(2^{3n/4} \) queries for both \(t \) and \(t' \))

- \(\mathbb{E}[\text{solutions to } c'_2 \oplus c_3 = c_1 \oplus c'_4]? \)
 - 2 if \(d = f_1(t) \oplus f_1(t') \), 1 otherwise
Improved Attack: Rationale

• Stated differently:
 \[m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t') \]
 \[c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t') \]

• But \(\mathcal{D} \) does not know \(f_1(t) \oplus f_1(t') \)

• Choose the \(m_i \)'s and \(m'_i \)'s such that for any \(d \), there are \(2^n \) quadruples such that \(m_1 \oplus m'_2 = m_3 \oplus m'_4 = d \)
 (costs \(2^{3n/4} \) queries for both \(t \) and \(t' \))

• \(\mathbb{E}[\text{solutions to } c'_2 \oplus c_3 = c_1 \oplus c'_4] \)?
 2 if \(d = f_1(t) \oplus f_1(t') \), 1 otherwise

• Extend the number of queries by factor \(n^{1/2} \) to eliminate false positives
Improved Attack: Verification

Theoretical Verification

- Assuming $n \geq 27$, the success probability of D is at least $1/2$
- Analysis consists of properly bounding $\Pr[D \tilde{E}_k = 1]$ and $\Pr[D \tilde{\pi} = 1]$
Improved Attack: Verification

Theoretical Verification
- Assuming $n \geq 27$, the success probability of \mathcal{D} is at least $1/2$
- Analysis consists of properly bounding $\Pr[\mathcal{D} \tilde{E}_k = 1]$ and $\Pr[\mathcal{D} \tilde{\pi} = 1]$

Experimental Verification
- Small-scale implementation for $n = 16, 20, 24$
- N_d is the number of hits $c_2' \oplus c_3 = c_1 \oplus c_4'$

<table>
<thead>
<tr>
<th>n</th>
<th>$n^{1/2} \approx$</th>
<th>q</th>
<th>N_d in real world for $d =$</th>
<th>N_d in ideal world for $d =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_1(t) \oplus f_1(t')$ random</td>
<td>$f_1(t) \oplus f_1(t')$ random</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>$4 \cdot 2^{12}$</td>
<td>256.593750 129.781250</td>
<td>127.093750 127.375000</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>$4 \cdot 2^{15}$</td>
<td>265.531250 133.312500</td>
<td>125.625000 128.750000</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>$4 \cdot 2^{18}$</td>
<td>246.750000 131.375000</td>
<td>120.625000 129.875000</td>
</tr>
</tbody>
</table>
Improved Security Bound

- Cascaded LRW$_2$:

\[
\begin{align*}
 m & \oplus h_1(t) \rightarrow E_{k_1} \oplus h_1(t) \oplus h_2(t) \rightarrow E_{k_2} \oplus h_2(t) \\
 & \rightarrow c
\end{align*}
\]

- E_{k_i} are SPRP-secure
- h_i are 4-wise independent XOR-universal hash
- No tweak is queried more than $2^{n/4}$ times
Improved Security Bound

- Cascaded LRW$_2$:

\[m \oplus E_{k_1} \oplus E_{k_2} \oplus h_1(t) \oplus h_2(t) = c \]

- E_{k_i} are SPRP-secure
- h_i are 4-wise independent XOR-universal hash
- No tweak is queried more than $2^{n/4}$ times

Cascaded LRW$_2$ is secure up to $\approx 2^{3n/4}$ evaluations
Step 1: SPRP Switch

- Replace E_{k_i} by random permutations p_i

![Diagram](image)
Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch
- Replace E_{k_i} by random permutations p_i

![Diagram](image)

Step 2: Patarin’s H-Coefficient Technique
- Main task: given q evaluations of cascaded LRW$_2$, derive lower bound on $\#\{(p_1, p_2)\}$
- Lower bound should hold for the “most likely” transcripts
Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

\[
\begin{align*}
m \oplus h_1(t) &\iff m \oplus h_1(t) \\
h_1(t) \oplus h_2(t) &\iff h_1(t) \oplus h_2(t) \\
c \oplus h_2(t) &\iff c \oplus h_2(t)
\end{align*}
\]
Improving Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

- 2 unknowns: \(X := p_1(m \oplus h_1(t)) \) and \(Y := p_2^{-1}(c \oplus h_2(t)) \)
- 1 equation: \(X \oplus Y = h_1(t) \oplus h_2(t) \)
Step 3: Transform Transcript to Graph (One Tuple)

- 2 unknowns: $X := p_1(m \oplus h_1(t))$ and $Y := p_2^{-1}(c \oplus h_2(t))$
- 1 equation: $X \oplus Y = h_1(t) \oplus h_2(t)$
- Lower bound on $\#\{(p_1, p_2)\}$ related to the number of choices (X, Y)
Step 4: Transform Transcript to Graph (All Tuples)

- \(\bar{m}_1 = m_1 \oplus h_1(t_i) \)
- \(\bar{c}_1 = c_i \oplus h_2(t_i) \)
- \(f(t_i) = h_1(t_i) \oplus h_2(t_i) \)

- \(r_1 \) unknowns for \(p_1 \), \(r_2 \) unknowns for \(p_2 \), and \(q \) equations
Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (All Tuples)

\[
\begin{align*}
\bar{m}_1 & \quad \bar{m}_2 = \bar{m}_3 \\
\bar{c}_1 & \quad \bar{c}_2 \\
\end{align*}
\]

- \(r_1 \) unknowns for \(p_1 \), \(r_2 \) unknowns for \(p_2 \), and \(q \) equations
- Two potential problems:
 1. Graph contains circle
 2. Graph contains path of even length whose labels sum to 0 (degeneracy)

\[
\begin{align*}
\bar{m}_4 = \bar{m}_5 = \bar{m}_6 & \quad \bar{m}_7 \\
\bar{c}_4 & \quad \bar{c}_5 \\
\end{align*}
\]

notation:
\[
\begin{align*}
\bar{m}_i &= m_i \oplus h_1(t_i) \\
\bar{c}_i &= c_i \oplus h_2(t_i) \\
f(t_i) &= h_1(t_i) \oplus h_2(t_i)
\end{align*}
\]
Step 4: Transform Transcript to Graph (All Tuples)

- r_1 unknowns for p_1, r_2 unknowns for p_2, and q equations

- Two potential problems:
 (i) Graph contains circle
 (ii) Graph contains path of even length whose labels sum to 0 (degeneracy)

- If neither of these occurs: one “free choice” for each tree
Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively large tree, the number of possible \((p_1, p_2)\) is at least

\[
\frac{2^n!2^n!}{2^{nq}} \cdot \left(1 - \frac{4q}{2^n}\right)
\]
Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively large tree, the number of possible \((p_1, p_2)\) is at least

\[
\frac{2^n! 2^n!}{2^n q} \cdot \left(1 - \frac{4q}{2^n}\right)
\]

- Lower bound on \(#\{(p_1, p_2)\}\) sufficient to derive \(2^{3n/4}\) security (some technicality involved)
- Violation of (i), (ii), or (iii) with probability at most \(O(q^4/2^{3n})\)
Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively large tree, the number of possible \((p_1, p_2)\) is at least

\[
\frac{2^n!2^n!}{2^{nq}} \cdot \left(1 - \frac{4q}{2^n}\right)
\]

- Lower bound on \#\{\((p_1, p_2)\)\} sufficient to derive \(2^{3n/4}\) security (some technicality involved)
- Violation of (i), (ii), or (iii) with probability at most \(O(q^4/2^{3n})\)
- We apply mirror theory up to the first iteration
Improved Security Bound: Bottlenecks

Excessively Large Tree
- Badness probability relies on
 - tweak limitation
 - 4-wise independence of hash functions

Mirror Theory
- Mirror theory developed for comparison with PRF, not with PRP
- Problem mitigated due to tweak limitation
Conclusion

Cascaded LRW₂ (or LRW₂[2])

- Generic attack in complexity $3n/4$
- $3n/4$ security bound, but conditional
- Security bound carries over to LRW₂[3]–LRW₂[5]
Conclusion

Cascaded LRW$_2$ (or LRW$_2[2]$)

- Generic attack in complexity $3n/4$
- $3n/4$ security bound, but conditional

Challenges

- Tightness of cascaded LRW$_2$ without side conditions?
- Longer cascades of LRW$_2[\rho]$ and TEM[\rho]?

Thank you for your attention!
Updated State of the Art on $\text{LRW}_2[\rho]$

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$n/2$</td>
<td>2$n/3$</td>
<td>3$n/4$</td>
<td>5$n/6$</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gap</td>
<td>gap</td>
<td>gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Updated State of the Art on LRW$_2[\rho]$

- LRW$_2[1]$
- LRW$_2[2]$
- LRW$_2[3]$
- LRW$_2[4]$
- LRW$_2[5]$
- LRW$_2[6]$
- LRW$_2[7]$
- LRW$_2[8]$
- LRW$_2[9]$
- LRW$_2[10]$
- LRW$_2[11]$

- Improved bound (conditionally)
- Improved attack (generalized construction)

- LRW$_2[6]$
- LRW$_2[7]$
- LRW$_2[8]$
- LRW$_2[9]$
- LRW$_2[10]$
- LRW$_2[11]$
Updated State of the Art on $\text{LRW}_2[\rho]$

![Diagram showing the state of the art on $\text{LRW}_2[\rho]$ with improved bounds and attacks.](image)

- **Improved Bound (conditionally):**
 - $n/2$
 - $2n/3$
 - $3n/4$
 - $5n/6$
 - n

- **Improved Attack (generalized construction):**
 - $n/2$
 - $2n/3$
 - $3n/4$
 - $5n/6$
 - n

- **Gaps:**
 - $\text{LRW}_2[1]$
 - $\text{LRW}_2[2]$
 - $\text{LRW}_2[3]$
 - $\text{LRW}_2[4]$
 - $\text{LRW}_2[5]$
 - $\text{LRW}_2[6]$
 - $\text{LRW}_2[7]$
 - $\text{LRW}_2[8]$
 - $\text{LRW}_2[9]$
 - $\text{LRW}_2[10]$
 - $\text{LRW}_2[11]$

- **Carries Over To:**
 - $\text{LRW}_2[3]-\text{LRW}_2[5]$
H-Coefficient Technique

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to “Strong Interpolation Technique” [Ber05]
H-Coefficient Technique

- Patarin [Pat91, Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to “Strong Interpolation Technique” [Ber05]

![Diagram showing O and P boxes with distinguisher D arrowed between them.]

Basic idea:
- Each conversation defines a transcript τ
- $O \approx P$ for most of the transcripts
- Remaining transcripts occur with small probability
H-Coefficient Technique

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to “Strong Interpolation Technique” [Ber05]

Basic idea:
- Each conversation defines a transcript τ
H-Coefficient Technique

- Patarin [Pat91, Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to “Strong Interpolation Technique” [Ber05]

Basic idea:
- Each conversation defines a transcript τ
- $O \approx P$ for most of the transcripts
H-Coefficient Technique

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to “Strong Interpolation Technique” [Ber05]

Basic idea:
- Each conversation defines a transcript τ
- $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts
- Remaining transcripts occur with small probability
H-Coefficient Technique

- \mathcal{D} is computationally unbounded and deterministic
- Each conversation defines a transcript τ

Lemma
Let $\epsilon \geq 0$ be such that for all good transcripts τ:

$$\Pr[O \text{ gives } \tau] \geq 1 - \epsilon$$

Then,

$$\Delta \mathcal{D}(O; P) \leq \epsilon + \Pr[\text{bad transcript for } P]$$

Trade-off: define bad transcripts smartly!
H-Coefficient Technique

- \mathcal{D} is \textit{computationally unbounded} and \textit{deterministic}
- Each conversation defines a transcript τ
- Consider \textit{good} and \textit{bad} transcripts

\[\text{Lemma} \]
Let $\varepsilon \geq 0$ be such that for all good transcripts τ:
\[
\Pr[O \text{ gives } \tau] - \Pr[P \text{ gives } \tau] \geq 1 - \varepsilon
\]
Then,
\[
\Delta_D(O; P) \leq \varepsilon + \Pr[\text{bad transcript for } P]
\]
Trade-off: define bad transcripts smartly!
H-Coefficient Technique

• \(\mathcal{D} \) is computationally unbounded and deterministic
• Each conversation defines a transcript \(\tau \)
• Consider good and bad transcripts

Lemma

Let \(\varepsilon \geq 0 \) be such that for all good transcripts \(\tau \):

\[
\frac{\Pr[\mathcal{O} \text{ gives } \tau]}{\Pr[\mathcal{P} \text{ gives } \tau]} \geq 1 - \varepsilon
\]

Then, \(\Delta_D(\mathcal{O}; P) \leq \varepsilon + \Pr[\text{bad transcript for } \mathcal{P}] \)
H-Coefficient Technique

- D is computationally unbounded and deterministic
- Each conversation defines a transcript τ
- Consider good and bad transcripts

Lemma
Let $\epsilon \geq 0$ be such that for all good transcripts τ:

\[
\frac{\Pr[\mathcal{O} \text{ gives } \tau]}{\Pr[\mathcal{P} \text{ gives } \tau]} \geq 1 - \epsilon
\]

Then, $\Delta_D(\mathcal{O}; P) \leq \epsilon + \Pr[\text{bad transcript for } \mathcal{P}]$

Trade-off: define bad transcripts smartly!
System of Equations

- Consider \(r \) distinct unknowns \(\mathcal{P} = \{P_1, \ldots, P_r\} \)
- Consider a system of \(q \) equations of the form:

\[
\begin{align*}
P_{a_1} \oplus P_{b_1} &= \lambda_1 \\
P_{a_2} \oplus P_{b_2} &= \lambda_2 \\
&\vdots \\
P_{a_q} \oplus P_{b_q} &= \lambda_q
\end{align*}
\]

for some surjection \(\varphi : \{a_1, b_1, \ldots, a_q, b_q\} \rightarrow \{1, \ldots, r\} \)
System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \ldots, P_r\}$
- Consider a system of q equations of the form:
 \begin{align*}
 P_{a_1} \oplus P_{b_1} &= \lambda_1 \\
 P_{a_2} \oplus P_{b_2} &= \lambda_2 \\
 \vdots \\
 P_{a_q} \oplus P_{b_q} &= \lambda_q
 \end{align*}

 for some surjection $\varphi : \{a_1, b_1, \ldots, a_q, b_q\} \rightarrow \{1, \ldots, r\}$

Goal

- Lower bound on the number of solutions to \mathcal{P} such that $P_a \neq P_b$ for all distinct $a, b \in \{1, \ldots, r\}$
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
</tbody>
</table>
Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
</tbody>
</table>
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $O(\cdot)$</td>
</tr>
</tbody>
</table>
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $\mathcal{O}(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
</tbody>
</table>
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $O(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
</tbody>
</table>
Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $O(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>AFRICACRYPT 2008</td>
<td>Benes</td>
<td></td>
</tr>
</tbody>
</table>
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $O(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>AFRICACRYPT 2008</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/287</td>
<td>XoP</td>
<td>Concrete bound</td>
</tr>
</tbody>
</table>
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>AFRICACRYPT 2008</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/287</td>
<td>XoP</td>
<td>Concrete bound</td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/293</td>
<td>Feistel</td>
<td></td>
</tr>
</tbody>
</table>
Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $\mathcal{O}(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>AFRICACRYPT 2008</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/287</td>
<td>XoP</td>
<td>Concrete bound</td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/293</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2013/368</td>
<td>XoP</td>
<td></td>
</tr>
</tbody>
</table>
Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $\mathcal{O}(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>AFRICACRYPT 2008</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/287</td>
<td>XoP</td>
<td>Concrete bound</td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/293</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2013/368</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Cogliati, Lampe, Patarin</td>
<td>FSE 2014</td>
<td>XoP</td>
<td></td>
</tr>
</tbody>
</table>
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $O(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>AFRICACRYPT 2008</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/287</td>
<td>XoP</td>
<td>Concrete bound</td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/293</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2013/368</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Cogliati, Lampe, Patarin</td>
<td>FSE 2014</td>
<td>XoPd</td>
<td></td>
</tr>
<tr>
<td>Volte, Nachev, Marrière</td>
<td>ePrint 2016/136</td>
<td>Feistel</td>
<td></td>
</tr>
</tbody>
</table>
Mirror Theory

Patarin’s Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Publication</th>
<th>Application</th>
<th>Mirror Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patarin</td>
<td>CRYPTO 2003</td>
<td>Feistel</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>Patarin</td>
<td>CRYPTO 2004</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICISC 2005</td>
<td>Feistel</td>
<td>Optimal in $\mathcal{O}(\cdot)$</td>
</tr>
<tr>
<td>Patarin, Montreuil</td>
<td>ICISC 2005</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ICITS 2008</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>AFRICACRYPT 2008</td>
<td>Benes</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/287</td>
<td>XoP</td>
<td>Concrete bound</td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2010/293</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Patarin</td>
<td>ePrint 2013/368</td>
<td>XoP</td>
<td></td>
</tr>
<tr>
<td>Cogliati, Lampe, Patarin</td>
<td>FSE 2014</td>
<td>XoPd</td>
<td></td>
</tr>
<tr>
<td>Volte, Nachef, Marrière</td>
<td>ePrint 2016/136</td>
<td>Feistel</td>
<td></td>
</tr>
<tr>
<td>Iwata, Mennink, Vizár</td>
<td>ePrint 2016/1087</td>
<td>CENC</td>
<td></td>
</tr>
</tbody>
</table>
Mirror Theory

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \ldots, P_r\}$
- System of equations $P_a \oplus P_b = \lambda_i$
- Surjection $\varphi : \{a_1, b_1, \ldots, a_q, b_q\} \rightarrow \{1, \ldots, r\}$

Graph Based View
Mirror Theory: Toy Example 1

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_b \oplus P_c = \lambda_2 \]
Mirror Theory: Toy Example 1

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_b \oplus P_c = \lambda_2 \]

If \(\lambda_1 = 0 \) or \(\lambda_2 = 0 \) or \(\lambda_1 = \lambda_2 \)
- Contradiction: \(P_a = P_b \) or \(P_b = P_c \) or \(P_a = P_c \)
- Scheme is degenerate
Mirror Theory: Toy Example 1

- System of equations:
 \[
 \begin{align*}
 P_a \oplus P_b &= \lambda_1 \\
 P_b \oplus P_c &= \lambda_2
 \end{align*}
 \]

If \(\lambda_1 = 0 \) or \(\lambda_2 = 0 \) or \(\lambda_1 = \lambda_2 \)
- Contradiction: \(P_a = P_b \) or \(P_b = P_c \) or \(P_a = P_c \)
- Scheme is degenerate

If \(\lambda_1, \lambda_2 \neq 0 \) and \(\lambda_1 \neq \lambda_2 \)
- \(2^n \) choices for \(P_a \)
Mirror Theory: Toy Example 1

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_b \oplus P_c = \lambda_2 \]

 If \(\lambda_1 = 0 \) or \(\lambda_2 = 0 \) or \(\lambda_1 = \lambda_2 \)
 - Contradiction: \(P_a = P_b \) or \(P_b = P_c \) or \(P_a = P_c \)
 - Scheme is degenerate

If \(\lambda_1, \lambda_2 \neq 0 \) and \(\lambda_1 \neq \lambda_2 \)
- \(2^n \) choices for \(P_a \)
- Fixes \(P_b = \lambda_1 \oplus P_a \) (which is \(\neq P_a \) as desired)
Mirror Theory: Toy Example 1

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_b \oplus P_c = \lambda_2 \]

If \(\lambda_1 = 0 \) or \(\lambda_2 = 0 \) or \(\lambda_1 = \lambda_2 \)
- Contradiction: \(P_a = P_b \) or \(P_b = P_c \) or \(P_a = P_c \)
- Scheme is degenerate

If \(\lambda_1, \lambda_2 \neq 0 \) and \(\lambda_1 \neq \lambda_2 \)
- \(2^n \) choices for \(P_a \)
- Fixes \(P_b = \lambda_1 \oplus P_a \) (which is \(\neq P_a \) as desired)
- Fixes \(P_c = \lambda_2 \oplus P_b \) (which is \(\neq P_a, P_b \) as desired)
Mirror Theory: Toy Example 2

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_c \oplus P_d = \lambda_2 \]
Mirror Theory: Toy Example 2

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_c \oplus P_d = \lambda_2 \]

If \(\lambda_1 = 0 \) or \(\lambda_2 = 0 \)
- Contradiction: \(P_a = P_b \) or \(P_b = P_c \)
- Scheme is degenerate
Mirror Theory: Toy Example 2

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_c \oplus P_d = \lambda_2 \]

If \(\lambda_1 = 0 \) or \(\lambda_2 = 0 \)
- Contradiction: \(P_a = P_b \) or \(P_b = P_c \)
- Scheme is degenerate

If \(\lambda_1, \lambda_2 \neq 0 \)
- \(2^n \) choices for \(P_a \) (which fixes \(P_b \)
Mirror Theory: Toy Example 2

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_c \oplus P_d = \lambda_2 \]

If \(\lambda_1 = 0 \) or \(\lambda_2 = 0 \)
- Contradiction: \(P_a = P_b \) or \(P_b = P_c \)
- Scheme is degenerate

If \(\lambda_1, \lambda_2 \neq 0 \)
- \(2^n \) choices for \(P_a \) (which fixes \(P_b \))
- For \(P_c \) and \(P_d \) we require
 - \(P_c \neq P_a, P_b \)
 - \(P_d = \lambda_2 \oplus P_c \neq P_a, P_b \)
Mirror Theory: Toy Example 2

• System of equations:
 \[P_a \oplus P_b = \lambda_1\]
 \[P_c \oplus P_d = \lambda_2\]

If \(\lambda_1 = 0\) or \(\lambda_2 = 0\)
• Contradiction: \(P_a = P_b\) or \(P_b = P_c\)
• Scheme is degenerate

If \(\lambda_1, \lambda_2 \neq 0\)
• \(2^n\) choices for \(P_a\) (which fixes \(P_b\))
• For \(P_c\) and \(P_d\) we require
 • \(P_c \neq P_a, P_b\)
 • \(P_d = \lambda_2 \oplus P_c \neq P_a, P_b\)
• At least \(2^n - 4\) choices for \(P_c\) (which fixes \(P_d\))
Mirror Theory: Toy Example 3

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_b \oplus P_c = \lambda_2 \]
 \[P_c \oplus P_a = \lambda_3 \]
- Assume \(\lambda_i \neq 0 \) and \(\lambda_i \neq \lambda_j \)
Mirror Theory: Toy Example 3

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_b \oplus P_c = \lambda_2 \]
 \[P_c \oplus P_a = \lambda_3 \]

- Assume \(\lambda_i \neq 0 \) and \(\lambda_i \neq \lambda_j \)

If \(\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0 \)

- Contradiction: equations sum to \(0 = \lambda_1 \oplus \lambda_2 \oplus \lambda_3 \)
- Scheme contains a circle
Mirror Theory: Toy Example 3

- System of equations:
 \[P_a \oplus P_b = \lambda_1 \]
 \[P_b \oplus P_c = \lambda_2 \]
 \[P_c \oplus P_a = \lambda_3 \]

- Assume \(\lambda_i \neq 0 \) and \(\lambda_i \neq \lambda_j \)

If \(\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0 \)

- Contradiction: equations sum to \(0 = \lambda_1 \oplus \lambda_2 \oplus \lambda_3 \)
- Scheme contains a circle

If \(\lambda_1 \oplus \lambda_2 \oplus \lambda_3 = 0 \)

- One redundant equation, no contradiction
- Still counted as circle
Mirror Theory: Two Problematic Cases

Circle

\[P_{b1} = P_{a2} \]
\[\lambda_1 \]
\[P_{a1} = P_{b5} \]
\[\lambda_5 \]
\[P_{b4} = P_{a5} \]
\[\lambda_4 \]
\[P_{b3} = P_{a4} \]

\[P_{b2} = P_{a3} \]
\[\lambda_2 \]

Degeneracy

\[P_{a1} = P_{a2} \]
\[\lambda_1 \]
\[P_{b1} \]
\[\lambda_2 \]
\[P_{b2} = P_{a3} \]
\[\lambda_3 \]
\[P_{a4} \]
\[\lambda_4 \]
\[P_{b3} = P_{b4} = P_{a5} \]
\[\lambda_5 \]
\[P_{b5} = P_{a6} \]
\[\lambda_6 \]
\[P_{b6} = P_{b7} \]
\[\lambda_7 \]
\[\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_7 \]
Mirror Theory: Main Result

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \ldots, P_r\}$
- System of equations $P_{a_i} \oplus P_{b_i} = \lambda_i$
- Surjection $\varphi: \{a_1, b_1, \ldots, a_q, b_q\} \rightarrow \{1, \ldots, r\}$

Main Result

If the system of equations is circle-free and non-degenerate, the number of solutions to \mathcal{P} such that $P_a \neq P_b$ for all distinct $a, b \in \{1, \ldots, r\}$ is at least

$$\frac{(2^n)_r}{2^{nq}}$$

provided the maximum tree size ξ satisfies $(\xi - 1)^2 \cdot r \leq 2^n/67$
General Setting

- Adversary gets transcript \(\tau = \{(x_1, y_1), \ldots, (x_q, y_q)\} \)
Mirror Theory Applied to XoP

General Setting

- Adversary gets transcript \(\tau = \{(x_1, y_1), \ldots, (x_q, y_q)\} \)
- Each tuple corresponds to \(x_i \leftrightarrow p(0||x_i) =: P_{a_i} \) and
 \[x_i \leftrightarrow p(1||x_i) =: P_{b_i} \]
General Setting

- Adversary gets transcript $\tau = \{(x_1, y_1), \ldots, (x_q, y_q)\}$
- Each tuple corresponds to $x_i \mapsto p(0 \| x_i) =: P_{a_i}$ and $x_i \mapsto p(1 \| x_i) =: P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = y_i$
Mirror Theory Applied to XoP

General Setting

- Adversary gets transcript $\tau = \{(x_1, y_1), \ldots, (x_q, y_q)\}$
- Each tuple corresponds to $x_i \mapsto p(0 \parallel x_i) =: P_{a_i}$ and $x_i \mapsto p(1 \parallel x_i) =: P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = y_i$
- Inputs to p are all distinct: $2q$ unknowns
Applying Mirror Theory

- Circle-free: no collisions in inputs to P
- Non-degenerate: provided that $y_i \neq 0$ for all i

Call this a bad transcript

Maximum tree size 2^{q}

If $2^{q} \leq \frac{2^n}{67}$: at least 2^{nq} solutions to unknowns
Applying Mirror Theory

- **Circle-free**: no collisions in inputs to p
- **Non-degenerate**: provided that $y_i \neq 0$ for all i
 \[\rightarrow\text{ Call this a bad transcript}\]
- **Maximum tree size** 2
Applying Mirror Theory

- **Circle-free**: no collisions in inputs to p
- **Non-degenerate**: provided that $y_i \neq 0$ for all i
 \rightarrow Call this a bad transcript
- **Maximum tree size 2**
- **If** $2q \leq 2^n/67$: at least $\frac{(2^n)^2q}{2^{nq}}$ solutions to unknowns
H-Coefficient Technique [Pat91,Pat08,CS14]

Let \(\varepsilon \geq 0 \) be such that for all good transcripts \(\tau \):

\[
\frac{\Pr[XoP \text{ gives } \tau]}{\Pr[f \text{ gives } \tau]} \geq 1 - \varepsilon
\]

Then, \(\text{Adv}^{\text{prf}}_{XoP}(q) \leq \varepsilon + \Pr[\text{bad transcript for } f] \)
H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ:

$$\frac{\Pr[\text{XoP gives } \tau]}{\Pr[f \text{ gives } \tau]} \geq 1 - \varepsilon$$

Then, $\text{Adv}_{\text{XoP}}^{\text{prf}}(q) \leq \varepsilon + \Pr[\text{bad transcript for } f]$.

- **Bad transcript**: if $y_i = 0$ for some i
 - $\Pr[\text{bad transcript for } f] = q/2^n$
Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ:

$$\frac{\Pr[\text{XoP gives } \tau]}{\Pr[f \text{ gives } \tau]} \geq 1 - \varepsilon$$

Then, $\text{Adv}_{\text{XoP}}^\text{prf}(q) \leq \varepsilon + \Pr[\text{bad transcript for } f]$.

- **Bad transcript**: if $y_i = 0$ for some i
 - $\Pr[\text{bad transcript for } f] = q/2^n$
- **For any good transcript**:
 - $\Pr[\text{XoP gives } \tau] \geq \frac{(2^n)^2q}{2^{nq}} \cdot \frac{1}{(2^n)^2q}$
Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ:

$$\frac{\Pr[\text{XoP gives } \tau]}{\Pr[f \text{ gives } \tau]} \geq 1 - \varepsilon$$

Then, $\text{Adv}^\text{prf}_{\text{XoP}}(q) \leq \varepsilon + \Pr[\text{bad transcript for } f]$

- **Bad transcript**: if $y_i = 0$ for some i
 - $\Pr[\text{bad transcript for } f] = q/2^n$
- **For any good transcript**:
 - $\Pr[\text{XoP gives } \tau] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$
 - $\Pr[f \text{ gives } \tau] = \frac{1}{2^{nq}}$
Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ:

\[
\frac{\Pr[\text{XoP gives } \tau]}{\Pr[\text{f gives } \tau]} \geq 1 - \varepsilon
\]

Then, $\text{Adv}_{\text{XoP}}^{\text{prf}}(q) \leq \varepsilon + \Pr[\text{bad transcript for } f]$

- **Bad transcript**: if $y_i = 0$ for some i
 - $\Pr[\text{bad transcript for } f] = \frac{q}{2^n}$

- **For any good transcript**:
 - $\Pr[\text{XoP gives } \tau] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$
 - $\Pr[\text{f gives } \tau] = \frac{1}{2^{nq}}$

\[\varepsilon = 0\]
Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ:

$$\frac{\Pr[\text{XoP gives } \tau]}{\Pr[\text{f gives } \tau]} \geq 1 - \varepsilon$$

Then, $\text{Adv}^\text{prf}_{\text{XoP}}(q) \leq \varepsilon + \Pr[\text{bad transcript for } f]$

- **Bad transcript:** if $y_i = 0$ for some i
 - $\Pr[\text{bad transcript for } f] = q/2^n$
- **For any good transcript:**
 - $\Pr[\text{XoP gives } \tau] \geq \frac{(2^n)^2q}{2^{nq}} \cdot \frac{1}{(2^n)^2q}$
 - $\Pr[\text{f gives } \tau] = \frac{1}{2^{nq}}$

 $$\text{Adv}^\text{prf}_{\text{XoP}}(q) \leq q/2^n$$
New Look at Mirror Theory

Mennink, Neves, CRYPTO 2017

- Refurbish and modernize mirror theory
- Prove optimal PRF security of:

E(WC)DM [CS16]

```
x --- p1 --> p2 --> y
h(m)--------
```

EDMD

```
x --- p1 --> p2 --> y
```