
Journal of Arti�cial Intelligence Research 4 (1996) 179-208 Submitted 11/95; published 4/96
Practical Methods for Proving Termination ofGeneral Logic ProgramsElena Marchiori elena@cwi.nlCentrum voor Wiskunde en Informatica (CWI)P.O. Box 94079, 1090 GB Amsterdam, The NetherlandsAbstractTermination of logic programs with negated body atoms (here called general logicprograms) is an important topic. One reason is that many computational mechanismsused to process negated atoms, like Clark's negation as failure and Chan's constructivenegation, are based on termination conditions. This paper introduces a methodology forproving termination of general logic programs w.r.t. the Prolog selection rule. The idea is todistinguish parts of the program depending on whether or not their termination depends onthe selection rule. To this end, the notions of low-, weakly up-, and up-acceptable programare introduced. We use these notions to develop a methodology for proving terminationof general logic programs, and show how interesting problems in non-monotonic reasoningcan be formalized and implemented by means of terminating general logic programs.1. IntroductionGeneral logic programs (glp's for short) provide formalizations and implementations forspecial forms of non-monotonic reasoning, as illustrated by Apt and Bol (1994) and Baraland Gelfond (1994). For example, Prolog's negation as �nite failure operator can be usedto implement the temporal persistence problem in Arti�cial Intelligence as a logic program(Kowalski & Sergot, 1986; Evans, 1990; Apt & Bezem, 1991). The implementation ofoperators like Clark's negation as failure (Clark, 1978) and Chan's constructive negation(Chan, 1988), is based on termination conditions. Therefore the study of termination ofglp's (e.g., De Schreye & Decorte, 1994) is an important topic.Two classes of glp's that behave well w.r.t. termination are the so-called acyclic andacceptable programs (Apt & Bezem, 1991; Apt & Pedreschi, 1991). In fact, Apt and Bezem(1991) prove that if negation as �nite failure is incorporated into the proof theory, thenfor any acyclic program, all sld-derivations with arbitrary selection rule of ground queriesterminate. The converse of this result, i.e., if a program terminates for all ground queries,then it is acyclic, holds only under the assumption that the program is `non-oundering'.Apt and Pedreschi (1991) establish analogous results on termination for so-called acceptableprograms, this time w.r.t. the Prolog selection rule, which selects the leftmost literal of aquery.Floundering is an abnormal form of termination which arises as soon as a non-groundnegated atom is selected, as explained e.g., in (Apt & Bol, 1994). To treat also non-groundnegated atoms, Chan (1988) introduced a procedure known as Chan's constructive negation.Using Chan's constructive negation, Marchiori (1996) showed that the notions of acyclicityand acceptability provide a complete characterization of programs that terminate for allground queries.c1996 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



MarchioriThe notion of acceptability combines the de�nition of acyclicity with a semantic condi-tion, and therefore proving acceptability may be rather cumbersome. The aim of this paperis to develop a methodology for proving termination with respect to the Prolog selectionrule, by using as little semantic information as possible. A program P is split into twoparts, say P1 and P2; then one part is proven to be acyclic, the other one to be acceptable,and these results are combined to conclude that the original program is terminating w.r.t.the Prolog selection rule. The decomposition of P is done in such a way that no relationsde�ned in P1 occur in P2. We introduce the notions of up-acceptability, where P1 is provento be acceptable and P2 to be acyclic, and of low-acceptability, which treats the conversecase (P1 acyclic and P2 acceptable). In order to be of more practical use, the notion ofup-acceptability is generalized to weak up-acceptability . We integrate these notions in abottom-up methodology for proving termination of general logic programs. We apply ourresults to programs formalizing problems in non-monotonic reasoning. In particular, weshow that the planning in the blocks world problem can be formalized and implemented bymeans of an up-acceptable program. This provides a class of queries (up-bounded queries)that can be completely answered.Even though our main theorems (Theorem 5.5, 6.4 and 7.2) deal with Chan's construc-tive negation only, a simple inspection of the proofs shows that they hold equally well forthe case of negation as �nite failure.Our approach provides a simple methodology for proving termination of glp's, by com-bining the results of Bezem, Apt and Pedreschi on acyclic and acceptable programs. Therelevance of this methodology is twofold: for a large class of programs, it overcomes thedrawback of the method of Apt and Pedreschi (1991), namely the use of too much semanticinformation; and it allows to identify those parts of the program whose termination is de-pendent on the use of the Prolog selection rule. Moreover, the examples that are given, showthat systems based on the logic programming paradigm provide a suitable formalization andimplementation for problems in non-monotonic reasoning.The paper is organized as follows. The next section contains some terminology andpreliminaries. In Sections 3 and 4 the notions of acyclicity and acceptability are presented.Sections 5, 6, and 7, contain our alternative de�nitions of acceptability. In Section 8 thesede�nitions are integrated in a methodology for proving termination. Finally, in Section 9some conclusions are given. This paper is an extended and revised version of (Marchiori,1995).2. PreliminariesThe following notation will be used. We follow Prolog syntax and assume that a stringstarting with a capital letter represents a variable, while other strings represent constants,terms and relations. Relation symbols are often denoted by p; q; r. A literal is either anatom p(s1; : : : ; sk), or a negated atom :p(s1; : : : ; sk), or an equality s = t, or an inequality8(s 6= t), where 8 quanti�es over some (perhaps none) of the variables occurring in s, t.Equalities and inequalities are also called constraints, and denoted by c. An inequality8(s 6= t) is primitive if it is satis�able but not valid. For instance, X 6= a is primitive. An(extended) general logic program, denoted by P , R, is a �nite set of clausesH  L1; : : : ; Lm:180



Proving Termination of General Logic Programswith m � 0, where H is an atom, and Li is a literal, for i 2 [1;m]. A query is a �nitesequence of literals, and is denoted by Q.To treat negated non-ground atoms, Chan (1988) proposes to augment sld-resolutionwith a procedure, informally described as follows. For a substitution � = fX1=t1; : : : ;Xn=tng,we denote by E� the equality formula (X1 = t1^ : : :^Xn = tn). For any negated atom :A,if all the sld-derivations of A are �nite, and �1, : : : ; �k, with k � 0, are the computed answersubstitutions, then the answers for :A are obtained from the negation of 9(E�1 _ : : :_E�k),where 9 quanti�es over the variables not occurring in A. For instance, consider the programp(a)  .p(b)  .The answer to the query :p(X) is X 6= a ^ X 6= b. We call sldcnf-resolution, sld-resolution augmented with Chan's procedure. To show the correctness of sldcnf-resolution,we choose as program semantics the Clark's completion (Clark, 1978). This semantics is anatural interpretation of a glp as a set of de�nitions. Intuitively, the Clark's completionof a program P , denoted by comp(P ), is the �rst-order theory obtained by replacing theimplication of each clause of P with an equivalence. It is constructed as follows. Below, 8quanti�es over X1; : : : ;Xk.� For every relation symbol p occurring in P , having say k � 0 arguments:{ if p does not occur in the head of any clause then add the formula8(p(X1; : : : ;Xk)$ false);{ otherwise, if k = 0 then add the formula p$ true; if k > 0 and C1; : : : ; Cl, withl � 1 are all the clauses of P with head symbol p, with Ci = p(si1; : : : ; sik) Qi,then add the formula 8(p(X1; : : : ;Xk) $ _i2[1;l](9Vi(Ei ^ Qi)), where Vi is theset of variables of Ci, Ei is (si1 = X1 ^ : : : ^ sik = Xk), and X1; : : : ;Xk are freshvariables.� Finally, the following free equality axioms are added, so that the equality theory ofcomp(P ) becomes the same as the one of the Herbrand universe.{ f(X1; : : : ;Xk) = f(Y1; : : : ; Yk)! (X1 = Y1 ^ : : : ^Xk = Yk),for every function symbol f ,{ f(X1; : : : ;Xk) 6= g(Y1; : : : ; Ym),for every distinct function symbols f and g,{ X 6= s,for every term s s.t. X occurs in s.The soundness of sldcnf-resolution w.r.t. Clark's semantics follows fromcomp(P ) j= 8(A$ 9(E�1 _ : : : _E�k));where 8 quanti�es over all the free variables of the formula. sldcnf-resolution is completeonly for queries having all terminating derivation. In fact, Chan's procedure is not de�nedif A has an in�nite derivation. As a consequence, the notion of (in�nite) derivation is181



Marchiorinot always de�ned. This is a problem for the study of termination of glp's, becausethe notion of derivation is of crucial importance. Therefore, we refer here to an alternativede�nition of Chan's procedure given by Marchiori (1996), where the subtrees used to resolvenegative literals are built in a top-down way, constructing their branches in parallel. As aconsequence, the main derivation is in�nite if at least one of these subtrees is in�nite.Termination of glp's depends on the selection rule. For instance, the programp  q,p.terminates if the Prolog selection rule, which chooses the leftmost literal of a query, isused. But, the program does not terminate if the selection rule which chooses the rightmostliteral of a query is used. We shall consider the generalization of the Prolog selectionrule to programs containing constraints, which delays the selection of primitive constraintsas follows: the leftmost literal of a query which is not a primitive inequality is chosen.For simplicity, we continue to refer to this selection rule as the Prolog selection rule. Ansldcnf-tree that is obtained by using the Prolog selection rule is called ldcnf-tree.To prove termination of logic programs, suitable functions from ground atoms to naturalnumbers, called level mappings, will be used. Let BP denote the Herbrand base of P .De�nition 2.1 (Level Mapping) A level mapping (for P ) is a function j j from BP tonatural numbers. 2A level mapping is extended to negated ground atoms by j:Aj = jAj. We do not need toextend this notion also to constraints, because they represent terminating atomic actions.However, note that the presence of constraints in a query inuences termination, because,for instance, a derivation �nitely fails if an unsatis�able constraint is selected.3. Acyclic ProgramsOur method will be based on the notions of acyclicity and acceptability, which are usedto characterize a class of terminating programs w.r.t. an arbitrary and the Prolog selectionrule, respectively. In this section we recall the de�nition of acyclicity, and some usefulresults from (Marchiori, 1996), while acceptability will be discussed in Section 4.Apt and Bezem (1991) study termination of glp's w.r.t. an arbitrary selection rule.They introduce the following elegant syntactic notion.De�nition 3.1 (Acyclic Program) A program P is acyclic w.r.t. a level mapping j j iffor all ground instances H  L1; : : : ; Ln of clauses of P we have that jHj > jLij holds forall i � 1 � n s.t. Li is not a constraint. P is acyclic if there exists a level mapping j j s.t.P is acyclic w.r.t. j j. 2If a program is acyclic, then all ground queries have only �nite derivations, and henceterminate. To extend this result to non-ground queries, the following notion of boundednessis used.De�nition 3.2 (Bounded Query) Let j j be a level mapping. A query Q = L1; : : : ; Ln isbounded (w.r.t. j j) if for every 1 � i � n, the setjQji = fjL0ij j L0i is a ground instance of Lig182



Proving Termination of General Logic Programsis �nite. 2Notice that ground queries are bounded. Apt and Bezem prove that for an acyclicprogram, every bounded query Q has only �nite derivations w.r.t. negation as �nite failure.The converse of this result does not hold, due to the possibility of oundering. Instead, usingChan's constructive negation, we obtain a complete characterization (Marchiori, 1996).First, we formalize the concept of termination w.r.t. an arbitrary selection rule.De�nition 3.3 (Terminating Query and Program) A query is terminating (w.r.t. P ) ifall its sldcnf-derivations (in P ) are �nite. A program P is terminating if all ground queriesare terminating w.r.t. P . 2Theorem 3.4 Let P be an acyclic program and let Q be a bounded query. Then everysldcnf-tree for Q in P contains only bounded queries and is �nite.Theorem 3.5 Let P be a terminating program. Then there exists a level mapping j j s.t.:(i) P is acyclic w.r.t. j j; (ii) for every query Q, Q is bounded w.r.t. j j i� Q is terminating.From Theorems 3.4 and 3.5 it follows that terminating programs coincide with acyclicprograms and that for acyclic programs a query has a �nite sldcnf-tree if and only if itis bounded. Notice that when negation as �nite failure is assumed, Theorem 3.5 does nothold. For instance, the program:p(X)  : q(Y).q(s(X))  q(X).q(0)  .is terminating (oundering) but it is not acyclic.Finding a level mapping for proving acyclicity is a creative process. We refer the readerto (De Schreye & Decorte, 1994) for a thorough presentation of various techniques forconstructing level mappings.The following section illustrates how an interesting problem in nonmonotonic reasoningcan be formalized and implemented as an acyclic program.3.1 An Example: Blocks WorldThe blocks world is a formulation of a problem in AI, where a robot performs a numberof primitive actions in a simple world (see for instance Nilsson, 1982). Here we considera simpler version of this problem by Sacerdoti (1977). There are three blocks a, b, c, andthree di�erent positions p, q, r on a table. A block can lay either above another block oron one of these positions, and it can be moved from one position to another. The problemconsists of specifying possible con�gurations, i.e., those obtained from the initial situationby performing a sequence of possible moves. An example of an initial situation is given inFigure 1.Kowalski (1979) gives a clausal representation of this problem by means of pre- and post-conditions. Here we formulate the problem using McCarthy and Hayes' situation calculus183



Marchiori
c

p rq

b

a

Figure 1: The Blocks-World(McCarthy & Hayes, 1969), in terms of facts, events and situations. There are three typesof facts: loc(X;L) stands for `block X is in location L'; above(X;Y ) for `block X is onblock Y '; and clear(L) for `there is no block in location L'. There is only one type of event:move(X;L) stands for `move block X into location L'. Finally, situations are describedusing lists: [ ] denotes the initial situation, and [XejXs] the situation obtained from Xsby performing the event Xe. Based on the above representation, the blocks world can beformalized as the following glp blocksworld:1) holds(l,[])  : l2 L2) block(bl)  : bl2 B3) position(pl)  : pl2 P4) holds(loc(X,L),[move(X,L)|Xs])  block(X),position(L),holds(clear(top(X)),Xs),holds(clear(L),Xs),L 6= top(X).5) holds(loc(X,L),[Xe|Xs])  block(X),position(L),: abnormal(loc(X,L),Xe,Xs),holds(loc(X,L),Xs).6) holds(above(X,Y),Xs)  holds(loc(X,top(Y)),Xs).7) holds(above(X,Y),Xs)  holds(loc(X,top(Z)),Xs),holds(loc(Z,top(Y)),Xs).8) holds(clear(L),Xs)  : occupied(L,Xs).9) abnormal(loc(X,L),move(X,L'),Xs)  .184



Proving Termination of General Logic Programs10) occupied(L,Xs) holds(loc(X,L),Xs).11) legals([(a,L1),(b,L2),(c,L3)],Xs)  holds(loc(a,L1),Xs),holds(loc(b,L2),Xs),holds(loc(c,L3),Xs).Here top(X) denotes the top of block X, B = fa; b; cg, P = fp; q; r; top(a); top(b); top(c)g,and L = floc(a; p); loc(b; q); loc(c; r)g. Moreover, lines 1, 2 and 3 abbreviate sets of clauses,and line 1 speci�es the initial situation. The relation holds describes when a fact is possiblein a given situation, and the relation legals when a con�guration is possible in a givensituation.Consider the following level mapping, where for a ground term y, jyj denotes the lengthof the list y, otherwise (i.e., if y is not a list) jyj is 0.jblock(x)j = 0,jposition(x)j = 0,jabnormal(x; y; z)j = 0,jholds(x; y)j = 8>>><>>>: 3 � jyj+ 1 if x is of the form loc(r; s),3 � jyj+ 3 if x is of the form clear (r; s),3 � jyj+ 4 if x is of the form above(r; s),0 otherwise.joccupied(x; y)j = 3 � jyj+ 2,jlegals(x; y)j = 3 � jyj+ 2.It is easy to check that blocksworld is acyclic w.r.t. j j.Therefore, the class of questions expressed by means of bounded queries can be com-pletely answered. For instance, the question `when block a remains in its initial position punder the occurrence of an action?' can be formalized as the query holds(loc(a,p),[A]).This query is bounded, hence every of its sldcnf-derivations is �nite, with answer 8L(A 6=move(a; L)).Note that this query would ounder when negation as �nite failure is used.4. Acceptable ProgramsIn the previous section, we have seen how termination of glp's w.r.t. an arbitrary selectionrule can be proven by means of the notion of acyclicity. The notion of acceptability (Apt& Pedreschi, 1991) is used for proving termination of glp's w.r.t. the Prolog selection rule.In this section, we recall this notion, together with some useful results from (Marchiori,1996). Acyclicity and acceptability will be combined in the following sections to providemore practical tools for proving termination of glp's w.r.t. the Prolog selection rule.In order to study termination of general logic programs with respect to the Prologselection rule, Apt and Pedreschi (1991) introduced the notion of acceptable program. This185



Marchiorinotion is based on the same condition used to de�ne acyclic programs, except that, for aground instance H  L1; : : : ; Ln of a clause, the test jHj > jLij is performed only until the�rst literal Ln which fails. This is su�cient since, due to the Prolog selection rule, literalsafter Ln will not be selected. To compute n, a class of models of P , here called specializedmodels, is used. The following notion is used. The restriction of an interpretation I to aset S of relations, denoted by IjS, is the set of atoms of I having their relations in S.De�nition 4.1 (Specialized Model) Let NegP be the least set S of relations s.t.: therelations of P occurring in negated atoms are in S; and if an element of S occurs in thehead of a clause, then all the relations occurring in the body of that clause are in S. LetP� be the set of clauses in P whose head contains a relation from NegP . Now a model Iof P is specialized if IjNegP is a model of comp(P�). 2De�nition 4.2 (Acceptable Program) Let j j be a level mapping for P and let I be aninterpretation of P . P is acceptable w.r.t. j j and I if I is a specialized model of P , andfor all ground instances H  L1; : : : ; Ln of clauses of P we have that jHj > jLij holds forevery 1 � i � n s.t. Li is not a constraint, where n = min(fng [ fi 2 [1; n] j I 6j= Lig). P isacceptable if it is acceptable w.r.t. some level mapping and interpretation. 2If a program is acceptable, then every ground query has only �nite ldcnf-derivations,hence it terminates. To extend this result to non-ground queries, as for the acyclic case,the following notion of boundedness is used.De�nition 4.3 (Bounded Query) Let j j be a level mapping and let I be a specializedmodel of P . A query Q = L1; : : : ; Ln is bounded (w.r.t. j j and I) if for every 1 � i � njQjiI = fjL0ij j L01; : : : ; L0i ground instance of L1; : : : ; Li andI j= L01; : : : ; L0i�1gis �nite. 2Apt and Pedreschi prove that for an acceptable program, every bounded query has only�nite derivations w.r.t. the Prolog selection rule and negation as �nite failure. The converseof this result holds when Chan's constructive negation is used (Marchiori, 1996). First, weformalize the concept of termination w.r.t. the Prolog selection rule.De�nition 4.4 (Left-Terminating Query and Program) A query is left-terminating(w.r.t. P ) if all its ldcnf-derivations are �nite. A program P is left-terminating if everyground query is left-terminating w.r.t. P . 2Theorem 4.5 Let P be an acceptable program and let Q be a bounded query. Then everyldcnf-tree for Q in P contains only bounded queries and is �nite.Theorem 4.6 Let P be a left-terminating program. Then there exists a level mapping j j,and a specialized model I of P s.t.: (i) P is acceptable w.r.t. j j and I; (ii) for every queryQ, Q is bounded w.r.t. j j and I i� Q is left-terminating.In the following section an acceptable program that formalizes planning in the blocks worldis given. 186



Proving Termination of General Logic Programs4.1 An Example: Planning in the Blocks WorldConsider planning in the blocks world, amounting to the speci�cation of a sequence ofpossible moves transforming the initial con�guration into a �nal con�guration, e.g., asin Figure 2. This problem can be solved using a nondeterministic algorithm (Sterling &Shapiro, 1994): while the desired con�guration has not yet been reached, �nd a legal action,update the current con�guration, and check that it was not already obtained. The followingprogram planning follows this approach: it consists of all the clauses of the programblocksworld, minus 6) and 7), and plus the following clauses:
b

a c

p rq

a

c

b

p q rFigure 2: Planning in the Blocks-World
1p) transform(Xs,St,Plan)  state(St0),legals(St0,Xs),trans(Xs,St,[St0],Plan).2p) trans(Xs,St,Vis,[ ])  legals(St,Xs).3p) trans(Xs,St,Vis,[Act|Acts])  state(St1),: member(St1,Vis),legals(St1,[Act|Xs]),trans([Act|Xs],St,[St1|Vis],Acts).4p) state([(a,L1),(b,L2),(c,L3)])  P=[p,q,r,top(a),top(b),top(c)],member(L1,P),member(L2,P),member(L3,P).5p) member(X,[X|Y])  . 187



Marchiori6p) member(X,[Y|Z])  member(X,Z).Planning in the blocks-world is speci�ed by the relation transform: in clause 1p) �rst alegal con�guration for the actual situation is found by means of the predicate legals; thenthe predicate trans is used to construct incrementally a plan from this con�guration tothe �nal one. It uses an accumulator as third argument, to guarantee that a plan does notpass twice through the same con�guration. Clause 3p) takes care of expanding a plan: it�rst looks for a con�guration which was not already considered, and then it adds to theplan the legal action yielding that con�guration. Clause 2p) guarantees termination of theconstruction when the �nal con�guration is reached.To prove the acceptability of planning, we have to �nd a model of planning that isalso a model of comp(f5p); 6p)g[ blocksworldnf6); 7); 11)g). We do not need to use allthis semantic information, because from the acyclicity of blocksworld, it follows thatplanning is left-terminating if the following program tras is acceptable. We postpone thejusti�cation of this claim till the next section.10p) transform(Xs,St,Plan)  state(St0),trans(Xs,St,[St0],Plan).2p) trans(Xs,St,Vis,[ ])  .30p) trans(Xs,St,Vis,[Act|Acts])  state(St1),: member(St1,Vis),trans([Act|Xs],St,[St1|Vis],Acts).4p) state([(a,L1),(b,L2),(c,L3)])  P=[p,q,r,top(a),top(b),top(c)],member(L1,P),member(L2,P),member(L3,P).5p) member(X,[X|Y])  .6p) member(X,[Y|Z])  member(X,Z).tras is obtained from planning by �rst deleting the subprogram `de�ning' legals, andnext the literals with relation legals occurring in the body of the remaining clauses. Byconsidering tras, we need less semantic information, namely a model of tras that is also amodel of comp(f5p); 6)g). To show that tras is acceptable, we consider the following levelmapping:jmember(x; y)j = jyj;jstate(x)j = 7;jtrans(x; y; z; w)j = tot� card(el(z) \ S) + 3 � (jxj+ 1) + 5 + jzj;188



Proving Termination of General Logic Programsjtransform(x; y; z)j = tot+ 3 � (jxj+ 1) + 6.Above, S denotes f[(a; p1); (b; p2); (c; p3)] j fp1; p2; p3g � fp; q; r; top(a); top(b); top(c)gg,and tot is the cardinality of S. Moreover, if z is a list then el(z) denotes the set of itselements, otherwise it denotes the empty set; card(el(z) \ S) is the cardinality of the setel(z)\S; �nally, if x is a list then jxj denotes its length, otherwise it denotes 0. Observe that(tot � card(el(z) \ S)) � 0. Thus j j is well de�ned. For an atom p(s1; : : : ; sn), we denoteby [p(s1; : : : ; sn)] the set of all its ground instances. Consider the following interpretationI = Itransform [ Itrans [ Imember [ Istate of tras, with:Itransform = [transform(X;Y;Z)],Itrans = [trans(X;Y;Z;W )],Imember = fmember(x; y) j y is a list s.t. x 2 set(y)g,Istate = fstate(x) j x 2 Sg.It is easy to prove that I is a model of tras. Moreover, Negtras = fmemberg, andtras� is equal to f5p); 6p)g. So, Ijfmemberg is a model of comp(tras�). To show thattras is acceptable w.r.t. I and j j, we use the following properties of j j, which are readilyveri�ed: jtransform(x; y; z)j1 � 8; (1)jtrans(x; y; z; w)j1 � 8; (2)jtrans(x; y; z; w)j1 > jzj: (3)The proof of the acceptability of tras proceeds as follows:� Consider a ground instance:transform(xs; xt; plan) state(st0); trans(xs; st; [st0]; plan):of 1p). From (1) it follows that:jtransform(xs; xt; plan)j > jstate(st0)j:Suppose that I j= state(st0). Then st0 2 S, so card(el(S \ el([st0])) = 1; hence:jtransform(xs; xt; plan)j > jtrans(xs; st; [st0]; plan)j:� Consider a ground instance:trans(xs; st; vis; [actjacts]) state(st1);:member(st1; vis); trans([actjxs]; st; [st1jvis]; acts):of 20p). From (2) it follows that:jtrans(xs; st; vis; [actjacts])j > jstate(st1)j;189



Marchioriand from (3): jtrans(xs; st; vis; [actjacts])j > j:member(st1; vis)j:Suppose that I j= state(st1);:member(st1; vis). Then st1 2 S, but st1 62 set(vis);so card(S \ el([st1jvis])) = card(S \ el(vis))+ 1; hence tot� card(S \ el([st1jvis])) <tot� card(S \ el(vis)). Therefore,jtrans(xs; st; vis; [actjacts])j > jtrans([actjxs]; st; [st1jvis]; acts)j:� The proof for the other clauses of tras is similar.5. Up-AcceptabilityIn this section, we introduce a �rst integration, called up-acceptability, of the notions ofacyclicity and acceptability. We show that up-acceptability provides a more practical toolthan acceptability for proving left-termination of glp's.In Section 4.1 we claim that in order to prove left-termination of planning, it is su�cientto prove acceptability of the `part' of planning called tras and acyclicity of the rest of theprogram. Let us explain how we arrive to this conclusion. First, planning is partitionedinto two parts: an upper part, say P1 consisting of clauses 1); : : : ; 6), and a lower part, sayR, consisting of the rest of planning. This partition is such that no relation de�ned inP1 occurs in R. This kind of partitioning of a program is de�ned by Apt, Marchiori andPalamidessi (1994) as follows.Say that a relation is de�ned in P if it occurs in the head of at least one of its clauses,and that a literal is de�ned in P if its relation is de�ned in P .De�nition 5.1 (Program Extension) A program P extends a program R, denoted byP > R, if no relation de�ned in P occurs in R. 2So P extends R if P de�nes new relations possibly using the relations de�ned alreadyin R. For instance, the program P2:p  q,r.extends the program P1:q  s.s  .Next, we consider the program tras obtained from P1 by deleting all the literals de�nedin R. We call this operation di�erence, de�ned as follows.De�nition 5.2 (Difference of Two Programs) The di�erence of the programs P and R,denoted by P 	R, is the program obtained from P by deleting all the clauses of R and allthe literals de�ned in R. 2190



Proving Termination of General Logic ProgramsFor instance, if P1 and P2 are de�ned as above, then P2 	 P1 is the program p r.Finally, we prove that tras is acceptable and that R is acyclic, and in doing that wehave to take care that the two level mappings used are related by a condition, namely thatfor every ground instance, say C = H  Q1; L;Q2, of a clause of P1, for every literal Lcontained in C and de�ned inR, the level mapping of L is not greater than the level mappingof H. This condition is important to ensure left-termination. For instance, consider theprogram P1) q(f(X))  p(Y), q(X).2) p(f(X))  p(X).and take P1 = f1)g and R = f2)g. Then P1 extends R, P1	R is acceptable w.r.t. the levelmapping jq(x)jP1 = jxj, R is acyclic w.r.t. the level mapping jp(x)jR = jxj, but P is notleft-terminating.So, the steps we applied to planning are summarized in the following de�nition ofup-acceptability, that characterizes left-terminating programs.For a level mapping j j and a program R, the restriction of j j to R, denoted j jjR, is thelevel mapping for R de�ned by jAjjR = jAj.De�nition 5.3 (Up-Acceptability) Let j j be a level mapping for P . Let R be s.t.P = P1 [R for some P1, and let I be an interpretation of P 	R. P is up-acceptable w.r.t.j j, R and I if the following conditions hold:1. P1 extends R;2. P 	R is acceptable w.r.t. j jjP	R and I;3. R is acyclic w.r.t. j jjR;4. for every ground instance H  L1; : : : ; Ln of a clause of P1, for every 1 � i � n,� if Li is de�ned in R and is not a constraint, and� if I j= Li1; : : : ; Lik, where Li1; : : : ; Lik are those literals among L1; : : : ; Li whoserelations occur in P 	R,then jHj � jLij.A program is up-acceptable if there exist j j, R and I s.t. P is up-acceptable w.r.t. j j, R, I.2Observe that by taking for R the empty set of clauses, we obtain the original de�nitionof acceptability. Next, we introduce the notion of up-bounded query.De�nition 5.4 (Up-bounded Query) Let P be up-acceptable w.r.t. j j, R and I, and letQ = L1; : : : ; Ln. Q is up-bounded if for every 1 � i � n the setjQjup;Ii = fjL0ij j L01; : : : ; L0n is a ground instance of Q and I j= L0k1 ^ : : : ^ L0klgis �nite, where L0k1 ; : : : ; L0kl are the literals of L01; : : : ; L0i�1 whose relations occur in P 	R.2191



MarchioriIn order to show that all ldcnf-derivations of an up-bounded query are �nite: we shallprove that a ldcnf-derivation of an up-bounded query contains only up-bounded queries;and we shall associate with each derivation of the query a descending chain in the well-founded set of pairs of multisets of natural numbers, with the lexicographic order. Recallthat a multiset (see e.g., Deshowitz, 1987) is a unordered collection in which the numberof occurrences of each element is counted. Formally, a multiset of natural numbers is afunction from the set (N , <) of natural numbers to itself, giving the multiplicity of eachnatural number. Then, the ordering <mul on multisets is de�ned as the transitive closureof the replacement of a natural number with any �nite number (possibly zero) of naturalnumbers that are smaller under <. Since < is well-founded, the induced ordering <mul isalso well-founded. For simplicity we shall omit in the sequel the subscript mul from <mul.With an up-bounded query Q, we associate a pair �(Q)up;I = (j[Q]jup;I;P1 ; j[Q]jup;I;R) ofmultisets, where for a program P and an interpretation Ij[Q]jup;I;P = bag(maxjQjup;Ik1 ; : : : ;maxjQjup;Ikm );where Lk1 ; : : : ; Lkm are those literals of Q whose relations occur in P 	R, and maxjQjup;Iiis the maximum of jQjup;Ii (which is by convention 0 if jQjup;Ii is the empty set).Recall that the lexicographic order � (on pairs of multisets) is de�ned by (X;Y ) �(Z;W ) i� either X < Z, or X = Z and Y < W .Then we can prove the following result.Theorem 5.5 Suppose that P is up-acceptable w.r.t. j j, R and I. Let Q be an up-boundedquery. Then every ldcnf-derivation for Q in P contains only up-bounded queries and is�nite.Proof. Let � = Q1; : : : ; Qn; : : : be a ldcnf-derivation for Q in P . We prove by induction onn that Qn is up-bounded, and that if it is the resolvent of a query Qn�1 by the selection ofa literal which is not a constraint, then �(Qn)up;I < �(Qn�1)up;I .For the base case n = 1, we have that Q1 is up-bounded by assumption. Now considern > 1, and suppose that the result holds for n � 1. Thus, Qn�1 is up-bounded. Supposethat the resolvent of Qn�1 is de�ned and that the selected literal, say L, is not a constraint.It follows from the fact that Qn�1 is up-bounded and from the de�nition of up-acceptability(here also condition 4 is used) that Qn is up-bounded. Next, we show that �(Qn)up;I issmaller than �(Qn�1)up;I in the lexicographic order. If the relation symbol of L occursin P 	 R then the �rst component of �(Qn)up;I becomes smaller because of condition 2.Otherwise, if the relation symbol of L occurs in R then the �rst component of �(Qn)up;Idoes not increase because of condition 1, while the second one becomes smaller because ofcondition 3. The conclusion follows from the fact that the lexicographic ordering is well-founded, and from the fact that, in a derivation a constraint can be consecutively selectedonly a �nite number of times. 2Example 5.6 (planning is Up-Acceptable) Call R-blocksworld the program ob-tained from blocksworld by deleting the clauses 6) and 7). We prove that planning isup-acceptable w.r.t. j j, R-blocksworld, and I de�ned as in the examples of Sections 3.1192



Proving Termination of General Logic Programsand 4.1. planning	R-blocksworld is (not incidentally) the program tras. The proofof up-acceptability proceeds as follows.1. planning extends R-blocksworld.2. It is proven in Section 4.1 that tras is acceptable.3. It is proven in Section 3.1 that R-blocksworld acyclic.4. Consider a ground instancetransform(c; s; p) state(s0); legals(s0; c); trans(c; s; [s0]; p):of 1), and suppose that I j= state(s0). Thenjtransform(c; s; p)j = tot+ 3 � (jcj+ 1) + 6 � 3 � jcj+ 2 = jlegals(s0; c)j.Consider a ground instancetrans(c; s; v; [ ]) legals(s; c):of 1). Thenjtrans(c; s; v; [ ])j = tot� card(el(v) \ S) + 3 � (jcj+ 1) + 5 + jvj � 3 � jcj+ 2. 2The following corollary establishes the equivalence of the notions of acceptability andup-acceptability. It follows directly from Theorem 5.5 and Theorem 4.6.Corollary 5.7 A general logic program is up-acceptable if and only if it is acceptable.6. Weak Up-AcceptabilityBecause in some cases up-acceptability does not help to simplify the proof of termination,in this section we generalize this notion and introduce weak up-acceptability. We startwith an example of a program that cannot be split into two non-empty programs satisfyingup-acceptability. Next, we introduce weak up-acceptability and establish analogous resultsas for up-acceptability. Finally, we apply weak up-acceptability for simplifying the proof ofleft-termination of our example program.6.1 An Example: Hamiltonian PathA Hamiltonian path of a graph is an acyclic path containing all the nodes of the graph.The following program hamiltonian de�nes hamiltonian paths: it consists of the followingclauses1) ham(G,P)  path(N1,N2,G,P),cov(P,G).2) cov(P,G)  : notcov(P,G).3) notcov(P,G)  193



Marchiorinode(X,G), : member(X,P).4) node(X,G)  member([X,Y],G).5) node(X,G)  member([Y,X],G).augmented with the program acypath de�ning acyclic paths:p1) path(N1,N2,G,P)  path1(N1,[N2],G,P).p2) path1(N1,[N1|P1],G,[N1|P1])  .p3) path1(N1,[X1|P1],G,P)  member([Y1,X1],G),: member(Y1,[X1|P1]),path1(N1,[Y1,X1|P1],G,P).p4) member(X,[X|Y])  .p5) member(X,[Y|Z])  member(X,Z).A graph is represented by means of a list of edges. For graphs consisting only of onenode, we adopt the convention that they are represented by the list [[a;?]], where ? isa special new symbol. In the clause p1) path describes acyclic paths of a graph, andpath(n1; n2; g; p) calls the query path1(n1; [n2]; g; p). The second argument of path1 is usedto construct incrementally an acyclic path connecting n1 with n2: using clause p3), thepartial path [xjp1] is transformed into [y; xjp1] if there is an edge [y; x] in the graph g suchthat y is not already present in [xjp1]. The construction terminates if y is equal to n1,because of clause p2). Thus the relation path1 is de�ned inductively by the clauses p2) andp3), using the familiar relation member, speci�ed by the clauses p4) and p5). Notice that,it follows from p2) that if n1 and n2 are equal, then [n1] is assumed to be an acyclic pathfrom n1 to n2, for any g.The relation ham(g; p) is speci�ed in terms of path and cov: it is true if p is anacyclic path of g that covers all its nodes. The relation cov is de�ned as the negationof notcov, where notcov(p; g) is true if there is a node of g which does not occur in p.Finally, the relation node is de�ned in terms of member in the expected way. For instance,ham([[a,b],[b,c],[a,a],[c,b]], [a,b,c]) holds, corresponding to the path drawn inbold in the graph of Figure 3.The program hamiltonian is not terminating, because acypath is not. However,hamiltonian is left-terminating. In order to prove this result using acceptability (De�ni-tion 4.2), we need to �nd a model of hamiltonian that is also a model of the completioncomp(f3); 4); 5); p4); p5)g) of the program consisting of the clauses 3); 4); 5); p4); p5). Thisis not very di�cult, however it is not needed, as we shall see in the follow. Note also thatthe notion of up-acceptability does not help to prove left-termination using less semanticinformation. Nevertheless, we can split hamiltonian in two subprograms: P2 consistingof acypath plus clause 1), and P1 consisting of the remaining clauses 2) � 5). Note thatP2 `almost' extends P1, because P1 contains some literals (those with relation fmemberg)194



Proving Termination of General Logic Programs
b caFigure 3: The Hamiltonian path of [[a; b]; [b; c]; [a; a]; [c; b]]de�ned in P2. Since the subprogram 5p); 6p) de�ning these literals is extended by bothP1 and by P2 n f5p); 6p)g, it follows that left-termination of f5p); 6p)g does not depend onthe termination behaviour of the rest of hamiltonian. So, for proving left-termination ofhamiltonian it is su�cient to show that P2	P1 is acceptable, that P1 is acyclic, and thatthe corresponding level mappings satisfy the condition in De�nition 5.3. Thus, we needonly to �nd a model of P2 	 P1 that is also a model of comp(fp4); p5)g). 26.2 Weak Up-AcceptabilityFormally, we modify up-acceptability by considering a more general way of partitioning theprogram, speci�ed using the following notion of weak extension. Recall that for a set S ofrelations, PjS denotes the clauses of P that de�ne the relations from S.De�nition 6.1 (Program Weak Extension) A program P weakly extends a program R,denoted by P >w R, if for some set S of relations we have that:� P = P1 [ PjS , and P1 extends PjS ;� R extends PjS; and� P 	 PjS extends R	 PjS. 2Note that only the relations of S which are de�ned in P play a role in the above de�nition.De�nition 5.1 is a particular case of the above de�nition, obtained by considering PjS to beequal to ; (which includes the case that S = ;).Example 6.2 The programp(X)  q(X), r(X).r(f(X))  r(X).weakly extends the program 195



Marchioriq(X)  s(X), r(X).s(X)  .This can be seen by taking S = frg. Then P1 is p(X)  q(X), r(X)., PjS is r(f(X))  r(X)., P1 and R both extend PjS . Moreover, P 	 PjS is p(X)  q(X). and R	 PjS isq(X)  s(X).s(X)  .Finally, it is easy to check that P 	 PjS extends R	 PjS. 2Thus the notion of weak up-acceptability is obtained from De�nition 5.3 by replacingin condition 1 `extends' by `weakly extends'.De�nition 6.3 (Weak Up-Acceptability) Let j j be a level mapping for P . Let R be aset of clauses s.t. P = P1 [ R for some P1, and let I be an interpretation of P 	 R. P isweakly up-acceptable w.r.t. j j, R and I if the following conditions hold:1. P1 weakly extends R;2. P 	R is acceptable w.r.t. j jjP	R and I;3. R is acyclic w.r.t. j jjR;4. for every ground instance H  L1; : : : ; Ln of a clause of P1, for every 1 � i � n,� if Li is de�ned in R and is not a constraint, and� if I j= Li1; : : : ; Lik, where Li1; : : : ; Lik are those literals among L1; : : : ; Li whoserelations occur in P 	R,then jHj � jLij. 2In order to prove the analog to Theorem 5.5, we need to use triples of �nite multisets,instead of pairs, with the lexicographic ordering �: (X1;X2;X3) � (Y1; Y2; Y3) i� either(X1;X2) � (Y1; Y2) (by abuse of notation we use � also to denote the lexicographic orderingon pairs of multisets), or X1 = Y1 and and X2 = Y2 and X3 < Y3. We consider the triple:�(Q)up;I = (j[Q]jup;I;P	PjS ; j[Q]jup;I;R	PjS ; j[Q]jup;I;PjS):Theorem 6.4 Suppose that P is weakly up-acceptable w.r.t. j j, R and I. Let Q be an up-bounded query. Then every ldcnf-derivation for Q in P contains only up-bounded queriesand is �nite.Proof. Let S be the set of relations used to prove that P is weakly up-acceptable w.r.t.j j, R and I. The proof is similar to the one of Theorem 5.5, except that we consider�(Q)up;I instead of �(Q)up;I , and we show that �(Qn)up;I is smaller than �(Qn�1)up;I in thelexicographic order as follows. If the relation symbol of L occur in P 	 R but not in S,then the �rst component of �(Qn)up;I becomes smaller because of condition 2. Otherwise,if the relation symbol of L occur in R then the �rst component of �(Qn)up;I does not196



Proving Termination of General Logic Programsincrease because of condition 1, while the second one becomes smaller because of condition3. Finally, if the relation symbol of L occur in S, then the �rst and second componentsof �(Qn)up;I do not increase, because of condition 1, while the third one becomes smallerbecause of condition 2. 2Example 6.5 (hamiltonian is Weakly Up-Acceptable) We prove that hamiltonianis weakly up-acceptable. Consider as upper part the program P2 consisting of acypathaugmented with clause 1), and as lower part the program P1:2) cov(P,G)  : notcov(P,G).3) notcov(P,G)  node(X,G), : member(X,P).4) node(X,G)  member([X,Y],G).5) node(X,G)  member([Y,X],G).Take fmemberg as set S of relations.1. P2 weakly extends P1.2. The program P2 	 P1, consisting of1) ham(G,P)  path(N1,N2,G,P).p1) path(N1,N2,G,P)  path1(N1,[N2],G,P).p2) path1(N1,[N1|P1],G,[N1|P1])  .p3) path1(N1,[X1|P1],G,P)  member([Y1,X1],G),: member(Y1,[X1|P1]),path1(N1,[Y1,X1|P1],G,P).p4) member(X,[X|Y])  .p5) member(X,[Y|Z])  member(X,Z).is acceptable w.r.t. the following level mapping:jmember(s; t)j = jtj;jpath1(n1; p1; g; p)j = jp1j+ jgj+ 2(jgj � jp1 \ gj) + 1;jpath(n1; n2; g; p)j = 3jgj + 3;jham(g; p)j = 3jgj+ 4,and the interpretation I = Iham [ Ipath [ Ipath1 [ Imember, with:197



MarchioriIham = [ham(G;P )],Ipath = fpath(n1; n2; g; p) j jgj+ 1 � jpjg,Ipath1 = fpath1(n1; p1; g; p) j jp1j � jp1 \ gj � jpj � jp \ gjg,Imember = fmember(s; t) j t list s.t. s 2 set(t)g,where for two lists p and g, p\g denotes the list containing as elements those x whichare elements of p for which there exists a y s.t. [x; y] is an element of g.We prove that I is a model of P2.� Consider a ground instance of the clause p1) and suppose thatI j= path1(n1; [n2]; g; p):Note that j[n2]j � j[n2] \ gj � 1. So jpj � jp \ gj � 1. But jp \ gj � jgj. Thenjpj � jgj+ 1, hence I j= path(n1; n2; g; p).� Consider a ground instance of the clause p3) and suppose thatI j= member([y1; x1]; g);:member(y1; [x1jp1]); path1(n1; [y1; x1jp1]; g; p):Thus j[y1; x1jp1]j�j[y1; x1jp1]\gj � jpj�jp\gj, where y1 62 [x1jp1] and [y1; x1] 2g. Therefore j[y1; x1jp1]\gj = 1+ j[x1jp1]\gj. So j[y1; x1jp1]j�j[y1; x1jp1]\gj =j[x1jp1]j � j[x1jp1] \ gj. Then j[x1jp1]j � j[x1jp1] \ gj � jpj � jp \ gj. HenceI j= path1(n1; [x1jp1]; g; p).� The proof for the other clauses is analogous.Now, NegP2 = fmemberg and P�2 = f(f); (g)g. It is routine to check that Ijfmembergis a model of comp(P�2 ).3. P1 is acyclic w.r.t. the level mapping:jcov(p; g)j = jpj+ jgj+ 3;jnotcov(p; g)j = jpj+ jgj+ 2;jnode(s; t)j = jtj+ 1;jmember(s; t)j = jtj.4. Consider a ground instanceham(g; p) path(n1; n2; g; p); cov(p; g):of 1) and suppose that I j= path(n1; n2; g; p). So jgj + 1 � jpj. Hence jham(g; p)j =3jgj + 4 � jpj+ jgj+ 3 = jcov(p; g)j. 2198



Proving Termination of General Logic Programs7. Low-AcceptabilityIn the previous two sections, we have integrated the notions of acyclicity and acceptability,by means of a partition of the program into an upper and a lower part. We introduced thenotion of up- and weak up-acceptability, where the upper part of the program is proven tobe acceptable and the lower part acyclic. In order to treat also the converse case, i.e., theupper part being acyclic and the lower part acceptable, we introduce now the notion of low-acceptability. We follow the structure of the previous sections: �rst, a motivating example ispresented. Next, we de�ne the notion of low-acceptability and prove some results. Finally,we apply this notion to the program of our example.7.1 An Example: Graph SpecializationGraph structures are used in AI for many applications, such as the representation of re-lations, situations or problems (see e.g., Bratko, 1986). Two typical operations on graphsare �nd a path between two given nodes, and �nd a subgraph with some speci�ed properties.The program specialize below uses both these operations to solve the following problem.Given two nodes n1; n2 in a graph g, �nd a node n that does not belong to any acyclic pathin g from n1 to n2. The program specialize consists of the clauses:1) spec(N1,N2,N,G)  : unspec(N1,N2,N,G).2) unspec(N1,N2,N,G)  path(N1,N2,G,P),member(N,P).augmented with the program acypath of the previous section. The relation spec is spec-i�ed as the negation of unspec, where unspec(n1; n2; n; g) is true if there is an acyclicpath of the graph g connecting the nodes n1 and n2 and containing n. For instance,spec(a,b,c,[[a,b],[b,c],[a,a],[c,b]]) holds (Figure 4).Observe that specialize is not terminating: for instance, the query path1(a,[b,c],d,e)has an in�nite derivation obtained by choosing as input clause (a variant of) the clause p3)and by selecting always its rightmost literal. However specialize is left-terminating. Inorder to prove this result using acceptability (De�nition 4.2), we need to �nd a model ofspecialize that is also a model of comp(specialize), which is rather di�cult. Note alsothat the notions of weak up- and up-acceptability do not help to simplify the proof. How-ever, we can split specialize in two subprograms: P2 consisting of the clause 1) and P1consisting of the rest of the program. Note that P2 extends P1. Therefore, in order to showthat specialize is left-terminating, it is su�cient to prove that P2 	 P1 is acyclic, that P1is acceptable, and that the corresponding level mappings are suitably related.7.2 Low-AcceptabilityFormally, we introduce the following notion of low-acceptability.199



Marchiori

a b cFigure 4: spec(a; b; c; [[a; b]; [b; c]; [a; a]; [c; b]]) holdsDe�nition 7.1 (Low-Acceptability) Let j j be a level mapping for P . Let R be a set ofclauses s.t. P = P1[R for some P1, and let I be an interpretation of R. P is low-acceptablew.r.t. j j, R and I if the following conditions hold:1. P1 extends R;2. P 	R is acyclic w.r.t. j jjP	R;3. R is acceptable w.r.t. j jjR and I;4. for every ground instance H  L1; : : : ; Ln of a clause of P1, for every 1 � i � n, if Liis de�ned in R and is not a constraint, then jHj � jLij.A program is low-acceptable if there exist j j, R and I s.t. P is low-acceptable w.r.t. j j,R and I. 2The notion of low-boundedness is de�ned as in the previous section, by replacing jQjup;Iiwith jQjlow;Ii = fjL0ij j L01; : : : ; L0n is a ground instance of Q and I j= L0k1 ^ : : : ^ L0klg;where L0k1 ; : : : ; L0kl are the literals of L01; : : : ; L0i�1 whose relations occur in R.To prove the analogue of Theorem 5.5 for low-bounded queries, we associate with alow-bounded query Q a pair �(Q)low;I = (j[Q]jlow;I;P1 ; j[Q]jlow;I;R) of multisets, with for aprogram P and an interpretation Ij[Q]jlow;I;P = bag(maxjQjlow;Ik1 ; : : : ;maxjQjlow;Ikm );where Lk1 ; : : : ; Lkm are the literals of Q whose relations occur in P .Theorem 7.2 Suppose that P is low-acceptable w.r.t. j j, R and I. Let Q be a low-boundedquery. Then every ldcnf-derivation for Q in P contains only low-bounded queries and is�nite. 200



Proving Termination of General Logic ProgramsProof. The proof is similar to that of Theorem 5.5, where one replaces �(Q)up;I with�(Q)low;I . 2The following result is a direct consequence of Theorems 7.2 and 4.6.Corollary 7.3 A general logic program is low-acceptable if and only if it is acceptable.Example 7.4 (specialize is Low-Acceptable) We show that the program specializeis low-acceptable. Consider the program spec1=specializenf1)g. Then the proof proceedsas follows.1. The program f1)g extends spec1.2. The program f1)g	spec1 is acyclic w.r.t. the level mappingjspec(n1; n2; n; g)j = 3jgj + 5.3. The program spec1 is acceptable w.r.t. j j and the interpretation I, with j j de�ned asin Example 6.5 for atoms with relationmember, path1, path, and junspec(n1; n2; n; g)j =3jgj + 4; and with I = Iunspec [ Ipath [ Ipath1 [ Imember, s.t.:Iunspec = [unspec(N1; N2; N;G)],and Ipath, Ipath1, and Imember are as before (Example 6.5).4. Consider a ground instancespec(n1; n2; n; g)  :unspec(n1; n2; n; g)of 1). Thenjspec(n1; n2; n; g)j = 3jgj + 5 � 3jgj+ 4 = junspec(n1; n2; n; g)j.Consider the query Q = spec(a,b,X,[[a,b],[b,c],[a,a]]). Because Q is low-bounded, it has a �nite ldcnf-tree, with answer X 6= a;X 6= b. Notice that by usingnegation as failure Q ounders. 28. A Methodology for Proving Left-TerminationDe�nitions 5.3, 6.3 and 7.1 provide a method for proving left-termination of a glp, whichis summarized in De�nition 8.1 below. In this section, we �rst discuss advantages anddrawbacks of this method. Next, we introduce a methodology for proving left-terminationof glp's that incorporates the notions we have introduced in the previous sections. Finally,we give an example in order to illustrate the methodology.De�nition 8.1 (A Method for Proving Left-Termination)1. Find a maximal set R of clauses of P s.t. R forms an acyclic program and P = P1[Ris s.t. either R extends P1 or vice versa.2. If R extends P1 then: 201



Marchiori(a) Prove that P 	R is acceptable w.r.t. a level mapping, say j jP	R, and an inter-pretation.(b) Use j jP	R to de�ne a level mapping j jR for R s.t. R is acyclic w.r.t. j jR, and s.t.for every ground instance H  L1; : : : ; Ln of a clause of R, for every 1 � i � n:if Li is de�ned in P1 then jHjR � jLijP	R holds.3. If P1 extends R then:(a) Prove that R is acyclic w.r.t. a level mapping, say j jR.(b) Use j jR to de�ne a level mapping j jP	R for P 	 R s.t. P 	 R is acceptablew.r.t. j jP	R and an interpretation I, and s.t. for every ground instance H  L1; : : : ; Ln of a clause of P1, for every 1 � i � n: if Li is de�ned in R and ifthose literals among L1; : : : ; Li whose relations occur in P 	R, say Li1; : : : ; Lik,are s.t. I j= Li1; : : : ; Lik, then jHjP	R � jLijR holds. 2An advantage if this method is that it partly overcomes a drawback of the originalmethod of Apt and Pedreschi to prove left-termination, where one has to �nd a specializedmodel of the entire program. Unfortunately, our method is not always applicable. Thishappens because in point 2. we use P 	 R, thus discarding the literals of R occurring inP1. These literals could be relevant for the left-termination behaviour of P1. For instance,in the programp  q, p.q  s.if we take P1 and R to be the �rst and second clause, respectively, then P1 extends R,but P1 	R is p p, a clearly non-acceptable program. This problem can be overcome byconsidering also some semantic information about R, which leads to the following alternativede�nition of up-acceptability.De�nition 8.2 (New Up-Acceptability) Let j j be a level mapping for P . Let R be s.t.P = P1 [ R for some P1, let IR be a specialized model of R, and let IP1 be a specializedmodel of P 	R. P is new up-acceptable w.r.t. j j, R, IR and IP1 if the following conditionshold:1. P1 extends R;2. for all ground instances H  L1; : : : ; Ln of clauses of P1, for every 1 � i � n, withn = min(fng [ fj 2 [1; n] j IR [ IP1 6j= Ljg);� if Li is de�ned in P 	R then jHj > jLij,� if Li is de�ned in R then jHj � jLij.3. R is acyclic w.r.t. j j. 2202



Proving Termination of General Logic ProgramsOne can check that the results we proved for up-acceptability hold as well for the abovede�nition. In particular, the notion of new up-acceptability is equivalent to the one ofacceptability. Note that here we have to �nd some semantic information on both the `upper'and the `lower' part of the program; however, information on the `lower' part is used onlyon the `upper' part of the program. Therefore, also in this case, less semantic informationis needed than with the original de�nition of acceptability by Apt and Pedreschi. Let usillustrate the application of new up-acceptability in the following toy example.Example 8.3 Consider again the program1) p  q, p.2) q  s.We prove that it is new up-acceptable.1. The program f1)g extends f2)g;2. Consider the level mappingjpj = 1, jqj = 1, jsj = 0,and the interpretationsIf1)g = fpg, If2)g = ;.Then If1)g and If2)g are specialized models of f1)g and of f2)g, respectively. We havethat If1) [ If2)g 6j= q and jpj = jqj.3. From jqj = 1 > 0 = jsj it follows that f2)g is acyclic w.r.t. j j. 2Observe that De�nition 8.2 is still not applicable in some cases, for instance to theprogram1) p  q, : p.2) q  s.because the program f1)g 	 f2)g has no specialized model.Another drawback of our method is its lack of incrementality. Nevertheless, we cande�ne an incremental, bottom-up method, where the decomposition step is applied iter-atively to the subprograms until the partition of a subprogram becomes trivial. This ispossible because of the equivalence of up-/weak up-/ low-acceptability and acceptability.These observations are incorporated in the following de�nition. Recall that BP denotes theHerbrand base of P .De�nition 8.4 (An Incremental Method)� Split P into n � 1 parts, say P1; : : : ; Pn s.t. for every i 2 [1; n� 1]:{ Pi+1 (weakly) extends Pi;{ either Pi or Pi+1 is acyclic. 203



Marchiori� De�ne incrementally the level mapping j jP1[:::[Pn = j jP1 [ : : : [ j jPn and the inter-pretation IP1[:::[Pn = IP1 [ : : : [ IPn as follows.1. (base) If P1 is acyclic then �nd the corresponding level mapping j jP1 ; otherwiseprove that P1 is acceptable w.r.t. a level mapping j jP1 and an interpretation IP1 .2. (induction) Suppose that j jPk is de�ned for every 1 � k � i, and suppose thatIPk is de�ned for every 1 � k < i if Pi is acyclic, and for every 1 � k � i if Pi isacceptable, with 1 � i < n. Then,(a) If Pi+1 is acyclic then use j jPi to de�ne a level mapping j jPi+1 for Pi+1 	Pis.t. Pi+1 	 Pi is acyclic w.r.t. j jPi+1 , and s.t. for all ground instances H  L1; : : : ; Lm of clauses of Pi+1, for every 1 � j � m, if Lj is de�ned in Pi thenjHjPi+1 � jLj jPi :(b) If Pi is acyclic then use j jPi to de�ne a level mapping j jPi+1 for Pi+1 	 Pis.t.:i.A. either Pi+1 	 Pi is acceptable w.r.t. a specialized model IPi+1 andj jPi+1 ; in this case set IPi to be BPi ;B. or �nd a specialized model IPi of Pi 	 Pi�1, and a specialized modelIPi+1 of Pi+1 	 Pi s.t. for all ground instances H  L1; : : : ; Lm ofclauses of Pi+1 and for every 1 � k � m if Lk is de�ned in Pi+1 thenjHjPi+1 > jLkjPi+1 .ii. For all ground instances H  L1; : : : ; Lm of clauses of Pi+1 and for every1 � k � m if Lk is de�ned in Pi then jHjPi+1 � jLkjPi .Above, m = min(fmg [ fj 2 [1;m] j IP1[:::[Pi+1 6j= Ljg): 2We prove that this method is correct, i.e., that P is left-terminating if the above methodis applicable. To deal with non-ground queries, we use the original notion of boundednessby Apt and Pedreschi, this time w.r.t. the interpretation resulting from the method.De�nition 8.5 (Bounded Query) Suppose that the partition P1; : : : ; Pn of P , j jP1[:::[Pnand IP1[:::[Pn are obtained using the method of De�nition 8.4. Let Q = L1; : : : ; Lm. ThenQ is bounded (w.r.t. j j and IP1[:::[Pn) if for every 1 � i � m, the setjQjIP1[:::[Pni = fjL0ij j L01; : : : ; L0n is a ground instance of Q andIP1[:::[Pn j= L01 ^ : : : ^ L0i�1gis �nite. 2Theorem 8.6 Suppose that the partition P1; : : : ; Pn, j jP1[:::[Pn and IP1[:::[Pn are obtainedusing the method of De�nition 8.4. Let Q be a bounded query w.r.t. j jP1[:::[Pn and IP1[:::[Pn.Then every ldcnf-derivation of Q is �nite and it contains only bounded queries.Proof. Recall that IP1[:::[Pn = IP1 [ : : :[ IPn . For a bounded query Q = Q1; : : : ; Qm, we de-�ne the n-tuple �(Q)IP1[:::[Pn = (j[Q]jIPn ;Pn	Pn�1 ; : : : ; j[Q]jIP2 ;P2	P1 ; j[Q]jIP1 ;P1) of multisets,with for a program P , and an interpretation I, j[Q]jI;P = bag(maxjQjIk1 ; : : : ;maxjQjIkm);204



Proving Termination of General Logic Programswhere Lk1 ; : : : ; Lkm are the literals of Q whose relations occur in P . The proof is similar tothe one of Theorem 5.5. 2In the following section we illustrate the application of this method.8.1 An Example: Graph ReductionIn Example 7.4, a program is described which for a graph g and two nodes n1 and n2, �ndsa node n that does not belong to any acyclic path in g from n1 to n2. Using this program,we de�ne here the program reduce which for a non-empty graph g and two nodes n1 andn2, computes the graph g0 obtained from g by removing all the nodes that do not belong toany acyclic path in g from n1 to n2, and all the arcs containing at least one of such nodes(see Figure 5).
a b c a bFigure 5: rem(a; b; [[a; b]; [b; c]; [a; a]; [c; b]]; [[a; b]; [a; a]]) holdsThe program reduce consists of the clauses:1) red(N1,N2,G1,G2)  : unif(G1,[]),spec(N1,N2,N,G1),rem(N,G1,G),red(N1,N2,G,G2).2) red(N1,N2,G,G)  : spec(N1,N2,N,G).3) rem(N,[[X,Y]|G1],G2)  member(N,[X,Y]),rem(N,G1,G2).4) rem(N,[[X,Y]|G1],[[X,Y]|G2])  : member(N,[X,Y]),member(N,G1),rem(N,G1,G2).5) rem(N,[],[])  .6) unif(G,G)  . 205



Marchioriplus the program specialize. The relation red(n1; n2; g; g0) is de�ned by two mutuallyexclusive cases, corresponding to the clauses 1) and 2). Clause 1) describes the case wherethere is a node that does not belong to any acyclic path in g from n1 to n2: �rst, therelation spec is used to �nd such a node; next, the node and the corresponding arcs aredeleted from the graph, using the relation rem; �nally, red is called recursively on theresulting graph. Clause 2) describes the �nal situation, where g contains only nodes thatbelong to some of its acyclic paths from n1 to n2 . The relation rem(n; g1; g2) holds if thegraph g2 is obtained from the graph g1 by deleting all the arcs containing the node n of g1.It is recursively de�ned by the clauses 3), 4) and 5), as one would expect.Observe that queries of the form red(n1; n2; [ ]; g) fail, for every n1; n2; g.We prove that reduce is left-terminating by using our bottom-up method. reducecan be partitioned in three parts:� P1 is the program spec1 of Example 7.4;� P2 consists of the clauses 3), 4), 5) of reduce plus the clauses 1), p4), p5) of spe-cialize;� P3 consists of the clauses 1), 2), and 6) of reduce.It is easy to check that P2 is acyclic. Moreover, P3 extends P2, and P2 weakly extends P1w.r.t. fmemberg. So we can apply the bottom-up approach to construct a level mappingj jP1[P2[P3 and an interpretation IP1[P2[P3 . The proof proceeds as follows.� P1 is acceptable w.r.t. j jP1 and IP1 given in Example 7.4.� P2 	P1 is acyclic w.r.t. j jP2 de�ned as in Example 7.4 for spec and member, and s.t.jrem(n; g1; g2)jP2 = jg1j + 2.Moreover, clause 1) of specialize satis�es the condition relating the two level map-pings.� In order to de�ne j jP3 , IP3 and IP2 , we apply point i.B. Consider the level mappingjred(n1; n2; g1; g2)jP3 = 3jg1j + 5,junif(g; g)jP3 = 0,and letIP2 = frem(n; g1; g2) j g1, g2 lists and either g1 = g2 = [ ] or jg2j < jg1jg[[[spec(X;Y;Z;W )] [ fmember(n; g) j g list and n in set(g)g;IP3 = [red(N1; N2; G1; G2)] [ funif(x; y) j x = yg:It is easy to check that IP2 and IP3 are specialized models of P2 	 P1 and P3 	 P2,respectively. It remains to check the tests in points i.B and ii.{ Consider a ground instancered(n1; n2; g1; g2)  :unif(g1; [ ]); spec(n1; n2; n; g1);rem(n; g1; g); red(n1; n2; g; g2):206



Proving Termination of General Logic Programsof 1). We have that:jred(n1; n2; g1; g2)jP3 = 3jg1j + 5 > 0 = j:unif(g1; [ ])jP3 ;jred(n1; n2; g1; g2)jP3 = 3jg1j + 5 = jspec(n1; n2; n; g1)jP2 ;jred(n1; n2; g1; g2)jP3 = 3jg1j + 5 > jg1j+ 2 = jrem(n; g1; g)jP2 .Now, suppose that IP2 [ IP3 j= :unif(g1; [ ]); rem(n; g1; g). Then g and g1 arelists, g1 6= [ ], and jgj < jg1j. Then,jred(n1; n2; g1; g2)jP3 = 3jg1j + 5 > 3jgj+ 5 = jred(n1; n2; g; g2)jP3 .{ Consider a ground instancered(n1; n2; g; g)  :spec(n1; n2; n; g):of 2). We have that:jred(n1; n2; g; g)jP3 = 3jgj + 5 = jspec(n1; n2; n; g)jP2 .Observe that the presence of the literal :unif(G1; [ ]) is fundamental to guarantee left-termination. Without it, left-termination would no longer hold (take for instance the queryred(n1; n2; [ ]; g)).9. ConclusionIn this paper we proposed simple methods for proving termination of a general logic pro-gram, with respect to SLD-resolution with constructive negation and Prolog selection rule.These methods combine the notions of acceptability and acyclicity. They provide a morepractical proof technique for termination, where the semantic information used is minimal-ized. We have illustrated the relevance of the methods by means of some examples, showingin particular that SLD-resolution augmented with Chan's constructive negation is powerfulenough to formalize and implement interesting problems in non-monotonic reasoning.We would like to conclude with an observation on related work. Apt and Pedreschi(1994) introduced a modular approach for proving acceptability of logic programs, i.e., theydo not deal with programs containing negated atoms. Proving termination of general logicprograms in a modular way, using the notion of acceptability, seems a rather di�cult task,because it amounts to building a model of the completion of a program by combining modelsof the completions of its subprograms. Apt and Pedreschi do not tackle this problem. Inthis paper, we have provided an alternative way of proving termination w.r.t. the Prologselection rule, where one tries to simplify the proof by using as little semantic informationas possible, possibly in an incremental way using the methodology illustrated in Section 8.AcknowledgementsThis research was partially supported by the Esprit Basic Research Action 6810 (Compulog2). I would like to thank Jan Rutten for proof reading this paper, Krzysztof Apt for propos-ing the study of acyclic and acceptable programs, Frank Teusink for pleasant discussions,as well as the anonymous referees for useful suggestions and comments on an earlier versionof this paper. 207



MarchioriReferencesApt, K., & Bezem, M. (1991). Acyclic programs. New Generation Computing, 9, 335{363.Apt, K., & Bol, R. (1994). Logic programming and negation: a survey. The Journal ofLogic Programming, 19-20, 9{71.Apt, K., & Pedreschi, D. (1991). Proving termination of general prolog programs. InProceedings of the Int. Conf. on Theoretical Aspects of Computer Software, Vol. LNCS526, pp. 265{289. Springer Verlag.Baral, C., & Gelfond, M. (1994). Logic programming and knowledge representation. TheJournal of Logic Programming, 19-20, 73{148.Bratko, I. (1986). PROLOG Programming for Arti�cial Intelligence. Addison-Wesley.Chan, D. (1988). Constructive negation based on the completed database. In Proceedingsof the 5th Int. Conf. and Symp. on Logic Programming, pp. 111{125.Clark, K. (1978). Logic and Databases, chap. Negation as Failure, pp. 293{322. PlenumPress, NY.De Schreye, D., & Decorte, S. (1994). Termination of logic programs: The never-endingstory. The Journal of Logic Programming, 19-20, 199{260.Dershowitz, N. (1987). Termination of rewriting. Journal of Symbolic Computation, 3,69{116.Evans, C. (1990). Negation as failure as an approach to the hanks and mcdermott problem.In Proceedings of the 2nd International Symposium om AI, pp. 23{27.Kowalski, R., & Sergot, M. (1986). A logic based calculus of events. New GenerationComputing, 4, 67{95.Marchiori, E. (1995). A methodology for proving termination of general logic programs.In Proceedings of the 14th International Joint Conference on Arti�cial Intelligence(IJCAI'95), pp. 356{367.Marchiori, E. (1996). On termination of general logic programs w.r.t. constructive negation.The Journal of Logic Programming, 26(1), 69{89.McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint ofarti�cial intelligence. Machine Intelligence, 4, 463{502.Nilsson, N. (1982). Principles of Arti�cial Intelligence. Springer-Verlag.Sterling, L., & Shapiro, E. (1994). The Art of Prolog. MIT Press.
208


