IRMA: practical, decentralized and privacy-friendly
identity management using smartphones

Gergely Alpér't, Fabian van den Broek', Brinda Hampihol,
Bart Jacobst, Wouter Lueks*, Sietse Ringers?

*IMDEA Software Institute, Madrid, Spain
Open University, Heerlen, The Netherlands
‘Radboud University, Nijmegen, The Netherlands

1. INTRODUCTION

Whenever we need to do something serious online, we need
to authenticate ourselves. Not only do we tell the website
who we are, we also tell Google or Facebook what we are
doing if we use their convenient identity services. Often,
however, we would not need to authenticate to prove that
we are eligible to access a service. Hence, we unnecessarily
reduce our privacy.

In theory, attribute-based credentials (ABCs) allow us
to put privacy first. Using ABCs we can prove (without
involving third parties) a minimal set of attributes about
ourselves to access a service. In practice, however, service
providers cannot easily use ABCs. Existing software focuses
on the cryptography, leaving the building of the ecosystem
and user-friendly applications to others.

In this talk we will introduce the IRMA projectE] which
focuses on making ABCs practical. IRMA builds an ABC
ecosystem using open source software that is easy to use for
users, service providers, and issuers. Users manage and con-
trol their credentials using a smartphone application: the
IRMA app. Service providers and issuers can use the IRMA
JavaScript library and the IRMA API server to interact with
the IRMA app without needing to worry about (compli-
cated) cryptographic operations.

2. ATTRIBUTE-BASED CREDENTIALS

Attributes, such as nationality, sex, name, social secu-
rity number, and date of birth, describe individuals. An
attribute-based credential is a cryptographic container of at-
tributes that is issued and digitally signed by an issuer.

To prove properties about herself, a user can selectively
disclose a subset of the attributes in a credential to a service
provider. Even though some attributes might be hidden, the
service provider can still verify the validity of the revealed at-
tributes. Furthermore, disclosure proofs are unlinkable: ser-
vice providers cannot distinguish different credentials with
the same set of disclosed attributes.

ABCGs are very privacy friendly. Users minimize the data
they reveal to service providers by disclosing only relevant
attributes. The unlinkability of proofs ensures that users are
as anonymous as their disclosed attributes allow.

The IRMA project implements Idemix |1, an ABC scheme
developed by IBM Ziirich, and later refined in the ABC4Trust

TRMA stands for ‘I Reveal My Attributes’, see
https://irmacard.org and https://privacybydesign.
foundation/irma. The following movie gives a quick intro-
duction: https://www.youtube.com/watch?v=q6IihEQFPys

Authorize ; @

with IRMA ‘b disclose The Netherlands

country?

1 X)

Figure 1: From left to right: example of using the
IRMA app to disclose an attribute to a website.

project. In contrast to the Idemix cryptographic library,
IRMA does not implement all possible cryptographic fea-
tures. Instead, it focuses on the basic attribute-based cre-
dentials, preferring simplicity over complexity. In our expe-
rience, this simplicity does not restrict the system much in
practice. For example, while we do not support domain spe-
cific pseudonyms or range proofs, we have found that these
can often be simulated using simple attributes.

Restricting IRMA to only credentials and attributes makes
the system simpler as a whole, and it has the additional ben-
efit that users always have to make the same decision: do I
want to show this attribute or not?

3. EASY FOR USERS

An attribute-based credentials ecosystem contains several
attribute providers that issue credentials. These credentials
can then be used at many service providers. To allow users
to store, use and manage their credentials, the IRMA project
provides a wallet-like smartphone application: the IRMA
app (currently, only on Android). Earlier versions of IRMA
used smart cards as a credential carrier [3], but we found
that using them places a heavy burden on users.

Figure[I]shows how a user uses her app to show credentials
to a website. To connect her IRMA app to the website, she
first scans a QR codef] She is then asked to confirm the
disclosure of attributes—to simplify the user interface, the
app focuses solely on attributes rather than the credentials
within which these are contained—Dbefore the result is sent
back to the website. Users obtain credentials using a similar
procedure. Because of the use of ABCs, showing credentials
is decentralized: the application interacts directly with the
service provider; the issuer is not involved.

Since all credentials are contained in the IRMA app, the
user remains in control. Without access to the application,
credentials cannot be shown. In fact, the user can determine

2When the user visits the website on her Android device,
she is immediately redirected to the IRMA app.


https://irmacard.org
https://privacybydesign.foundation/irma
https://privacybydesign.foundation/irma
https://www.youtube.com/watch?v=q6IihEQFPys

when and where she reveals certain attributes. The applica-
tion also allows the user to view credentials, remove them,
and see a usage log.

4. EASY FOR SERVICE PROVIDERS AND
ISSUERS

To provide strong privacy and security guarantees, ABCs
require cryptographic techniques that are somewhat non-
standard. The IRMA app handles the cryptography on the
user’s side. However, issuers and service providers need to
perform similarly complicated cryptographic operations to
issue new credentials and verify existing ones, respectively.
While some libraries exist to handle the cryptographic de-
tails, they can be difficult to integrate into a website.

IRMA makes it easy for service providers and credential
issuers to integrate ABCs into their platforms. Consider a
website, i.e. service provider, that restricts access to certain
resources. Using IRMA, it can specify its authorization pol-
icy in terms of attributes. The IRMA stack consisting of
the irma.js JavaScript library, embedded in the website, and
the IRMA API server, deployed by the service provider (or
third party), takes care of all the details.

The entire interaction is depicted in Figure 2] To ver-
ify some attributes, the service provider makes a simple
JSON description of these attributes and calls irma.js. The
JavaScript library contacts the IRMA API server and dis-
plays the QR code (or redirects to the IRMA app directly
on Android). The IRMA app obtains the request from the
IRMA API server and, after user confirmation, returns the
disclosure proof. Eventually, the library returns a JSON
Web Token (signed by the API server) summarizing the re-
quested attributes and their validity. Since JSON Web To-
kens (JWTs) are standardized, they can easily be processed
in the service provider’s backend software.

Issuing credentials is equally simple. The issuer sends a
JWT describing the credentials it wants to issue to the API
server by making a simple irma.js call. The API server issues
the requested credentials using the issuer’s Idemix keys.

Issuers and service providers need to trust the API server.
In particular, they trust the API server to correctly ver-
ify credentials and to issue credentials only when requested.
Therefore, we made it easy for parties to configure and run
their own API server. We fully expect large websites to run
their own, whereas others might use verification or issuance
as a (commercial) service. Having many API servers also
mitigates the privacy risk that having only one API server
would cause. However, to make it easy to get started with
IRMA, we also run a public API server operating in a demo
domain for testing purposes.

S. CHALLENGES

Deploying IRMA is not without its challenges. First of all,
TRMA suffers from the classic chicken and egg problem: why
would you want IRMA attributes when nobody uses them,
and why would you issue IRMA credentials when nobody
wants them? To ease bootstrapping within the Netherlands,
we reissue attributes from several trusted sources: (1) Dutch
passports and driver’s licenses after electronically verifying
them, (2) the bank identification system iDIN, and (3) the
academic federated identity system SURFconext.

However, we believe that the flexibility of IRMA and the
fact that everybody can issue and verify credentials easily

website
5b. result (JWT) SP backend
. . 5a. result (JWT)
irma.js
1. setup verification
IRMA
2. QR code API
3. verification request server
IRMA
app 4. disclosure proof
Figure 2: Example of interaction between irma.js,

IRMA API server, IRMA app and service provider
(SP) backend when verifying some attributes.

makes it straightforward to try it out, even without boot-
strapping. In particular small, self-contained projects that
nevertheless require strong authentication can benefit from
IRMA. In fact, our experiments show that it is simple for
developers to integrate IRMA into their platforms.

Another challenge is how to offer good privacy protection.
While IRMA protects the user’s privacy at the application
layer, the network layer may still deanonymize the user (for
example because of her IP address). We plan to make the
IRMA app communicate via Tor [2] in order to hide these
network layer identifiers.

Finally, the IRMA app protects valuable credentials and
keys. Any attacker that obtains these can easily impersonate
the user. We have a preliminary solution to protect the
user’s keys, but for now this requires a strong assumption.

6. CONCLUSIONS

We hope that this talk inspires you to try out IRMA and
use attribute-based credentials in your next project. We are
looking forward to discuss what would make you use IRMA
and how it could be improved. All IRMA code is open source
and freely available on GitHub, see https://github.com/
credentials. The IRMA app is also available in the Google
Play store. We refer developers to https://credentials.
github.io|for an introduction to our ecosystem.

Acknowledgements.

We would like to thank Maarten Everts, Jaap-Henk Hoep-
man, Koen van Ingen, Ronny Wichers Schreur, and Pim
Vullers for their earlier contributions to the IRMA project.

7. REFERENCES

[1] J. Camenisch and A. Lysyanskaya. A Signature Scheme
with Efficient Protocols. In SCN 2002, volume 2576 of
LNCS, pages 268-289. Springer, 2003.

[2] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor:
The second-generation onion router. In USENIX
Security Symposium, pages 303-320. USENIX, 2004.

[3] P. Vullers and G. Alpér. Efficient selective disclosure on
smart cards using idemix. In IDMAN 20183, volume 396
of IFIP AICT, pages 53-67. Springer, 2013.


https://github.com/credentials
https://github.com/credentials
https://credentials.github.io
https://credentials.github.io

	Introduction
	Attribute-based credentials
	Easy for users
	Easy for service providers and issuers
	Challenges
	Conclusions
	References

