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concurrent programs.

m Contextual refinement: notion of program refinement
E.g.: or(es,es) Zcix or(ea, e1).

m Fine-grained concurrency: programs use low-level synchronisation primitives for
more granular parallelism.

m Mechanised: proven sound in Coq.

m Coq machinery for high level interactive proofs in the logic.
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m Applications: optimised versions of data structures; proving linearisability; proving
program transformations.

m Example: lock free data structure X atomic data structure.



Our proposed solution

Prove the refinements in the style of
concurrent separation logic!

Instead of Hoare triples {P} e {Q} we have refinement judgements e; S e : 7.

m Soundness: Fe; ST = e Jex @ T
m Proofs by symbolic execution.

m Modular and conditional specifications.
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ReLoC: (simplified) grammar

P,Q € Prop:=Vx.P|3Ix.P|PVQ]| ...
| PxQ | P=Q | frv | Ligv

| (aZe:7) |...

m Separation logic for handling mutable state;
m { —; v for the left-hand side (implementation);
m { — v for the right-hand side (specification);
m Logic with first-class refinement propositions: allows conditional refinements
Bl Vv % e 36T,
me Se:lo7 = t1(e) Ze);e): 7



Example ReLoC rules

Structural rules
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Example ReLoC rules

Structural rules
e 3e:T * t1 It T

(61, tl) :j (62, t2) T x 7!

Symbolic execution
lisgv * (Lsve = et IK[()]:7)
eleM(—Vz]:T B

Liiv * (0 =i vo — K[()]jeg:T)¢
K[l w]Ze:T ‘




What about concurrency?

Problem
Structural & symbolic execution rules are only sufficient when you do not have shared
resources ( “standard” separation logic).

Solution
For shared resources we require mechanisms for reflecting this in the logic: invariants
and ghost state (concurrent separation logic).

ReLoC is built on top of an expressive CSL — Iris — borrowing the infrastructure for
resource sharing.
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m RelLoC provides rules allowing this kind of simulation reasoning, formally.
m The example can be done in ReLoC in Coq in almost the same fashion.

m The approach scales to: lock-free concurrent data structures, generative ADTs,

examples from the logical relations literature.
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Logically atomic relational specifications

Problem

m The example that we have seen is a bit more subtle: the fetch-and-increment
(FAI) function is not a physically atomic instruction.

m What kind of specification can we give to FAI as a compound program?

Our solution
Relational version of TaDA-style logically atomic triples in ReLoC.



Conclusions and future work

Contributions

m ReloC: a logic that allows to carry out refinement proofs interactively in Coq;
m New approach to modular refinement specifications for logically atomic programs;

m Case studies: concurrent data structures, and examples from the logical relations
literature.

Future work

m Program transformations.
m Refinements between programs in different language.

m Other relational properties of concurrent programs.
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