
A calculus for logical refinements in separation logic
Dan Frumin

ICIS, Radboud University
dfrumin@cs.ru.nl

Robbert Krebbers
Delft University of Technology

mail@robbertkrebbers.nl

Abstract
We present a formalization of logical refinements for programs in
a higher-order programming languages with general references,
polymorphism and existential types, and concurrency. The logical
refinement is sound w.r.t. contextual refinements of programs, and
has been formalized in Coq, together with a number of case stud-
ies, in state of the art concurrent separation logic Iris. The work
extends on the initial interpretation of logical relations in Iris by
Krebbers et al., to the extent that we provide a calculus that allows
one to reason about logical refinement in an abstract way using
symbolic execution, together with a collection of Coq tactics that
make reasoning in the calculus tractable for realistic examples.

1 Introduction
Reasoning about equivalence of programs is an old problem in
semantics of programming languages, with applications many ap-
plications including program verification and compilation. One of
the most widely used notions is that of contextual refinement. Intu-
itively, e1 contextually refines e2 if all the observable behaviours of
e1 can be observed by e2 as well. However, proving contextual re-
finement of two given programs is tricky, as it involves considering
all the possible program contexts. One of the techniques proposed
to resolve this are logical relations.

The aim of this work is to describe a system for formal reasoning
about contextual refinements through logical relations for System
F with state, existential types, and concurrency primitives. The
system is built on top of the powerful higher-order separation
logic Iris [4]. This allows the user to leverage advanced features
of Iris, such as ghost state and invariants [3]. Furthermore, Iris is
implemented on top of Coq [6], ensuring that the only trusted base
for our development is the Coq kernel itself.

This work is based on the earlier implementation of logical rela-
tions in Iris using the “Interactive Proof Mode” by Amin Timany,
Robbert Krebbers, and Lars Birkedal [6]. In that work, all the re-
finements were proved by explicit reasoning in the model of logical
relations, i.e. by unfolding the Iris definition of logical relation. Our
work scales up the development by
• providing a calculus for reasoning about logical relatedness
in a self-contained abstract way for a large class of logi-
cal refinements using symbolic execution and compatibility
lemmas;
• extending the definition of logical relations tomasked logical
relations to reason abstractly about invariants;
• providing facilities in Coq such as tactics and tactic lemmas
for showing refinements of concrete programs;
• providing support for existential types, for the purposes of
showing representation independence theorems.

As a result of those changes, the compilation times for the examples
improved and the proofs became cleaner. The full source code

CoqPL, January 13, Los Angeles, California, United States
2018.

e ::= () | l ∈ Loc | n ∈ N | b ∈ B | rec f x := e1

| (e1, e2) | inl e1 | inr e1 | x ∈ Var
| e1 e2 | e1 ⊕ e2 | if e1 then e2 else e3
| π1 e1 | π2 e1 | case(e1, e2, e3) | fold e | unfold e
| pack e | unpack x in e1e2 | fork{e} | new e

| ! e | e1 ← e2 | CAS(e1, e2, e3) | . . .
τ ::= α | N | 2 | τ × τ | τ → τ | τ + τ | ref τ | ∀α .τ | ∃α .τ | µα .τ

Figure 1. Syntax of the object language

containing the whole development and examples can be found at
https://gitlab.mpi-sws.org/dfrumin/logrel-conc.

2 Basic judgements and rules
The syntax of the language at hand is presented in Figure 1. The op-
erational semantics is given using a standard interleaving semantics.
The typing rules are fairly standard and omitted.

The simplified basic judgments of the calculus we are considering
are of the form

∆; Γ |= e1 ≾ e2 : τ (1)
which states that

1. two (possibly open) expressions e1 and e2 are logically re-
lated at a (possibly open) type τ ;

2. under the assignment Γ of types to free term variables, and
under the assignment ∆ of relations to free type variables;

The idea of the refinement is that e2 simulates e1: for each ex-
ecution step of e1, the expression e2 may be executed for several
steps. This guarantees that e1 is not going to contain any observable
behaviour that e2 cannot exhibit.

There are two main ways of deriving judgements like in Eq. 1:
compatibility lemmas, and symbolic execution rules.

Compatibility lemmas. Compatibility lemmas essentially say that
the logical relation is closed under typing-like rules. For instance,
the compatibility rule for pairs state that

∆; Γ |= e1 ≾ e2 : τ ∆; Γ |= e ′1 ≾ e ′2 : σ
∆; Γ |= (e1, e ′1) ≾ (e2, e

′
2) : τ × σ

And the compatibility lemma for modules say that
∆ [α←R] ; Γ |= e ≾ e ′ : τ R ∈ P(Val × Val)

∆; Γ |= pack e ≾ pack e ′ : ∃α .τ
Using all the compatibility lemmas we can prove the fundamental
property of logical relations.

Theorem 2.1. If Γ ⊢ e : τ , then for all ∆ we have ∆; Γ |= e ≾ e : τ .

Symbolic execution rules. Symbolic execution rules allow us to
prove refinements of programs that are actually syntactically differ-
ent. Programs on the right and left hand sides operate on different
symbolic heaps: the standard “points to” assertion from separation
logic is denoted as l 7→s v for the right hand side, and as l 7→i v

https://gitlab.mpi-sws.org/dfrumin/logrel-conc

CoqPL, January 13, Los Angeles, California, United States Dan Frumin and Robbert Krebbers

for the left hand side. The basic symbolic execution rule for pure
reductions (i.e., reductions that do not have effects modifying the
state or the thread pool, e.g., beta reduction) is the following:

▷(∆; Γ |= K[e ′] ≾ t : τ) pure(e, e ′)
∆; Γ |= K[e] ≾ t : τ

Note that the pure reduction rule for the left hand side gives us a
later modality ▷ for the new goal, which allows us reason about
recursive programs using Löb induction. There is a similar rule for
the right hand side:

∆; Γ |= t ≾ K[e ′] : τ pure(e, e ′)
∆; Γ |= t ≾ K[e] : τ

The rules for stateful reductions on the right hand side are akin
to the symbolic execution WP-rules in Iris [4, 5], but adapted for
the binary setting. For instance, below is the rule for symbolically
executing store operation on the right hand side.

(l 7→s −) ∗ (l 7→s v −∗ ∆; Γ |= t ≾ K[()] : τ)
∆; Γ |= t ≾ K[l ← v] : τ

Coq formalization. Such rule is formalized in Coq as follows:

Lemma bin__log__related__store__r ∆ Γ K l e v v' t τ :
to__val e = Some v' →
l 7→s v −∗
(l 7→s v' −∗ {∆;Γ} ⊨ t ≤log≤ fill K (#()) : τ) −∗
{∆;Γ} ⊨ t ≤log≤ fill K (#l ← e) : τ.

The rule is then viewed as a theorem inside the logic Iris. In addition
to such a theorem each corresponding rule has Coq tactic associated
with it that allows for the automatic discharging and introduction of
premises (such as l 7→s v and l 7→s v

′) when used in the Interactive
Proof Mode [6].

Example scenario. Suppose we wish to prove the following theo-
rem:

Lemma dummy ∆ Γ l l' :
l 7→i #2 −∗ l' 7→s #0 −∗
{∆;Γ} ⊨ !#l ≤log≤ (#l' ← #2;; !#l') : TNat.

It states that, under the assumption that the locations l and l’
have values 1 and 0, respectively, the program on the left hand side
refines the program on the right hand side. After introducing the
assumptions, the user’s Coq goal becomes:

∆ : list D
Γ : stringmap type
l, l' : loc
__
"Hl" : l 7→i #2
"Hl'" : l' 7→s #0
-------------------------------------−∗
{∆; Γ} ⊨ ! #l ≤log≤ (#l' ← #2;; ! #l') : TNat

At this point the user can invoke the tactic rel_store_r, which
uses the theorem bin_log_related_store_r to transform the goal
into:

"Hl" : l 7→i #2
"Hl'" : l' 7→s #2
-------------------------------------−∗
{∆; Γ} ⊨ ! #l ≤log≤ (#();; ! #l') : TNat

After using the symbolic execution tactics rel_pure_r, rel_load_r
and rel_load_l the goal further reduces to the statement

"Hl" : l 7→i #2
"Hl'" : l' 7→s #2
-------------------------------------−∗
{∆; Γ} ⊨ #2 ≤log≤ #2 : TNat

which is an instance of the compatibility lemma for natural num-
bers.

3 Implementation and case studies
All the material mentioned in this abstract has been formalized in
Coq, including the newmasked interpretation of logical relatedness,
all the rules, and the soundness of the system as a whole. The
conciseness and compilation time of the formalization has benefited
from the changes outlined in the introduction, as well as from
switching from De Bruijn indices to explicit named representation.

In addition to the system itself, we have formalized several ex-
amples entirely inside the calculus:

1. refinements of coarse-grained concurrent data structures by
fine-grained ones: concurrent counter and Treiber stack;

2. the ticket-based lock refinement of the spin lock;
3. generative ADT example from [1];
4. algebraic laws for the non-determinism operator defined via

concurrency
5. various examples of higher-order functions with state from

[2] (those that still hold in the presence of concurrency).
The first two refinements were already present in the previous

version of the library [6], but they have greatly benefited from the
changes that we have introduced. Aside from better readability
and better decomposition of the proof, the compilation time has
dropped significantly. For the Treiber stack example it is 1 minutes
17 seconds in the new version versus 2 minutes 45 seconds in the
old version1.

4 Future work
Possible future work directions include enriching the type system
and the object language, and increasing expressivity for formalizing
more complex examples, such as refinements of programs involving
speculation or helping and side-channels.

We have managed to formalize a refinement of a coarse-grained
concurrent stack by a stack with helping; however, that proof re-
quires us to appeal to the interpretation of the logical relation
judgements and it seems that it is not currently possible to formal-
ize such an example in its entirety without reasoning explicitly in
the model, although parts of the proof are still carried out in the
calculus.

References
[1] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-dependent

Representation Independence. In Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’09). ACM,
New York, NY, USA, 340–353. https://doi.org/10.1145/1480881.1480925

[2] Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order
state and control effects on local relational reasoning. Journal of Functional
Programming 22, 4-5 (2012), 477–528.

[3] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order
ghost state. In ICFP. 256–269.

1The compilation times were measured several times and averaged on a two-core
2.50GHz processor running Coq 8.6 under 8Gb of RAM.

https://doi.org/10.1145/1480881.1480925

A calculus for logical refinements in separation logic CoqPL, January 13, Los Angeles, California, United States

[4] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal,
and Derek Dreyer. 2017. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. Submitted for publication (2017).

[5] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer,
and Lars Birkedal. 2017. The Essence of Higher-Order Concurrent Separation
Logic. In Proceedings of the 26th European Symposium on Programming Languages
and Systems - Volume 10201. Springer-Verlag New York, Inc., New York, NY, USA,
696–723. https://doi.org/10.1007/978-3-662-54434-1_26

[6] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs
in Higher-order Concurrent Separation Logic. SIGPLAN Not. 52, 1 (Jan. 2017),
205–217. https://doi.org/10.1145/3093333.3009855

https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3093333.3009855

	Abstract
	1 Introduction
	2 Basic judgements and rules
	3 Implementation and case studies
	4 Future work
	References

