
Notes on the Abadi-Plotkin logic for parmetricity

Dan Frumin

Last updated: December 13, 2019

Abadi-Plotkin logic (APL) is a second-order multi-sorted logic where one
is allowed to quantify over terms, predicates (types), and relations. The logic
is presented in the paper “A Logic for Parametric Polymorphism” by Gordon
Plotkin and Mart́ın Abadi [1]. The aim of this document is to fill out some of
the details and proof that have been omitted in the paper, as well as give more
examples.

1 Types, terms, and relations

Types and terms are those of System F:

Types A ::= X | A→ B | ∀X.A

Terms t ::= x | λx : A.t | t t | ΛX.t | tA
where X and x range over type and term variables, respectively.

Substitution of relations for variables in types is defined recursively. If A[X]
is a type with a free variable X, then the substitution A[R] for a relation R ⊆
B × C is a relation A[R] ⊆ A[B]×A[C] defined as

• X[R] = R and Y [R] = Y if Y 6= X

• (A→ A′)[R] = A[R]→ A′[R]

• (∀Y.A[X,Y])[R] = ∀Y,Z, F ⊆ Y × Z.A[R,F]

We write u[A[R]]t for the proposition (A[R])(u, t).

Definition 1. Given a function f : A → B we define the graph of f as the
relation 〈f〉 s.t. 〈f〉(x, y) ⇐⇒ f x = y.

Definition 2. We denote the identity relation 〈idX〉 on a type X as IX .

1

1.1 Positivity and negativity

(.. or covariance and contravariance)
For the next section we will need to distinguish between covariant (positive)

occurrences of free variables and contravariant (negative). Essentially, if A[X]
is covariant in X and f : C → D is a function/term, then we have a substitution
A[f] : A[C]→ A[D]. If A is contravariant in X, then this substitution yields a
term A[f] : A[D]→ A[C].

pos var
A = X

A[X] pos

neg pos var not
A = Y 6= X

A[X] pos , A[X] neg

pos arr

A[X] neg
B[X] pos

(A[X]→ B[X]) pos
neg arr

A[X] pos
B[X] neg

(A[X]→ B[X]) neg

pos forall
A[X,Y] pos in X

(∀Y.A[X,Y]) pos
neg forall

A[X,Y] neg in X

(∀Y.A[X,Y]) neg

2 Dinaturality

Let F [Y,X] be covariant in X and contravariant in Y . In other words, if f :
X → X ′ and g : Y ′ → Y , F [g, f] : F [Y,X]→ F [Y ′, X ′]. Particularly,

F [idX , f] : F [X,X]→ F [X,Y]

F [f, idY] : F [Y, Y]→ F [X,Y]

for f : X → Y .
Dinaturality (for F) states that

∀XY ∀f : X → Y.F [idX , f] ◦ (−)X = F [f, idY] ◦ (−)Y

where (−)X is λu.uX for u : ∀X.F [X,X]. By using dinaturality we can
prove properties like canonicity of certain encodings.

Example 3. The unit type can be encoded in System F as 1 = ∀X.X → X,
with an element ∗ := ΛX.λx : X.x.

The unit typed is obtained from a bifunctor A[Y,X] = Y → X; hence 1 =
∀X.A[X,X]. By calculation, we have A[idX , f] : (X → X) → X → Y = f ◦ −
and A[f, idY] : (Y → Y) → X → Y = − ◦ f . Hence, dinaturality for A states
that for any u : 1

f ◦ uX = uY ◦ f

2

Let X be an arbitrary type and x0 : X an arbitrary term of that type. The
consider dinaturality for f : X → X := λx.x0.

∀x.f(uX(x)) = uX(f(x))

in other words, x0 = uX(x0). Because X and x0 were arbitrary, we can
conclude (using the η-rules and congruence rules) that any u : 1 “behaves like”
the identity ∗. Formally, we can prove u = ∗ in APL.

2.1 Dinaturality categorically

More generally, let A,B : Cop × C → C be bi(endo)functors. A natural trans-
formation t : A ⇒ B is dinatural if for any f : X → Y the following diagram
commutes.

A[X,X]
tX // B[X,X]

B[idX ,f]

%%
A[Y,X]

A[f,idX]
99

A[idY ,f] %%

B[X,Y]

A[Y, Y]
tY
// B[Y, Y]

B[f,idX]

99

By picking A to be a terminal bifunctor we can recover the previously men-
tioned formula for dinaturality. In this setting, terms t : ∀X.F [X,X] are inter-
preted as dinatural transformations tX : 1→ F [X,X].

3 Parametricity schema

Parametricity states that

∀Y1, . . . , Yn∀(u : ∀X.A[X, Ȳ]).u[∀X.A[X, IY1
, . . . , IYn

]]u

By unfolding the definition of [∀X. . . .] and removing the parameters we get
a simplified version

∀(u : ∀X.A[X]).∀Y,Z,R ⊆ Y × Z.uY [A[R]]uZ

Lemma 4 (Identity extension lemma). For any A[X] it is provable in APL that

∀X∀(u, v : A[X]).u[A[IX]]v ⇐⇒ u = v

Proof. By induction on A, extending the statement to multiple parameters.

The following lemma is dubbed “logical relations lemma” because it (roughly)
states that plugging in related values in a term result in related expressions.

3

Lemma 5 (Logical relations lemma). For any term x1 : A1[X], . . . , xn : An[X] `
t[x1, . . . , xn] : B we have

∀X,Y ∀R ⊂ X × Y ∀x1 : A1[X], . . . , xn : An[X]∀y1 : A1[Y], . . . , yn : An[Y]

(
∧
i

A[R](xi, yi)) =⇒ B[R](t[x1, . . . , xn], t[y1, . . . , yn])

Proof. By induction on the derivation x1 : A1[X], . . . , xn : An[X] ` t[x1, . . . , xn] :
B.

Lemma 6. Dinaturality is a consequence of parametricity.

Proof. Let F be a bifunctor, we are to show

∀XY ∀f : X → Y.F [idX , f] ◦ (−)X = F [f, idY] ◦ (−)Y

So let X,Y be types, f : X → Y be a term, and let u : ∀X.F [X,X]. By the
η-rule it suffices to show:

F [idx, f](uX) = F [f, idY](uY)

By parametricity we have

uX [F [〈f〉, 〈f〉]]uY

We are going to show (F [idX , f], F [f, idY]) ∈ [F [〈f〉, 〈f〉]→ F [IX , IY]]; then
the statement will follow from the identity extension lemma.

Note that F [〈f〉, 〈f〉] → F [IX , IY] = F [IX → 〈f〉, 〈f〉 → IY]. By lemma 5
it then suffices to check that (idX , f) ∈ IX〈f〉 and (f, idY) ∈ 〈f〉 → IY . Both
propositions holds by computation.

4 Functorial matters

Every type A[X] with X occurring positively in A can be seen as a functor.
Specifically there is a map A[−] : ∀XY.(X → Y)→ A[X]→ A[Y].

Lemma 7. For any type A we have A[idX] = idA[X]

Proof. By induction on the structure on A, generalizing X to a list of free
variables ~X.

We need to show a more general statement.

Lemma 8 (Graph lemma). For any functor A[X], with X occurring positively
we have the following statement:

∀XX ′∀(f : X → X ′)∀(w : A[X])(w′ : A[X ′]).

A[〈f〉](w,w′) ⇐⇒ 〈A[f]〉(w,w′)

4

Proof. By parametricity of A[−] we have for any types X,X ′, Y, Y ′ and relations
R ⊂ X ×X ′, Q ⊂ Y × Y ′:

A[−][(R→ Q)→ A[R]→ A[Q]]A[−]

For the direction 〈A[f]〉 ⇒ A[〈f〉] take R = IX , Q = 〈f〉. Since (idX , f) ∈
(IX → 〈f〉) we have

A[idA][IA[X] → A[〈f〉]]A[f]

where IA[X] = A[IX] by lemma 4. Let (w,w′) ∈ 〈A[f]〉, i.e. w′ = A[f](w).
Then, A[idA](w) = idA[X](w) = w[A[〈f〉]]A[f](w) = w′.

For the other direction take R = 〈f〉, Q = IY . Because (f, idB) ∈ (〈f〉 → IB)
we have

A[f][A[〈f〉]→ IA[X]] idA[X]

once again by lemmas 4 and 7. If (w,w′) ∈ A[〈f〉], then A[f](w) = w′, i.e.
(w,w′) ∈ 〈A[f]〉.

Using the graph lemma we can obtain:

Lemma 9. For any covariant A[X]

∀(f : X → Y)(g : Y → Z).A[g ◦ f] = A[g] ◦A[f]

Proof. We employ the parametricity of A[−]:

A[−]X,Z [(〈f〉 → IZ)→ A[〈f〉]→ A[IZ]]A[−]Y,Z

One can verify that (g ◦ f, g) ∈ (〈f〉 → IZ), and (u,A[f](u)) ∈ A[〈f〉] for any
u : A[X], using the graph lemma. Hence,

A[g ◦ f](u)[A[IZ]]A[g](A[f](u))

for any u : A[X]. We obtain the required result using the identity extension
lemma.

Thus any type A[X] with X occurring only positively is functorial.

5 Encodings of datatypes

We have already seen the unit type encoding 1 = ∀X.X → X. We can also
show that every inhabitant of 1 “behaves like” ∗ using parametricity alone.

Lemma 10. ∀u : 1.(u = ∗) is true in APL

Proof. Let u : 1. By the η-rule,

u = ∗ ⇐⇒ ΛZ.λx : Z.uZ(x) = ΛZ.λx : Z.x

By congruence rules (for the right to left direction) and by the β-rule (for
the left to right direction), this is equivalent to

5

∀Z, a : Z.uZ(a) = a

Thus let Z be a type and a : Z. Pick a relation R = (x : Z, y : Z).y = a.
Then by parametricity we have

uZ [R→ R]uZ ⇐⇒ ∀(x, y) ∈ R.uZ(x)[R]uZ(y)

Clearly, (a, a) ∈ R. Hence (uZ(a), uZ(a)) ∈ R, in other words, uZ(a) =
a.

Example 11. The empty type 0 is encoded by 0 = ∀X.X.

Using parametricity we can show that 0 is uninhabited.

Lemma 12. ∀(u : 0).⊥ is derivable in APL

Proof. Let u : 0. Let X be an arbitrary type. Take R = (x : X, y : X).⊥. Then,
by parametriciry, uX [R]uX , which is a contradiction.

5.0.1 Products

Example 13. The products are given by A×B = ∀X.((A→ B → X)→ X).

The pairing function pairA,B = λa b.ΛX.λf.f a b is abbreviated as 〈a, b〉 =
pairA,B a b. The projections are given by fstA,B = λp.pA(KA,B) and sndA,B =
λp.pB(K ′A,B).

From the computational rules one can verify that ∀x : A∀y : B.fst〈x, y〉 ∧
snd〈x, y〉 = y. Using parametricity/dinaturality we can prove that the encoding
of the products is categorical. For this we will use the canonicity of the encoding:

Lemma 14. ∀u : A × B.〈fst u, snd u〉 = u is true in APL. This proposition is
also called surjective pairing in λ-calculus literature.

The categoricity of the products means that

∀f : X → A∀g : X → B.∃!(h : X → A×B).fst ◦ h = f ∧ snd ◦ h = g

Given f, g we provide h = 〈f, g〉 := λx.〈f x, g x〉. By the computational rules
(and η-rules) we have fst ◦h = f and snd ◦h = g. Suppose that there is another
h′ with this property. Then for all x : X we have h′ x = 〈fst(h′ x), snd(h′ x)〉
using lemma 14 and consequently h′ x = 〈f x, g x〉 = h x; hence h′ = h.

Proof (of lemma 14) using parametricity. By η and computational rules it suf-
fices to show that

∀X∀e : A→ B → X.〈fst(u), snd(u)〉X(e) = uX(e)

where the left hand side computes to e(fst(u))(snd(u)).
Define terms ē, ẽ : A×B → X as

ē := λw.wX(e)

6

ẽ := λw.e(fst(w))(snd(w))

Thus our goal reduces to showing ẽ(u) = ē(u). By parametricity we have

∀XY ∀R ⊂ X × Y.uX [(IA → IB → R)→ R]uY

Consider R = 〈ē〉 the graph of ē; that is, R(x, y) := ē(x) = y ≡ xX(e) =
y. We claim that (pairA,B , e) ∈ [IA → IB → 〈ē〉]: for let a : A, b : B
be arbitrary, then (pair a b, e a b) ∈ 〈ē〉 iff ē〈a, b〉 = 〈a, b〉A(e) = e a b,
where the last equality is purely computational. It follows from parametricity
that uA×B(pairA,B)[〈ē〉]uX(e), i.e. ē(uA×B(pairA,B)) = (uA×B(pairA,B))X(e) =
uX(e). Since we have showed this equality for an arbitrary e, we can conclude
that uA×B(pairA,B) = u.

On the other hand, we can show that (pairA,B , e) ∈ [IA → IB → 〈ẽ〉]: as
ẽ〈a, b〉 = e a b by computation. Hence, uA×B(pairA,B)[〈ẽ〉]uX(e), i.e. ẽ(uA×B(pair)) =
uX(e) = ē(u). But from the previous paragraph we know that uA×B(pair) = u;
hence we have ẽ(u) = ē(u).

5.0.2 Coproducts

Example 15. The sums are given by A + B = ∀X.((A → X) → (B → X) →
X).

With the injections given by inl = λx.ΛZ.λf g.fx and inr = λy.ΛZ.λf g.gy
and pattern matching given by caseA,B = ΛX.λf : A→ Xλg : B → Xλu.uX f g
and we write [f, g]X(u) for caseA,B,X f g u.

From the computational rules alone we get [f, g]X(inl(x)) = f x and [f, g]X(inr(x)) =
g x.

Lemma 16. ∀X∀h : A+B → X.h = [h ◦ inl, h ◦ inr]X .

Proof. First of all we can show, by parametricity, that ∀u : A+B.u = uA+B inl inr.
Let X be a type, e : A → X, e′ : B → X be terms. Then [e, e′]X :

A+B → X. From the computational rule we obtain (inl, e) ∈ [IA → 〈[e, e′]X〉]:
as [e, e′]X(inl(a)) = e a. Similarly we can show that (inr, e′) ∈ [IB → 〈[e, e′]X〉].
It then follows by parametricity that for any u

uA+B inl inr[〈[e, e′]X〉]uX e e′

In other words, [e, e′]X(uA+B inl inr) = (uA+B inl inr)X e e′ = uX e e′. As
e, e′ and X were arbitrary, we obtain uA+B inl inr = u for any u.

Note that this implies idA+B = [inl, inr]A+B .
Then one can either use the dinaturality condition, which says that you can

move a function in and out of the destructors:

∀u : A+B∀XY ∀f : X → Y ∀e : A→ X∀e′ : B → X. uY (f◦e) (f◦e′) = f(uX e e′)

or one can use another instance of the the parametricy axiom on case:

caseA+B [(IA → 〈h〉)→ (IB → 〈h〉)→ IA+B → 〈h〉]caseX

7

which gives us caseA+B inl inr u[〈h〉]caseX (h◦inl) (h◦inr) u, i.e. h(caseA+B inl inr u) =
caseX (h ◦ inl) (h ◦ inr) u; and the use η.

Exercise: derive the categorical property of the sums.

5.0.3 Natural numbers

Example 17. The encoding of the Church numerals is given by N = ∀X.(X →
X)→ X → X

For each natural number n ∈ N there is a corresponding numeral n =
ΛX.λf x.fn(x). The successor is given by S = λn.λX.λf x.f(nXfx). We have
a recursion operator rec = ΛX.λf z.λn.nX f z. One can derive the standard
equalities for the recursor using the computational equalities.

Just like for other datatypes, we can prove the η-rule for Church numbers:

Lemma 18. ∀n : N.nN S 0 = n.

Proof. By η for functions it suffices to show (nN S 0)A f z = nA f z for an
any type A and any terms f : A → A, z : A. So, let A, f , and z be arbitrary.
We apply the parametricity principle to n. Pick the relation R ⊆ N× A to be
R(x, y) , xA f z = y. One can verify that (0, z) ∈ R and (S, f) ∈ [R → R].
Hence, (nN S 0, nA f z) ∈ R. In other words, (nN S 0)A f z = nA f z.

Lemma 19 (Induction scheme). Let Φ(x) be a formula of APL with a free
x : N. Suppose that Φ(0) holds, and ∀n : N.Φ(n) =⇒ Φ(S n) holds. Then
∀n : N.Φ(n).

Proof. By the η rule it suffices to prove Φ(nN S 0). The result follows by
(unary) parametricity.

If we want to show that all elements of N are numerals, we need a sort of
(actual) natural numbers in our logic. If such a sort exists, then we can actually
write down a function τ : n 7→ n.

Lemma 20. Suppose we have a sort N of natural numbers with the usual arith-
metic operations in the underlying logic. Then we can show, inside the logic,
that every term of the type N is a numeral: ∀φ : N.∃n : N.φ = n.

Proof. Let φ : N. Let X be a type and let f : X → X and z : X. Take
k = φN (+1) 0 and a relation R = {(n, y) ∈ N×X | fn(z) = y}. Then:

1. (0, z) ∈ R by definition (f0 = idX)

2. ((+1), f) ∈ R: let (n, y) ∈ R. Then fn+1(x) = f(fn(x)) = f(y) and hence
(n+ 1, f y) ∈ R

It the follows by parametricity that

k[R]φX f x

i.e. fk(x) = φX f x.

Exericse: what if we define the successor funciton in another way? What is
the dinaturality principle for natural numbers?

8

5.1 Initial algebras

Definition 21. Given a covariant functor A[X], an algebra for A (also called
an A-algebra) is an object X and a map t : A[X]→ X. A morphism of algebras
α : (X, t)→ (Y, f) is a morphism α : X → Y such that α ◦ t = f ◦A[α]:

A[X]
A[α] //

t

��

A[Y]

f

��
X

α
// Y

An A-algebra algebra (X, t) is called initial if for any other algebra (Y, f)
there is a unique morphism α : (X, t)→ (Y, f). Such an algebra is called weakly
initial if the uniqueness condition on α is dropped.

System F allows for encoding of initial algebras for datatypes with positive
holes. For A[X] pos, the initial A-algebra is denoted by µX.A[X] (or sometimes
µA)

µX.A[X] := ∀Z.((A[Z]→ Z)→ Z)

with the combinators

fold : ∀Z.((A[Z]→ Z)→ µX.A[X]→ Z)

fold = ΛZ.λ(t : A[Z]→ Z).λz.zZ(t)

in : A[µX.A[X]]→ µX.A[X]

in = λx.ΛZ.λf.f(A[foldZ(f)](x))

Note that in the lecture notes [2], Amal Ahmed considers System Fµ with
recursive types built-in. The combinator in actually corresponds to the term fold
in her lecture notes. In theorem 24 we will see that foldA[µA](A[in]) : µX.A[X]→
A[µX.A[X]] corresponds to the term unfold in her lecture notes.

Under those definitions, (µX.A[X], in) is an initial A-algebra. The weak
initiality is witnessed by the fold combinator:

Lemma 22. If t : A[Z] → Z is an A-algebra, then foldZ(t) : µA → Z is a
morphism from in to t.

Proof. By computational equalities one can establish that foldZ(t)(in(x)) =
t(A[foldZ(t)](x)).

Lemma 23. (µX.A[X], in) is an initial algebra.

9

Proof. Suppose f : A[Z]→ Z is an algebra and h : µX.A[X]→ Z is a morphism
h : (µX.A[X], in)→ (Z, f). We will show that h = foldZ(f).

Fist of all, we will show that ∀x : µA.xµX.A[X](in) = x. By extensionality it
suffices to show (xµX.A[X](in))Z(f) = xZ(f) for any Z, f : A[Z] → Z. In other
words it suffices to show

(xµX.A[X](in))[〈foldZ(f)〉]xZ(f)

By parametricity it suffices to prove that in[A[〈foldZ(f)〉] → 〈foldZ(f)〉]f . So
let m[A[〈foldZ(f)〉]]n ⇐⇒ m[〈A[foldZ(f)]〉]n, i.e. A[foldZ(f)](m) = n. Then
foldZ(f)(in(m)) = f(A[foldZ(f)](m)) = f(n).

Using this equation we reason, h(x) = h(xµA(in)). So it suffices to show that
h(xµA(in)) = xZ(f) = foldZ(f)(x). For that apply parametricity for x with the
relation 〈h〉:

xµA[[〈A[h]〉 → 〈h〉]→ 〈h〉]xZ =⇒
(in[〈A[h]〉 → 〈h〉]f =⇒ h(xµA)(in) = xZ(f))

Theorem 24 (Lambek’s theorem). An initial A-algebra is actually an isomor-
phism. It follows that µX.A[X] the smallest fixed point of A.

Proof. Since (µA, in) is an A-algebra, so is (A[µA], A[in]). So foldA[µA](A[in]) is
a morphism of algebras. It basically shows us that every element of µA is in
the image of in; specifically: x = in(foldA[µA](A[in])(x)) = in(xA[µA](A[in])).

Once again by extensionality it suffices to show that xZ(f) = in(xA[µA](A[in]))Z(f) =
foldZ(f)(in(xA[µA](A[in]))). This can be shown by using parametricity with the
relation the relation 〈foldZ(f) ◦ in〉 and equations for fold.

To show that foldA[µA](A[in])(in(y)) = y we note that foldA[µA](A[in]) ◦ in =
A[in] ◦A[foldA[µA](A[in])] = A[in ◦ foldA[µA](A[in])] = A[idµA] = idA[µA].

5.2 Existential types

The encoding of the existential types is defined as follows

∃X.A[X] := ∀Y.(∀X.A[X]→ Y)→ Y

with the combinators

pack : ∀X.(A[X]→ ∃Z.A[Z])

pack = ΛX.λ(x : A[X]).λY.λ(f : ∀Z.A[Z]→ Y).fX(x)

unpack : ∃X.A[X]→ (∀Y.(∀X.A[X]→ Y)→ Y)

unpack = λu.ΛY.λf.uY (f)

10

We also define a version of unpack with the unversal quantifier at the top
level:

unpack : ∀Y.(∀X.A[X]→ Y)→ ∃X.A[X]→ Y

unpack = ΛY.λf.λu.unpack(u)Y (f)

= ΛY.λf.λu.uY (f)

Noe that by computational rules (and without η) it is provable that unpack(packX(x))Y (f) =
fX(x) (with all free variables universally quantified).

The logical relation principle for existential types that is presented in Ahmed’s
notes [2] is more appealing then the parametricity principle for the encoding of
existentials in System F : to show that two elements u,w : ∃X.A[X] are in the
same relational interpretation of the type ∃X.A[X] it suffices to show that there
exists a relation S ⊂ X × Y relating the implementations of u and w. Here we
will prove this principle.

For a given type A[X] define R ⊂ ∃X.A[X]× ∃X.A[X] to be

R := (u,w).∃X,Y ∃(x : A[X])∃(y : A[Y])∃S ⊂ X × Y.
u = packX(x) ∧ w = packY (y) ∧ x[A[S]]y

Lemma 25. ∀(u,w : ∃X.A[X]).u[R]w ⇒ u[∃X.A[X]]w

Proof. Suppose that u[R]w, i.e. u = packX(x), w = packY (y) and x[A[S]]y for
someX,Y, x, y, S. LetQ ⊂ C×D. We are to show that (packX(x))C [(∀X.A[X]→
Q) → Q](packY (y))D. So let f : ∀X.A[X] → C, g : ∀X.A[X] → D and
f [(∀X.A[X] → Q)]g. Then (packX(x))C(f) = fX(x) and (packY (y))D(g) =
gY (y). The result follows from the relatedness of f and g.

The implication in the other direction (lemma 27) implies a certain canon-
icity result: every element of ∃X.A[X] is in the image of pack. We split this
result into two lemmas.

Lemma 26. ∀u : ∃X.A[X].u = u∃X.A[X](pack)

Proof. It suffices to show that for all Y and for all f : ∀X.A[X]→ Y , uY (f) =
(u∃X.A[X](pack))Y (f). Note that the right hand side of the equation is just

unpackY (f)(u∃X.A[X](pack)); the equation is then equivalent to the proposition

u∃X.A[X](pack)[〈unpackY (f)〉]uY (f)

As usual, by parametricity it suffices to show that pack[∀R.A[R]→ 〈unpackY (f)〉]f .
So, suppose K,L are types, R ⊂ K × L, and k : K, l : L, and k[A[R]]l. We

are to show that packK(k)[〈unpackY (f)〉]fL(l), i.e. unpackY (f)(packK(k)) = fL.
But by computation, unpackY (f)(packK(k)) = fK(k). By the parametricity of
f , it is the case that fK [A[R]→ IY]fL. The result follows immediately.

11

Lemma 27. ∀(u,w : ∃X.A[X]).u[∃X.A[X]]w ⇒ u[R]w

Proof. Let u,w : ∃X.A[X] such that u[∃X.A[X]]w, i.e. u[∀Y.(∀X.A[X]→ Y)→
Y]w. Hence, in particular, u∃X.A[X][(∀X.A[X]→ R)→ R]w∃X.A[X]. Our claim
is that pack[∀X.A[X]→ R]pack.

So let Q ⊂ C ×D and let m : A[C], n : A[D] such that m[A[Q]]n. We are to
show packC(m)[R]packD(n). In other words,

∃XY ∃(x : A[X])∃(y : A[Y])∃S.packC(m) = packX(x)∧packD(n) = packY (y)∧x[A[S]]y

Clearly we should take X = C, Y = D,x = m, y = n, S = Q and we are done.
Hence, u∃X.A[X](pack)[R]w∃X.A[X](pack). Finally, lemma 26, u∃X.A[X](pack) =

u and w∃X.A[X](pack) = w.

Exercise: derive the canonicity for the existential types (from parametricity),
and prove the categorical characterisation:

∀Y ∀(f : ∀X.A[X]→ Y)∃!(g : (∃X.A[X])→ Y)∀X.(fX = g ◦ packX)

References

[1] Gordon Plotkin, Mart́ın Abadi. A Logic for Parametric Polymorphism.
Typed Lambda Calculi and Applications. TLCA 1993.

[2] Amal Ahmed. An Introduction to Logical Relations. https://www.cs.

uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf,
2015. Communicated by Lau Skorstengaard.

12

https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf
https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf

	Types, terms, and relations
	Positivity and negativity

	Dinaturality
	Dinaturality categorically

	Parametricity schema
	Functorial matters
	Encodings of datatypes
	Products
	Coproducts
	Natural numbers

	Initial algebras
	Existential types

