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Abstract. Constrained non-negative matrix factorization (CNMF) is
an effective machine learning technique to cluster documents in the pres-
ence of class label constraints. In this work, we provide a novel ap-
plication of this technique in research on neuro-degenerative diseases.
Specifically, we consider a dataset of documents from the Netherlands
Brain Bank containing free text describing clinical and pathological in-
formation about donors affected by Multiple Sclerosis. The goal is to
use CNMF for identifying clinical profiles with pathological information
as constraints. After pre-processing the documents by means of stan-
dard filtering techniques, a feature representation of the documents in
terms of bi-grams is constructed. The high dimensional feature space is
reduced by applying a trimming procedure. The resulting datasets of
clinical and pathological bi-grams are then clustered using non-negative
matrix factorization (NMF) and, next, clinical data are clustered using
CNMF with constraints induced by the clustering of pathological data.
Results indicate the presence of interesting clinical profiles, for instance
related to vision or movement problems. In particular, the use of CNMF
leads to the identification of a clinical profile related to diabetes melli-
tus. Pathological characteristics and duration of disease of the identified
profiles are analysed. Although highly promising, results of this investi-
gation should be interpreted with care due to the relatively small size of
the considered datasets.

Introduction

Due to the high cost and large amount of under-utilized data, health care needs
computational methods to boost the benefits of available data, in order to yield
more efficient practice and research [1]. Application of such methods to data can



help to guide and facilitate research, leading to new knowledge and improved
clinical standards [2].

The situation applies prominently to the Netherlands Brain Bank (NBB).
The NBB supplies the international scientific community with clinical and neuro-
pathological well-documented brain tissue from donors [3]. It contains also a host
of yet un-utilized data, describing anonymous clinical information collected from
the donors, including the medical and family history, the type and course of the
diseases, and the clinical diagnosis. Moreover the NBB contains pathological
post-mortem information about the donors including the true (pathological)
diagnosis and various pathological hallmarks.

Pathological parameters collected post-mortem cannot be used as features for
performing diagnosis, treatment and prognosis. Nevertheless, such valuable side
information can be exploited for discovering clinical disease profiles characterized
by few clinical features linked to pathological parameters of interest. These pro-
files could be used by domain experts as a guidance for performing targeted stud-
ies, in order to improve diagnosis, treatment and prognosis of neuro-degenerative
diseases. In machine learning, data that can be used for both constructing and
testing a model (such as the clinical data of the NBB) are also called technical,
while data that cannot be used for testing (such as the pathological data of the
NBB) are called privileged [4].

In this paper we investigate a methodology based on clustering with free
text technical and privileged data from the NBB to identify clinical profiles of
donors affected by Multiple Sclerosis (MS), a chronic inflammatory disease of
the central nervous system.

In our analysis of NBB documents we do not take into account medical knowl-
edge, but only use the text as it is, except for the application of standard lexical
and statistical filtering methods. We perform cluster analysis of these data using
Non-Negative Matrix Factorization (NMF), a state-of-the-art machine learning
technique for clustering documents [5]. First, a clustering of the pathological
data using NMF is computed. The resulting clusters induce a partition of the
data in classes. Next, the clinical data are clustered using Constrained NMF
(CNMF) [6], by integrating the class information of the donors as an additional
constraint. In this way, donors from the same pathological cluster will be merged
together in the new (clinical) representation space.

Results of this clustering methodology indicate the presence of clinical profiles
describing subtypes of the MS disease. In particular, we show that the obtained
clusters correspond to groups of donors with different duration of disease.

1 Related work

Medical documents, such as clinical or pathological annotations, contain valuable
information about patients, such as their medical history (diseases, injuries, med-
ical symptoms) and responses (diagnoses, prescriptions, and drugs) [7]. These
data have a huge potential in order to build profiles for individual patients or
classes of patients sharing a similar disease course, to discover disease correla-



tions [8], and enhance patient care [9]. Moreover, also in medical error detection
a number of tools have emerged, from medical informatics and computer sci-
ence — natural language processing, visualization, and machine learning tools
— as well as methods for understanding cognitive processes, which can collect a
large amount of important clinical information, that normally lie locked in narra-
tive reports, unavailable to automated decision support systems [10]. Whatever
the particular problem, large volumes of medical documents have been recently
generated by electronic health record systems, whose nature is normally un-
structured or semi–structured, making the information extraction procedure a
very difficult task. Due to the intrinsic diversity among medical documents, it
is just a challenge to discover the underlying patterns from a corpus. Thus,
document clustering techniques, being an efficient way of navigating and sum-
marizing documents, have been intensively investigated in biomedical research.
As a dimension reduction method, non–negative matrix factorization [11] has
been widely applied to medical document clustering [12,13]. By imposing non–
negativity constraints in both basis and weight factorization matrices, NMF
guarantees to preserve the local structure of the original data. Moreover, the
resulting latent semantic space of the clustered documents produced by NMF
may be explained in a very intuitive way. Specifically, each axis in the semantic
space represents the basic topic of a particular cluster, whilst each document in
a collection is viewed as the additive combination of the basic topics. Therefore,
a particular document is grouped into the cluster where it has the largest projec-
tion value. Many extensions of the basic NMF method have also been explored for
clustering biomedical documents. For instance, in [13], Multi–view NMF, which
can integrate different data sources, was applied for clustering clinical document,
based on medication/symptom names, whereas, in [12], ensemble NMF, able to
achieve a consensus solution from a set of runs with different initial conditions,
was tested on the TREC genomic 2004 track. Finally, also more complex tech-
niques were recently introduced in order to cope with graph representations of
medical documents [14]. Actually, Subgraph Augmented Non–negative Tensor
Factorization (SANTF), in addition to relying on atomic features (e.g., words in
clinical narrative text), automatically mines higher–order features by convert-
ing sentences into a graph representation and identifying important subgraphs.
Latent groups of atomic features were shown to help in better correlate latent
groups of higher–order features. Moreover, feature analysis also identified latent
groups of higher–order features that lead to interesting medical insights.

2 Multiple Sclerosis

Multiple sclerosis (MS) is a complex, chronic inflammatory disease that affect
the central nervous system and whose causes are largely unknown. The disease
usually causes relapsing-remitting attacks of inflammation, demyelination and
axonal damage, leading to various degrees and spectra of neurological symptoms
and disability (see [15], [16]). The main types of MS4 are listed below.

4 See http://www.multiplesclerosis.com/us/treatment.php

http://www.multiplesclerosis.com/us/treatment.php


– Relapsing-Remitting MS (RR-MS) is the most diffuse type. People affected
by RR-MS have temporarily periods called relapse when the symptoms ap-
pear.

– Secondarily Progressive MS (SP-MS) is considered as an advanced state of
RR-MS, with symptoms that go worse steadily without relapses.

– Primarily Progressive MS (PP-MS) is characterized by slowly worsening of
the neurological functions without any remission from the beginning.

– Progressive-Relapsing MS (PR-MS) is a rare form of MS characterized by a
steadily worsening disease state from the beginning, with acute relapses but
no remissions, with or without recovery.

Main MS symptoms include numbness or weakness in the arms and legs, blurred
or double vision, or pain during eye movement, partial or total vision loss, pain or
tingling in different areas of the body, lack of coordination or unsteady walking,
tremors, dizziness, and extreme fatigue.

3 Methods

We begin by describing the data and techniques used in our analysis.

3.1 Data pre-processing

We consider 149 records of MS donors, which are free text documents composed
by three parts:

– General information: contains gender, age, etc.;
– Clinical information: contains the clinical history of the patient including

prescriptions and diagnosis;
– Pathological information: contains information including the presence of di-

verse types of brain lesions and the pathological diagnosis.

The pathological and clinical parts of the records are used in our analysis as
privileged and technical data, respectively.

A free text is a mixture of words and signs so the first pre-processing step
is devoted to put it in the form of ’word space word ’. Given that it is a medical
text, there are a lot of acronyms and nomenclatures typical of this area. Also a
free text generally contains noise from uninformative words to be filtered out.
We choose to consider only words that belong to the adjective, adverb, noun and
verb classes, with a length greater than two.

A Python script was used for filtering, taking advantage of the WordNet
library, a large lexical database, containing tools to process English text, includ-
ing grammatical analysis and stemming, and stop-word removing procedures.
Stemming transforms a generic word into its basic form (for example ‘chroni-
cally’ will be transformed into ‘chronic’). It is an important operation because it
serves to merge semantically similar words. Instead, stop-word removing discards
uninformative words contained in the text.

http://wordnet.princeton.edu/


After filtering, bi-grams are generated, yielding 64858 bi-gram features, whose
values are represented using the term frequency-inverse document frequency
(TF-IDF), a score estimating how important a bi-gram is to a document within
a collection [17]. For a bi-gram t, in a record x of the (filtered) data X, term
frequency and inverse document frequency are defined as follows.

TF (t, x) = 0.5 + 0.5f(t, x)/max({f(d, x) | d ∈ X}),
where f(t, x) is the frequency of t in x;

IDF (t,X) = log(|X|/|{x ∈ Xs.t. t occurs in x}|),
where | | denotes the size of a set.

The TF-IDF of a bi-gram t is the product of TF (t, x) and IDF (t,X).
In order to further reduce the input dimension of the data, trimming is

applied to the distribution of TF-IDF values: 2-grams with TF-IDF value on
the tail of the distribution are removed from the data. Specifically, we remove
features that appear in more than 50% of the records, as well as those that
appear in less than three documents. In this way a dataset with 1084 features is
obtained.

3.2 Non-Negative Matrix Factorization

NMF approximates the input matrix X of dimension m × n (in our context
m = 1084, n = 149) as the product of two matrices W and H, of dimension
m× k and k × n respectively, with k much smaller than m and n.

The problem can be formulated as finding W and H that minimize the ob-
jective function

||X −WH||2,
with the constraint that both W and H are non-negative. Here || || denotes
the Frobenius norm. Since this problem is intractable [18], heuristic methods
are used to find locally optimal solutions. Here, to find W and H that locally
optimize the objective function, the following multiplicative update rules [19]
are used:

Hαµ = Hαµ

∑
iWiαXiµ/(WH)iµ∑

kWkα
,

Wαµ = Wαµ

∑
iHiαXiµ/(WH)iµ∑

kHkα
.

H represents a soft clustering, where the entry (i, j) can be interpreted as
the membership degree with which record j belongs to cluster i. W provides
information about the relevance of terms for the clusters: each element wij of
W represents the degree with which term (in our context bi-gram) ti belongs to
cluster j.

Crisp clusters can be generated from H by assigning each donor to the cluster
having the highest membership degree (where ties are broken randomly).



3.3 Constrained Non-Negative Matrix Factorization

The resulting clusters form disjoint classes of donors, which can be used as
privileged information to cluster the clinical data by means of CNMF.

CNMF [6] is a kind of semi-supervised clustering method. It considers an
input dataset for which the class label of some (l) elements is given. From these
class labels, an l×k indicator matrix C is constructed, whose (i, j) entry contains
a 1 if the i-th point of the dataset X is labelled with the j-th class. C is used to
define the constraint matrix A:

A =


Cl×k 0

0 In−l

 ,

where In−l is a n−l×n−l identity matrix. Then, CNMF approximates the input
matrix X by the product WAZ, with the constraint that W and Z are both
non-negative. This corresponds to find W and Z that minimize the objective

||X −WAZ||2,

under the constraint that W ≥ 0, H ≥ 0. To find W and Z that locally optimize
this function, the multiplicative update rules given in [6] are used.

4 Experiments

In our experiments we set the parameters, namely the number k of clusters and
the number l of labelled donors, to the somewhat arbitrary values of 3 and 120
(about 80% of the donors randomly selected from the dataset). Therefore, we aim
at identifying three main clinical MS profiles, using a large amount of privileged
information provided by the clustering on the pathological data. The following
experiments were carried out on the pre-processed data:

1. cluster pathological data using NMF;
2. cluster clinical data using NMF;
3. cluster clinical data using CNMF, using the clustering of pathological data

as privileged knowledge.

A set matching algorithm [20] was used to align clusters from two clusterings
of the donors, for instance the two clustering obtained by using the clinical and
pathological data. For each cluster in one clustering C, a best match in the
other clustering C ′ is found. This is done by processing the elements nij of the
contingency table in decreasing order, where

nij = |Ci ∩ C ′j |

is the number of donors in the intersection of the cluster i of the clustering set
C and the cluster j in the clustering set C ′. The largest number, say nab, entails
a match between the two clusters a ∈ C and b ∈ C ′, whereas the second largest
number entails the second match, and so on.



5 Results

We first analyze results of clustering pathological and clinical documents sepa-
rately, and then by using CNMF. Specifically, for each cluster we report the 10
words considered as most important by the clustering algorithms, and analyze
the composition of the clusters with respect to two external metrics: duration of
disease and type of MS.

5.1 Clustering pathological data

The top 10 relevant bi-grams for the pathological clusters are shown in Table 1.

Table 1. Top 10 relevant bi-grams for clusters of the pre-processed pathological dataset
clustered using NMF.

Cluster 1 Cluster 2 Cluster 3

inactive-plaque cortex-white spinal-marrow
chronically-inactive matter-ependyma abnormally-spinal
chronic-inactive chronic-active thoracic-spinal
lateral-string sclerosis-plaque brain-laminate
sclerosis-plaque abnormality-spc cord-section
posterior-string waes-contains abnormality-conclusion
small-plaque section-contain nucleus-putamen
axonal-density matter-cortex brain-stem
decrease-myeline diagnosis-multiple plaque-find
myelinated-axon cord-abnormality visible-brain

Clustering pathological data yields interesting results. As shown in Table 1,
the top 10 relevant bi-grams reveal three pathological profiles characterized by
different brain lesion types:

– (chronic-inactive): this profile contains as top terms ‘chronic-inactive’, but
also terms such as ‘small-plaque’, ‘decrease-myeline’ and ‘myelinated-axon’
which provide further characteristics of brain lesions in this profile.

– (chronic-active): this profile contains as top terms ‘chronic-active’, but also
terms such as ‘abnormality-spc’ and ‘matter-ependyma’ which provide fur-
ther characteristics of brain lesions in this profile.

– (spinal-cord): this profile contains as top terms concerning spinal cord in-
juries, but also terms such as ‘brain-laminate’ and ‘nucleus-putamen’ which
provide further characteristics of brain lesions in this profile.

5.2 Clustering clinical data

The top 10 relevant bi-grams for the clinical clusters are shown in Table 2.
The main characteristics of the three clinical profiles stemming from the

clustering can be summarized as follows.



Table 2. Top 10 relevant bi-grams for the clusters of the pre-processed clinical dataset
clustered using NMF.

Cluster 1 Cluster 2 Cluster 3

patient-suffer right-arm relapsive-progressive
patient-complain lesion-visible start-special
patient-underwent arm-leg phase-start
admit-hospital focal-lesion neuritis-subsequent
right-leg left-arm optic-neuritis
physical-examination left-side sympt-optic
complain-pain right-side subsequent-relapse
tension-mmhg right-leg eds-die
get-worse raise-signal iggindex-elevate
situation-get periventricular-lesion remark-prominent

– Cluster 1 appears to contain terms related to pain and complaints from the
patient (patient-suffer, patient-complain, complain-pain, get-worse, situation-
get) and other patient-focused outcomes (patient-underwent, admit-hospital,
physical examination).

– Cluster 2 seems to have a preponderance of symptoms related to movement
disabilities.

– Cluster 3 seems to emphasize disease progression and state (start-special,
phase-start, relapsive-progressive, subsequent-relapse, eds-die, neuritis-subsequent)
and contains symptoms related to vision (‘optic-neuritis’ and ‘sympt-optic’).

Table 3 shows the size of the crisp clusters obtained by clustering clinical and
pathological data separately using NMF: there are two somewhat large clusters
and a small one.

Table 3. Number of records in the aligned clusters obtained by applying NMF to the
two pre-processed clinical and pathological datasets independently.

Cluster no. Clinical Docs Pathological Docs

1 50 40
2 88 97
3 11 12

5.3 Clustering clinical data with privileged pathological information

The three pathological clusters indicate the presence of pathological profiles of
donors with diverse types of brain lesions. These clusters are used in the sequel
as privileged information to identify profiles from the clinical data using CNMF.

The alignment between the clinical clustering generated by NMF and CNMF
leads to same correspondence between clusters as that indirectly obtained from



the separate alignment of the NMF and CNMF clusterings with the pathological
one. Therefore, for instance, NMF cluster 1 of the clinical data, CNMF cluster
1 of the clinical data and NMF cluster 1 of the pathological data are all aligned
with each other.

Table 4 shows the top 10 bi-grams of these new clinical clusters.

Table 4. Top 10 relevant bi-grams for the clusters of the pre-processed clinical dataset
clustered with CNMF.

Cluster 1 Cluster 2 Cluster 3

patient-suffer right-arm periventricular-lesion
patient-complain arm-leg lesion-visible
progressive-phase left-arm lateral-ventricle
phase-start left-side patient-suffer
right-leg patient-underwent signal-intensity
eds-die muscle-strength matter-lesion
optic-neuritis patient-suffer raise-signal
start-special left-leg white-matter
examination-reveal right-leg mellitus-type
right-side paresis-right diabetes-mellitus

From this table three clinical profiles emerge, whose properties can be sum-
marized as follows.

– The top 10 most relevant bi-grams in cluster 1 represent symptoms about
pain and complaints by the patient. Moreover the presence of the bi-gram
‘progressive-phase’ indicates the presence of a progressive phase of MS, and
‘phase-start’ could indicate that a new phase of MS is starting (relapse) after
remitting. This could mean an SP type of MS. Cluster 1 contains also as top
term ‘optic-neuritis’, a symptom involving vision problems.

– Cluster 2 top bi-grams refer mainly to symptoms related to movement dis-
abilities, involving arms and legs, as well as paresis.

– Cluster 3 contains two bi-grams referring to diabetes mellitus. These could
indicate a specific characteristic of a disease sub-type. Top bi-grams in cluster
3 refer also to brain lesions detected by magnetic resonance imaging (bi-
grams: periventricular-lesion, lesion-visible, lateral-ventricle, matter-lesion).

The size of the clusters obtained by applying CNMF to the clinical data,
and the size of the corresponding best match pathological clusters are shown in
Table 5.

6 Interpretation of results

We now use an external cluster validation metric, namely the duration of disease
(DOD), to analyze clinical clusters. DOD measures the number of years from



Table 5. Size of clusters of the clinical dataset partitioned with CNMF and of their
best match pathological clusters.

Cluster no. Clinical Docs Pathological Docs

1 109 97
2 32 12
3 8 40

the moment a clinical diagnosis of the disease was performed to the death of the
patient.

Table 6 shows the average DOD per type of MS and the corresponding num-
ber of records contained in the dataset.

Table 6. Average DOD for the different MS types and number of donors of that type
in the dataset.

MS Type # Records Average DOD

RR 0 -
SP 33 22.21
PP 12 25.92
PR 0 -

In the clustering of pathological data the majority of donors with SP-MS
belongs to cluster 1 and 3 while the majority of PP-MS donors is in cluster 2.
Information about the type of MS is only partially available (see Table 7).

Table 7. Composition of pathological clusters wrt type of MS.

Cluster n. Available/Total # SP # PP

1 26/97 20 (60.61%) 6 (50.00%)
2 5/12 2 (6.06%) 3 (25.00%)
3 14/40 11 (33.33%) 3 (25.00%)

Total 33 (100.00%) 12 (100.00%)

6.1 Clinical clusters generated by NMF

Table 8 shows the average DOD of the three clinical clusters produced by NMF.
In order to assess whether clusters have significantly different DOD, the Rank

Sum Wilcoxon test is applied. Results of the test show that the three NMF
clinical clusters differ significantly one from each other with respect to DOD.
Composition of clinical clusters with respect to the type of MS is shown in Table
9.



Table 8. Average DOD values (Average DOD) and standard deviation (STD) of the
clusters of the clinical data obtained using NMF.

Cluster n. Available/Total Average DOD STD

1 66/88 27.97 ±14.15
2 11/11 24.45 ±11.80
3 38/50 27.21 ±12.78

Table 9. Composition of clinical clusters generated by NMF with respect to the type
of MS.

Cluster n. Available/Total # SP # PP

1 27/88 18 (54.55%) 9 (75.00%)
2 7/11 7 (21.21%) 0 (0.00%)
3 11/50 8 (24.24%) 3 (25.00%)

Total 33 (100.00%) 12 (100.00%)

In summary, the clustering analysis using NMF identifies clinical profiles
which can be summarized as follows:

– (pain-complaints-relative-long-DOD): this clinical profile involves symptoms
involving pain and complaints. This cluster contains donors with a relatively
long DOD.

– (movement-disabilities-short-DOD): this clinical profile involves symptoms
concerning movement disabilities. This cluster contains donors with a rela-
tively short DOD.

– (vision-MS-phases-SP/PP-relative-long-DOD): this clinical profile concerns
symptoms involving vision and phases of the MS. This cluster contains
donors with a relatively long DOD.

6.2 Clinical clusters generated by CNMF

Table 10 shows the average DOD of the three clinical clusters produced by
CNMF.

Table 10. Average DOD values (Average DOD) and standard deviation (STD) of the
clusters of the clinical data obtained using CNMF.

Cluster n. Available/Total Average DOD STD

1 87/109 26.52 ±12.89
2 25/32 30.24 ±13.73
3 3/8 28.67 ±23.30

In order to assess whether clusters have significantly different DOD, the Rank
Sum Wilcoxon test is applied. Results of the test show that cluster 1 and 2 differ



significantly, as well as cluster 1 and 3. Cluster 3 has few available records so it
is not possible to use its DOD value to link it to its corresponding pathological
cluster.

The composition of the clusters with respect to the type of MS is shown in
Table 11.

Table 11. Composition of clinical clusters generated by CNMF with respect to the
type of MS.

Cluster n. Available/Total # SP # PP

1 32/109 26 (78.79%) 6 (50.00%)
2 12/32 6 (18.18%) 6 (50.00%)
3 1/8 1 (3.03%) 0 (0.00%)

Total 33 (100.00%) 12 (100.00%)

The clustering analysis using CNMF identifies clinical profiles which can be
summarized as follows:

– (pain-complaints-short-DOD): this clinical profile involves symptoms involv-
ing pain and vision complaints of the patient, and symptoms indicating ad-
vanced RR-MS. This cluster contains donors with a relatively short DOD.

– (movement-disabilities-long-DOD): this clinical profile involves symptoms in-
volving movement disabilities of arms and legs, and paresis. This cluster
contains donors with a long DOD and PP-MS type of disease.

– (diabetes-mellitus-long-DOD): this clinical profile is related to symptoms
involving lesions and diabetes mellitus. This cluster contains donors with a
relatively long DOD.

As expected, in this case the composition of clusters with respect to different
MS types identified by the clinic CNMF clustering corresponds to that produced
by clustering pathological data.

6.3 Comparison between NMF and CNMF clusters

Clinical records mainly report symptoms or treatments and describe the medical
history of the patients. Thus the lexicon is quite different between the patho-
logical and the clinic parts of the patient record: that explains the importance
of bi-grams in the NMF clustering such as ’admit-hospital’, ’complain-pain’ or
bi-grams describing parts of the patients’ body. CNMF clusters contains less of
these somewhat generic bi-grams which are replaced by more specific ones in
terms of information from the medical literature, for example terms referring to
diabetes. Also as expected CNMF clusters are more faithful to the pathological
ones with respect to MS type composition.

The use of privileged information from the pathological clustering changes
the rank of important bi-grams in the clinical clusters; in some cases bi-grams
disappear or migrate from one cluster to another one.



Table 12 report words which appear in both the NMF and CNMF clusterings
(column ‘Stay’), which are in CNMF but not NMF (column ‘In’), and which
disappear (column ‘Out’).

From this table we can see that while for cluster 1 and 2 some of the 10 most
important bi-grams of the NMF clustering remain most important also in the
CNMF clustering (3/10 for cluster 1 and 5/10 for cluster 2), no bi-grams for
NMF cluster 3 are kept in the corresponding CNMF cluster.

Table 12. Changes in top 10 relevant bi-grams from clinical clustering with NMF to
that with CNMF.

Cluster In Out Stay

1 progressive-phase phase-start
eds-die optic-neuritis start-
special esamination-reveal
right-side

patient-underwent admit-
hospital physical-examination
complain-pain tension-mmhg
get-worse situation-get

patient-suffer
patient-complain
right-leg

2 patient-underwent muscle-
strength patient-suffer left-leg
paresis-right

lesion-visible focal-lesion
right-side raise-signal
periventricular-lesion

right-arm arm-
leg left-arm
left-side right-leg

3 periventricular-lesion lesion-
visible lateral-ventricle
patient-suffer signal-intensity
matter-lesion raise-signal
white-matter mellitus-type
diabetes-mellitus

relapsive-progressive start-
special phase-start neuritis-
subsequent optic-neuritis
simpt-optic subsequent-
relapse eds-die iggindex-
elevate remark-prominent

Bi-grams which appear in both the clusterings (column ‘Stay’) mainly refer
to pain and complaints in parts of the patients’ body. For cluster 1 top bi-grams
which are in CNMF but not NMF (column ‘In’) are mainly associated with the
phase of the disease, while for cluster 2 such bi-grams are related to symptoms
related to movement, and for cluster 3 they mainly refer to lesions and diabetes.

In general, results indicate that the information provided by the pathological
clustering affect the characteristics of clinical profiles by favoring the emergence
of a small cluster associated to diabetes mellitus. The co-occurrence of MS and
diabetes mellitus has been reported by a number of studies. In particular as
mentioned in [21] for the combined effect of diabetes mellitus type 1 and type
2 there is evidence that this is associated with a worse progression of disability
compared to MS patients without type 1 or type 2 diabetes. This is in accordance
with clinical profile we identified using privileged information which indicates
that the neuropathology associated with this form of diabetes might influence
the disease course (symptoms related to lesions, spinal cord brain lesion) and
contribute to the severity of MS (short DOD).



7 Conclusion

In this paper, we investigated a methodology to identify clinical MS profiles using
pathological information as privileged data to guide the identification process.
To this aim, data from the NBB, consisting of free text documents containing
clinical and pathological records, were used. The data were first pre-processed
and NMF was used to cluster both clinical and pathological data independently.
CNMF was then employed to cluster clinical data, using constraints inferred
from the pathological data. The obtained results indicate the presence of profiles
with characteristics which reflect underlying neuropathological differences, and
differing DOD outcomes. In particular, the use of privileged information lead to
the identification of a clinical profile related to diabetes mellitus.

Although potentially interesting, these results should be interpreted with
care because of the number of DOD missing values and the small size of the
data. The proposed analysis applied to a larger dataset would provide deeper
understanding and confidence on the potential relevance of these profiles.

It is an interesting and relevant matter of future research to provide stronger
ties between the observed clusterings, in particular the final ones, and the neu-
ropathology of MS from literature studies, as well as to use a corpus of documents
from the literature as external prior knowledge to enhance the clustering process.
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