ReLoC: A mechanised relational logic for fine-grained concurrency

Dan Frumin¹ Robbert Krebbers² Lars Birkedal³ LICS 2018, July 9, 2018

¹Radboud University, Nijmegen, The Netherlands

²Delft University of Technology, The Netherlands

³Aarhus University, Denmark

■ Contextual refinement: notion of program refinement

E.g.: $or(e_1, e_2) \lesssim_{ctx} or(e_2, e_1)$.

- Contextual refinement: notion of program refinement
 - E.g.: $or(e_1, e_2) \lesssim_{ctx} or(e_2, e_1)$.
- Fine-grained concurrency: programs use low-level synchronisation primitives for more granular parallelism.

- Contextual refinement: notion of program refinement
 - E.g.: $or(e_1, e_2) \lesssim_{ctx} or(e_2, e_1)$.
- Fine-grained concurrency: programs use low-level synchronisation primitives for more granular parallelism.
- **Mechanised**: proven sound in Coq.

- Contextual refinement: notion of program refinement
 - E.g.: $or(e_1, e_2) \lesssim_{ctx} or(e_2, e_1)$.
- Fine-grained concurrency: programs use low-level synchronisation primitives for more granular parallelism.
- Mechanised: proven sound in Coq.
- Coq machinery for high level interactive proofs in the logic.

Refinements of concurrent programs

Contextual refinement: the "gold standard" of program refinement:

$$e_1 \precsim_{ctx} e_2 \triangleq \forall \mathcal{C}, \ v. \ \mathcal{C}[e_1] \downarrow v \implies \mathcal{C}[e_2] \downarrow v$$

"Any behaviour of a (well-typed) client using e_1 can be matched by a behaviour of the same client using e_2 "

Refinements of concurrent programs

Contextual refinement: the "gold standard" of program refinement:

$$e_1 \lesssim_{ctx} e_2 \triangleq \forall \mathcal{C}, \ v. \ \mathcal{C}[e_1] \downarrow v \implies \mathcal{C}[e_2] \downarrow v$$

"Any behaviour of a (well-typed) client using e_1 can be matched by a behaviour of the same client using e_2 "

- Applications: optimised versions of data structures; proving linearisability; proving program transformations.
- Example: lock_free_data_structure \lesssim_{ctx} atomic_data_structure.

Refinements of concurrent programs

Contextual refinement: the "gold standard" of program refinement:

$$e_1 \lesssim_{ct \times} e_2 \triangleq orall \mathcal{C}, \ v. \ \mathcal{C}[e_1] \downarrow v \implies \mathcal{C}[e_2] \downarrow v$$

"Any behaviour of a (well-typed) client using e_1 can be matched by a behaviour of the same client using e_2 "

Quantification over all clients

- Applications: optimised versions of data structures; proving linearisability; proving program transformations.
- Example: lock_free_data_structure \lesssim_{ctx} atomic_data_structure.

Our proposed solution

Prove the refinements in the style of concurrent separation logic!

Instead of Hoare triples $\{P\}$ e $\{Q\}$ we have refinement judgements $e_1 \lesssim e_2 : \tau$.

- Soundness: $\vdash e_1 \preceq e_2 : \tau \implies e_1 \preceq_{ctx} e_2 : \tau$
- Proofs by symbolic execution.
- Modular and conditional specifications.

ReLoC: (simplified) grammar

$$P, Q \in \mathsf{Prop} ::= \forall x. P \mid \exists x. P \mid P \lor Q \mid \dots$$

ReLoC: (simplified) grammar

$$P, Q \in \mathsf{Prop} ::= \forall x. \ P \mid \exists x. \ P \mid P \lor Q \mid \dots$$

$$\mid P \ast Q \quad \mid P \twoheadrightarrow Q \quad \mid \ell \mapsto_{\mathsf{i}} v \quad \mid \ell \mapsto_{\mathsf{s}} v$$

- Separation logic for handling mutable state;
 - $\ell \mapsto_i v$ for the left-hand side (implementation);
 - $\ell \mapsto_s v$ for the right-hand side (specification);

ReLoC: (simplified) grammar

$$P, Q \in \mathsf{Prop} ::= \forall x. \ P \mid \exists x. \ P \mid P \lor Q \mid \dots$$

$$\mid P \ast Q \mid P \rightarrow Q \mid \ell \mapsto_{\mathsf{i}} v \mid \ell \mapsto_{\mathsf{s}} v$$

$$\mid (e_1 \lesssim e_2 : \tau) \mid \dots$$

- Separation logic for handling mutable state;
 - $\ell \mapsto_i v$ for the left-hand side (implementation);
 - $\ell \mapsto_s v$ for the right-hand side (specification);
- Logic with first-class refinement propositions: allows conditional refinements
 - $\blacksquare \ \ell_1 \mapsto_{\mathsf{i}} \mathsf{v} \ \twoheadrightarrow \ e_1 \lesssim e_2 : \tau;$
 - $\bullet e_1 \lesssim e_2 : \mathbf{1} \to \tau \twoheadrightarrow t_1(e_1) \lesssim e_2(); e_2() : \tau;$

Example ReLoC rules

Structural rules

$$\frac{e_1 \lesssim e_2 : \tau \quad * \quad t_1 \lesssim t_2 : \tau'}{(e_1, t_1) \lesssim (e_2, t_2) : \tau \times \tau'} *$$

Example ReLoC rules

Structural rules

$$\frac{e_1 \precsim e_2 : \tau \quad * \quad t_1 \precsim t_2 : \tau'}{(e_1, t_1) \precsim (e_2, t_2) : \tau \times \tau'} *$$

Symbolic execution

$$\frac{\ell \mapsto_{\mathsf{s}} \mathsf{v} \qquad * \qquad (\ell \mapsto_{\mathsf{s}} \mathsf{v}_2 \twoheadrightarrow \mathsf{e}_1 \precsim \mathsf{K}[()] : \tau)}{\mathsf{e}_1 \precsim \mathsf{K}[\ell \leftarrow \mathsf{v}_2] : \tau} *$$

$$\frac{\ell \mapsto_{\mathsf{i}} \mathsf{v} \qquad * \qquad (\ell \mapsto_{\mathsf{i}} \mathsf{v}_2 \twoheadrightarrow \mathsf{K}[()] \precsim \mathsf{e}_2 : \tau)}{\mathsf{K}[\ell \leftarrow \mathsf{v}_2] \precsim \mathsf{e}_2 : \tau} *$$

What about concurrency?

Problem

Structural & symbolic execution rules are only sufficient when you do not have shared resources ("standard" separation logic).

Solution

For shared resources we require mechanisms for reflecting this in the logic: invariants and ghost state (concurrent separation logic).

ReLoC is built on top of an expressive CSL – Iris – borrowing the infrastructure for resource sharing.

$$let x = ref(1) in(\lambda(). FAI(x))$$

$$\begin{aligned} \mathbf{let}\, x &= \mathbf{ref}(1), \ell = \mathsf{newlock}\;()\, \mathbf{in} \\ &(\lambda().\, \mathsf{acquire}(\ell); \\ &\mathbf{let}\, v = !\, x\, \mathbf{in} \\ &x \leftarrow v + 1; \\ &\mathsf{release}(\ell); \, v) \end{aligned}$$

 $x_1 \mapsto_i 1$

$$(\lambda(). FAI(x_1))$$

 \preceq

$$\begin{aligned} \mathbf{let}\, x &= \mathbf{ref}(1), \ell = \mathsf{newlock}\;()\, \mathbf{in} \\ &(\lambda(), \mathsf{acquire}(\ell); \\ &\mathbf{let}\; v = !\, x\, \mathbf{in} \\ &x \leftarrow v + 1; \\ &\mathsf{release}(\ell); v) \end{aligned}$$

$$x_1 \mapsto_i 1$$
 $x_2 \mapsto_s 1$

$$(\lambda(). FAI(x_1))$$

~

$$\begin{aligned} \textbf{let}\, \ell = &\mathsf{newlock}\;()\, \textbf{in} \\ (\lambda().\, \mathsf{acquire}(\ell); \\ &\textbf{let}\, v = !\, \mathtt{x_2}\, \textbf{in} \\ &\mathtt{x_2} \leftarrow v + 1; \\ &\texttt{release}(\ell); v) \end{aligned}$$

$$x_1 \mapsto_i 1$$
 $x_2 \mapsto_s 1$
 $isLock(\ell, unlocked)$

$$(\lambda(). FAI(x_1))$$

 \precsim

$$(\lambda().\operatorname{acquire}(\ell);$$
 let $v = ! x_2 \operatorname{in} x_2 \leftarrow v + 1;$ release $(\ell); v)$

$$(\lambda(). \, \mathtt{FAI}(\mathtt{x}_1))$$

 $\exists n$.

 $x_1 \mapsto_i n$

 $\mathtt{x}_2 \mapsto_{\mathsf{s}} \mathit{n}$

 $isLock(\ell, unlocked)$

 $(\lambda(). \operatorname{acquire}(\ell);$ $\operatorname{let} v = ! x_2 \operatorname{in}$ $x_2 \leftarrow v + 1;$

release(ℓ); ν)

```
(\lambda(). \, \mathtt{FAI}(\mathtt{x}_1))
```

 \sim

```
(\lambda(). \operatorname{acquire}(\ell);
\mathtt{let} \ v = ! \ \mathtt{x_2 in}
\mathtt{x_2} \leftarrow v + 1;
\mathtt{release}(\ell); v)
```

 $FAI(x_1)$

 \precsim

 $acquire(\ell);$ $let v = ! x_2 in$ $x_2 \leftarrow v + 1;$ $release(\ell); v$

 $FAI(x_1)$

~

```
acquire(\ell);
let v = ! x_2 in
x_2 \leftarrow v + 1;
release(\ell); v
```

$$\exists n. \, \mathbf{x}_1 \mapsto_{\mathsf{i}} n * \\ \mathbf{x}_2 \mapsto_{\mathsf{s}} n * \\ \mathsf{isLock}(\ell, \mathsf{unlocked})$$

$$x_1 \mapsto_i n$$

$$x_2 \mapsto_s n$$
 $isLock(\ell, unlocked)$

$FAI(x_1)$

 \sim

$$\begin{aligned} &\mathsf{acquire}(\ell); \\ &\mathsf{let}\ v = !\ \mathtt{x}_2\ \mathsf{in} \\ &\mathsf{x}_2 \leftarrow v + 1; \\ &\mathsf{release}(\ell); \ v \end{aligned}$$

$$\exists n. \, \mathbf{x}_1 \mapsto_{\mathsf{i}} n * \\ \mathbf{x}_2 \mapsto_{\mathsf{s}} n * \\ \mathsf{isLock}(\ell, \mathsf{unlocked})$$

$$\mathbf{x}_1 \mapsto_{\mathsf{i}} n + 1$$
 $\mathbf{x}_2 \mapsto_{\mathsf{s}} n$
 $\mathsf{isLock}(\ell, \mathsf{unlocked})$

n

~

$$\begin{aligned} &\mathsf{acquire}(\ell); \\ &\mathsf{let}\ v = !\ \mathtt{x_2}\ \mathsf{in} \\ &\mathtt{x_2} \leftarrow v + 1; \\ &\mathsf{release}(\ell); \ v \end{aligned}$$

$$\exists n. \, \mathbf{x}_1 \mapsto_{\mathsf{i}} n * \\ \mathbf{x}_2 \mapsto_{\mathsf{s}} n * \\ \mathsf{isLock}(\ell, \mathsf{unlocked})$$

$$egin{aligned} \mathbf{x}_1 &\mapsto_{\mathsf{i}} n+1 \\ \mathbf{x}_2 &\mapsto_{\mathsf{s}} n \\ &\mathsf{isLock}(\ell, \mathsf{locked}) \end{aligned}$$

$$\exists n. \, \mathbf{x}_1 \mapsto_{\mathsf{i}} n * \\ \mathbf{x}_2 \mapsto_{\mathsf{s}} n * \\ \mathsf{isLock}(\ell, \mathsf{unlocked})$$

n

~

$$x_1 \mapsto_i n + 1$$
 $x_2 \mapsto_s n$

 $\mathbf{x}_2 \leftarrow n + 1;$ release(ℓ); n

$$\exists n. \, \mathbf{x}_1 \mapsto_{\mathsf{i}} n * \\ \mathbf{x}_2 \mapsto_{\mathsf{s}} n * \\ \mathsf{isLock}(\ell, \mathsf{unlocked})$$

$$x_1 \mapsto_i n+1$$

$$x_2 \mapsto_s n+1$$

$$\mathsf{isLock}(\ell, \mathtt{locked})$$

release(
$$\ell$$
); n

$$\exists n. x_1 \mapsto_i n *$$

$$x_2 \mapsto_s n *$$

$$isLock(\ell, unlocked)$$

n

~

$$x_1 \mapsto_i n+1$$

$$x_2 \mapsto_s n+1$$

 $\mathsf{isLock}(\ell, \mathtt{unlocked})$

n

n

~

n

- ReLoC provides rules allowing this kind of simulation reasoning, formally.
- The example can be done in ReLoC in Coq in almost the same fashion.
- The approach scales to: lock-free concurrent data structures, generative ADTs, examples from the logical relations literature.

Logically atomic relational specifications

Problem

- The example that we have seen is a bit more subtle: the fetch-and-increment (FAI) function is not a physically atomic instruction.
- What kind of specification can we give to FAI as a compound program?

Logically atomic relational specifications

Problem

- The example that we have seen is a bit more subtle: the fetch-and-increment (FAI) function is not a physically atomic instruction.
- What kind of specification can we give to FAI as a compound program?

Our solution

Relational version of TaDA-style logically atomic triples in ReLoC.

Conclusions and future work

Contributions

- ReLoC: a logic that allows to carry out refinement proofs interactively in Coq;
- New approach to modular refinement specifications for logically atomic programs;
- Case studies: concurrent data structures, and examples from the logical relations literature.

Future work

- Program transformations.
- Refinements between programs in different language.
- Other relational properties of concurrent programs.