ReLoC: A mechanised relational logic for fine-grained

concurrency

Dan Frumin® Robbert Krebbers2 Lars Birkedal®
LICS 2018, July 9, 2018

1Radboud University, Nijmegen, The Netherlands
2Delft University of Technology, The Netherlands

3Aarhus University, Denmark

ReLoC: mechanised separation logic for interactive refinement proofs of fine-grained
concurrent programs.

ReLoC: mechanised separation logic for interactive refinement proofs of fine-grained
concurrent programs.

m Contextual refinement: notion of program refinement

E.g.: or(es,es) Zcix or(ea, eq).

ReLoC: mechanised separation logic for interactive refinement proofs of fine-grained
concurrent programs.

m Contextual refinement: notion of program refinement
E.g.: or(es,es) Zcix or(ea, eq).

m Fine-grained concurrency: programs use low-level synchronisation primitives for
more granular parallelism.

ReLoC: mechanised separation logic for interactive refinement proofs of fine-grained
concurrent programs.

m Contextual refinement: notion of program refinement
E.g.: or(es,es) Zcix or(ea, e1).

m Fine-grained concurrency: programs use low-level synchronisation primitives for
more granular parallelism.

m Mechanised: proven sound in Coq.

ReLoC: mechanised separation logic for interactive refinement proofs of fine-grained
concurrent programs.

m Contextual refinement: notion of program refinement
E.g.: or(es,es) Zcix or(ea, e1).

m Fine-grained concurrency: programs use low-level synchronisation primitives for
more granular parallelism.

m Mechanised: proven sound in Coq.

m Coq machinery for high level interactive proofs in the logic.

Refinements of concurrent programs

Contextual refinement: the “gold standard” of program refinement:

&1 Jex &2 2 VC, v. Clel] L v = Clea] L v

~

“Any behaviour of a (well-typed) client using e; can be matched by a behaviour of the
same client using "

Refinements of concurrent programs

Contextual refinement: the “gold standard” of program refinement:

&1 Jex &2 2 VC, v. Clel] L v = Clea] L v

~

“Any behaviour of a (well-typed) client using e; can be matched by a behaviour of the
same client using e

m Applications: optimised versions of data structures; proving linearisability; proving
program transformations.

m Example: lock free data structure X atomic data structure.

Refinements of concurrent programs

Contextual refinement: the “gold standard” of program refinement:

&1 Jex &2 2YC, v. Clel] J v = Clex] J v

~

“Any behaviour of a (well-typed) client using e; can be matched by a behaviour of the

same client usin " R .
& € [Quantlﬁcauon over all chents]

m Applications: optimised versions of data structures; proving linearisability; proving
program transformations.

m Example: lock free data structure X atomic data structure.

Our proposed solution

Prove the refinements in the style of
concurrent separation logic!

Instead of Hoare triples {P} e {Q} we have refinement judgements e; S e : 7.

m Soundness: Fe; ST = e Jex @ T
m Proofs by symbolic execution.

m Modular and conditional specifications.

ReLoC: (simplified) grammar

P,Q€Prop:=Vx.P|3Ix.P|PVQ]| ...

ReLoC: (simplified) grammar

P,Q € Prop:=Vx.P|3Ix.P|PVQ]| ...
| PxQ | P=Q | frv | Ligv

m Separation logic for handling mutable state;

m { —; v for the left-hand side (implementation);
m { — v for the right-hand side (specification);

ReLoC: (simplified) grammar

P,Q € Prop:=Vx.P|3Ix.P|PVQ]| ...
| PxQ | P=Q | frv | Ligv

| (aZe:7) |...

m Separation logic for handling mutable state;
m { —; v for the left-hand side (implementation);
m { — v for the right-hand side (specification);
m Logic with first-class refinement propositions: allows conditional refinements
Bl Vv % e 36T,
me Se:lo7 = t1(e) Ze);e): 7

Example ReLoC rules

Structural rules
e 3e:T * t1 It T
(61, tl) :j (62, t2) crx 7!

=

Example ReLoC rules

Structural rules
e 3e:T * t1 It T

(61, tl) :j (62, t2) T x 7!

Symbolic execution
lisgv * (Lsve = et IK[()]:7)
eleM(—Vz]:T B

Liiv * (0 =i vo — K[()]jeg:T)¢
K[l w]Ze:T ‘

What about concurrency?

Problem
Structural & symbolic execution rules are only sufficient when you do not have shared
resources (“standard” separation logic).

Solution
For shared resources we require mechanisms for reflecting this in the logic: invariants
and ghost state (concurrent separation logic).

ReLoC is built on top of an expressive CSL — Iris — borrowing the infrastructure for
resource sharing.

let x = ref(1) in (A(). FAI(x))

N

let x = ref(1),/ = newlock () in
(A()- acquire(?);
letv =I!xin
X<+ v+1;

release({); v)

(A().FAI(x1))

N

let x = ref(1),/ = newlock () in
X1 il (A(). acquire(¥);

letv =I!xin
X<+ v+1;

release({); v)

X1 i1

X9 i—>51

(A().FAI(x1))

N

let ¢ =newlock () in
(A()- acquire(?);
letv = !xyin
Xo < v+ 1;

release({); v)

X1 i1
X9 l—>s].

isLock(?, unlocked)

(A().FAI(x1))

N

(A()- acquire(¥);
letv = !xy1in
Xg < v+ 1;

release({); v)

dn.

Xy i n
Xo F>s N

isLock(?, unlocked)

(A().FAI(x1))

N

(A()- acquire(¥);
letv =I!x51in
Xg < v+ 1;

release({); v)

dn.xq > n %

X2 s 1% (A(). FAI(x4))
isLock(¢,unlocked)

N

(A()- acquire(¥);
letv =I!x51in
Xg < v+ 1;

release({); v)

dn.xq —>; n *

isLock(?, unlocked)

N

acquire(?);
letv = Ixyin
Xo < v+ 1;

release(?); v

dn.xq i n x

Xo F>g N % FAI(Xl)
isLock(¢,unlocked)

N

acquire(?);
letv = Ixyin
Xo < v+ 1;

release(?); v

Xy > n
Xo F>s N

isLock(¢, unlocked)

FAI(x1)

N

acquire(?);
letv = Ixyin
Xo < v+ 1;

release(?); v

Xi—=in+1
Xo F>s N

isLock(¢, unlocked)

N

acquire(?);
letv = Ixyin
Xo < v+ 1;

release(?); v

X1 —=in+1
Xog g N

isLock(¥,locked)

A

letv = Ixyin
X9 ¢+ v +1;

release(?); v

A

Xi—=in+1

Xo s N Xg ¢ n+1;

isLock(¥,locked) release({); n

A

Xi—=in+1
x2»—>sn—|—1

isLock(¥,locked) release({); n

X1 —=in+1
x2»—>sn—|—1

isLock(¢,unlocked)

A

dn.xq > n %
X2 '—>5n*

isLock(¢,unlocked)

A

m RelLoC provides rules allowing this kind of simulation reasoning, formally.
m The example can be done in ReLoC in Coq in almost the same fashion.

m The approach scales to: lock-free concurrent data structures, generative ADTs,

examples from the logical relations literature.

Logically atomic relational specifications

Problem

m The example that we have seen is a bit more subtle: the fetch-and-increment
(FAI) function is not a physically atomic instruction.

m What kind of specification can we give to FAI as a compound program?

Logically atomic relational specifications

Problem

m The example that we have seen is a bit more subtle: the fetch-and-increment
(FAI) function is not a physically atomic instruction.

m What kind of specification can we give to FAI as a compound program?

Our solution
Relational version of TaDA-style logically atomic triples in ReLoC.

Conclusions and future work

Contributions

m ReloC: a logic that allows to carry out refinement proofs interactively in Coq;
m New approach to modular refinement specifications for logically atomic programs;

m Case studies: concurrent data structures, and examples from the logical relations
literature.

Future work

m Program transformations.
m Refinements between programs in different language.

m Other relational properties of concurrent programs.

https://cs.ru.nl/~dfrumin/reloc/ 10

https://cs.ru.nl/~dfrumin/reloc/

