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Abstract- Evolutionary algorithms (EAs) for solving con-
straint satisfaction problems (CSPs) can be roughly di-
vided into two classes: EAs using adaptive fitness func-
tions and EAs using heuristics. In [8] the most effective
EAs of the first class have been compared experimentally
using a large set of benchmark instances consisting of ran-
domly generated binary CSPs. In this paper we complete
this comparison by studying the most effective EAs of the
second class. We test three heuristic based EAs on the
same benchmark instances used in [8]. The results of our
experiments indicate that the three heuristic based EAs
have similar performance on random binary CSPs. More-
over, comparing these results with those in [8], we are able
to identify the best EA for binary CSPs as the algorithm
introduced in [3] which uses a heuristic as well as an adap-
tive fitness function.

1 Introduction

Constraint satisfaction is a fundamental topic in artificial in-
telligence with relevant applications in planning, default rea-
soning, scheduling, etc. Informally, a constraint satisfaction
problem (CSP) consists of finding an assignment of values to
variables in such a way that the restrictions imposed by the
constraints are satisfied. CSPs are, in general, computation-
ally intractable (NP-hard) and the algorithms that solve them
can be divided into two classes: the ones that are tailored to
solve a specific CSP and the ones that use ‘rules-of-thumb’
or heuristics to solve them. Although heuristics do not guar-
antee successful performance, they are able to produce an an-
swer in a very short time and are used to guide the algorithm
through the search space. Evolutionary algorithms (EAs) for
CSPs can be divided into two classes: EAs using adaptive
fitness functions ([1, 3, 4, 6, 7, 11, 17, 18]) and EAs using
heuristics ([10, 15, 20, 21]). In [8], an experimental com-
parison of EAs of the first class was done using a test suite
consisting of randomly generated binary CSPs. In this paper
we perform a comparative study on three EAs of the second
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class ([10, 15, 20, 21]) using the same benchmark instances
as in [8]. A large number of experiments were done and they
indicate that H GA. 1 outperforms the other algorithms sug-
gesting that this version of H- GA strikes the best balance be-
tween the avoidance of premature convergence and guidance
of the search process. However, when considering the results
from [8], the best EA for random binary CSPs is the algo-
rithm by Dozier et al. [3, 5] which uses a heuristic as well as
an adaptive fitness function. This seems to indicate that both
the adaptive operators as well as heuristics are required for
an effective EA for solving binary CSPs. The paper is orga-
nized as follows. Section 2 contains the definition of CSPs.
In Section 3 we describe the main features of the three heuris-
tic based EAs we intend to compare. Section 4 presents the
results of the experiments. Finally, in Section 5 we conclude
with a discussion of the results.

2 Random Binary CSPs over Finite Domains

We consider binary CSPs over finite domains, where con-
straints act between pairs of variables. This is not restrictive
since every CSP can be transformed into an equivalent binary
CSP (c.f. [23]). A binary CSP is a triple (V, D, C') where
V ={v1,...,v,} is a set of variables, D = (Dy,...,D,)
is a sequence of finite domains, such that v; takes value from
D;, and C is a set of binary constraints. A binary constraint
ci; 1S a subset of the cartesian product D; x D, consisting of
the compatible pairs of values for (v;,v;). In the sequel, we
shall often use the incompatible pairs of values when dealing
with constraints, like, e.g., in the generator of random binary
CSPs. For simplicity we assume all domains equal (D; = D
fori € {1,n}). An instantiation a isa mappinga : V. — D,
where a(v;) is the value associated to v;. A solution o of
a CSP is an instantiation such that (o (v;),o(v;)) is in ¢;j,
for every v;,v; in V with ¢ # j. A class of random binary
CSPs can be specified by four parameters (n,m, d,t) with n
the number of variables, m the (uniform) domain size, d the
constraint density and ¢ the constraint tightness. Constraint



density is the probability of a constraint between two vari-
ables,while constraint tightness is the probability of conflict
between two values. When the density or the tightness is var-
ied, CSPs exhibit a phase transition where problems change
from being relatively easy to solve to being very easy to prove
unsolvable. Problems in the phase transition are identified
as the most difficult to solve or prove unsatisfiable (cf., e.g.,
[2, 19, 22, 25]). The test suite used for the experiments con-
sists of problem instances produced by a generator® loosely
based on the generator of G. Dozier [1, 5]. The generator
produces a CSP by assigning @ - d constraints between
two randomly selected variables (v; and v;) and then assign-
ing |D;| - |D;| - t conflicts to the constraint.

3 Heuristic EAsfor CSPs

We consider three heuristic based EAs: ESP- GA by E. Mar-
chiori [15], H- GA by Eiben et al.[10] and Ar c- GA by
M. C. Riff Rojas [20, 21]. The three EAs were selected
because of their different use of heuristics: ESP- GA uses
heuristics in a repair rule combined with blind genetic op-
erators, H GA uses heuristics in its genetic operators and
Ar c- GA uses heuristics guided by the constraint network in
two novel genetic operators and a new fitness function. All
algorithms use the integer representation: an individual is a
sequence of integers where integer p in the i-th entry indi-
cates that the 4-th variable is set to value p.

3.1 ESP-GA

In [15], E. Marchiori introduces an EA for solving CSPs
which adjusts the CSP in such a way that there is only one
single (type of) primitive constraint. This algorithm is loosely
based on the glass box approach from [24]. By decompos-
ing more complex constraints into primitive ones, the re-
sulting constraints have the same granularity and therefore
the same intrinsic difficulty. This rewriting of constraints,
called constraint processing, is done in two steps: elimi-
nation of functional constraints (as in GENOCOP [16]) and
decomposition into constraints of a single canonical form.
These primitive constraints are linear inequalities of the form:
a-v; — -v; # . When all constraints share the same form a
single repair rule can be used to enforce dependency propaga-
tion. The repair of an individual is done locally by applying
the repair rule to every violated constraint. The repair rule of
the form if o - p; — B - p; = ~y then modify p; or p; is ap-
plied to all individuals in the population. In the repair rule
we select the variable which occurs in the largest number of
constraints, and set its value to a new value in the domain of
that variable. The violated constraints to be repaired are se-
lected in a random order. The representation of the constraints
as generated by the CSP generator is a table of incompatible
values. ESP- GA, on the other hand, was devised with the im-
plicit assumption that the CSP is syntactically by means of a
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formula. Therefore we translate the tables of the CSP gen-
erator into constraints of the form a - v, — 8 - v; # ~, by
setting v = |D;| - p; — p; (with p;, p; the values of v;,v;)
and oo = |D;| and 8 = 1. Violation of such a constraint is
detected by entering the values of the specified variables and
checking if the result is the calculated ~-value. The above
mentioned translation produces constraints in canonical form,
hence, the constraint processing of ESP- GA becomes unnec-
essary. This reduces ESP- GA to an EA with a repair rule.
The genetic operators we use are defined as follows. The
crossover operator is the standard one-point crossover: a ran-
domly chosen position divides each parents in two parts. The
two children are constructed by taking the one part from the
first (respectively second) parent and the other part from the
second (respectively first) parent. The mutation is the random
mutation which set the value of a randomly chosen variable to
arandomly selected value from its domain. The main features
of ESP- GA are summarized in Table 1.

Crossover operator
Mutation operator
Fitness function
Extra

One-point crossover

Random mutation

Number of violated constraints
Repair rule

Table 1: Specific features of ESP- GA
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In [9, 10], Eiben et al. propose to incorporate existing CSP
heuristics into genetic operators operators. Two heuristic op-
erators are specified: an asexual operator that transforms one
individual into a new one and a multi-parent operator that in-
troduces a new individual based on two or more parents. In
the next two subsections we will discuss both heuristic oper-
ators in more detail.

3.2.1 Asexual heuristic operator

The asexual heuristic operator selects a number of variables in
a given individual, and then selects new values for these vari-
ables. We consider the operator that changes up to one fourth
of the variables, selects the variables that are involved in the
largest number of violated constraints, and selects the values
for these variables which maximize the number of constraints
that become satisfied.

3.2.2 Multi-parent heuristic crossover

The basic mechanism of this crossover operator is scanning:
for each position, the values of the variables of the parents in
that position are used to determine the value of the variable
in that position in the child. The selection of the value is
done using the heuristic employed in the asexual operator.
The difference with the asexual heuristic operator is that the
heuristic does not evaluate all possible values but only those



of the variables in the parents. The multi-parent crossover is
applied with 5 parents and produces one child.

Version 1 | \ersion 2 Version 3
Main Asexual Multi-parent | Multi-parent
operator heuristic | heuristic heuristic
operator | crossover crossover
Secondary | Random | Random Asexual
operator mutation | mutation heuristic
operator
Fitness Number of violated constraints
function
Extra None

Table 2: Specific features of the three implemented versions
of H GA

We consider three EAs based on this approach, and call
them H GA. 1, H GA. 2, and H GA. 3. As seen in Table 2,
we use the asexual heuristic operator in a double role. In the
H- GA. 1 version it serves as the main search operator assisted
by (random) mutation. In H- GA. 3 it accompanies the multi-
parent crossover in a role which is normally filled in by mu-
tation. The same random mutation operator used in ESP- GA
isused in H- GA. 1 and H GA. 2.

3.3 Arc-GA

In [20, 21] M. C. Riff Rojas introduces a EA for solving CSPs
which uses information about the constraint network in the
fitness function and in the genetic operators (crossover and
mutation). The fitness function is based on the notion of er-
ror evaluation of a constraint. The error evaluation of a con-
straint is the number of variables of the constraint? and the
number of variables that are connected to these variables in
the CSP network. It is used as a measure of the connectiv-
ity of the network and as an indicator of how important it is
to satisfy the variable. The fitness function of an individual,
called arc-fitness, is the sum of error evaluations of all the
violated constraints in the individual. The mutation operator,
called arc-mutation, selects randomly a variable of an indi-
vidual and assign to that variable the value that minimizes
the sum of the error-evaluations of the constraints involving
that variable. The crossover operator, called arc-crossover,
selects randomly two parents and builds a child by means of
an iterative procedure over all the constraints of the consid-
ered CSP. Constraints are ordered according to their error-
evaluation with respect to instantiations of the variables that
violate the constraints. For the two variables of a selected
constraint ¢, say v;, v;, the following cases are distinguished:
If none of the two variables are instantiated yet in the off-
spring under construction, and none of the parents satisfies
¢, then a combination of values for v;,v; from the parents
is selected which minimizes the sum of the error evaluations
of the constraints containing v; or v; whose other variables

2|n abinary CSP there are just two variables

are already instantiated in the offspring. If there is one par-
ent which satisfies ¢, then that parent supplies the value for
the child. If both parents satisfy ¢, then the parent which
has the higher fitness provides its values for v;,v;. If only
one variable, say v;, is not instantiated in the offspring under
construction, then the value for v; is selected from the parent
minimizing the sum of the error-evaluations of the constraints
involving v,. If both variables are instantiated in the offspring
under construction, then the next constraint (in the ordering
described above) is selected.

Crossover operator
Mutation operator
Fitness function
Extra

Arc-crossover operator
Arc-mutation operator
Arc-fitness

None

Table 3: Specific features of Ar c- GA

4 Experimental Comparison

All three algorithms use a steady state model with a popu-
lation of 10 individuals. The choice of such a small popu-
lation is justified by computational testing (see also [12] or
to a lesser extend [8]). Per generation two new individuals
are created using the crossover or main operator, both new
individuals are mutated. Linear ranking with bias b = 1.5
is used as parent selection while the elitist replacement strat-
egy removes the two individuals in the population that have
the lowest fitness. The results in tables 4 and 5 are obtained
by testing the three methods (five algorithms) on binary CSPs
with 15 variables and a uniform domain size of 15. We gener-
ate 25 classes of instances by considering the combinations of
5 different constraints tightness and 5 different density values.
In each class 10 instances are generated and 10 independent
runs are performed on each instance, the results for each class
are the averages over 100 runs. All the algorithms stop if they
find a solution or after a maximum of 100, 000 fitness evalu-
ations. In order to compare the algorithms, two performance
measures are used: the percentage of runs that found a solu-
tion, the success rate (S R), and the average number of fitness
evaluations to solution (AES) in successful runs®.

Tables 4 and 5 give some indication of the landscape of
solvability for the different EAs. This landscape of solvabil-
ity typically has a high S R for binary CSP instances that have
low density and/or tightness with SRs dropping as density
and/or tightness becomes higher. The region where the al-
gorithm exhibits a phase transition is of particular interest
and is called the mushy region. The mushy region of the al-
gorithms consists of the binary CSPs with density-tightness
combinations: (0.1,0.9), (0.3,0.7), (0.5,0.5), (0.7,0.3) and
(0.9,0.3). This is in accordance with the theoretical pre-
dictions of phase transitions for binary CSPs ([22]). When
looking at the SR of the algorithms in the mushy region we

3I1f SR = 0 then AES is undefi ned



den-| alg. tightness
sity 0.1] 03| 05| 0.7 09
Esp-GA|| 1 1 1 1| 0.68
H G 1 1 1 1 1| 0.49
0.1 | HGA?2 1 1 1 1| 0.46
H GA 3 1 1 1 1| 043
Arc-GA|| 1 1 1 1| 0.30
Esp-GA|| 1 1 1] 0.02 0
H G 1 1 1 1] 0.30 0
03 |HGA 2 1 1 1| 0.06 0
H GA 3 1 1 1| 0.05 0
Arc-GA| 1 1| 0.99 0 0
Esp-GA|| 1 1| 0.04 0 0
H G 1 1 1| 0.18 0 0
05 |HGA 2 1 1| 0.15 0 0
H GA 3 1 1] 0.14 0 0
Arc- GA 1 1| 0.04 0 0
Esp-GA| 1 1 0 0 0
H G 1 1 1 0 0 0
0.7 |HGA 2 1 1 0 0 0
H GA 3 1 1 0 0 0
Arc-GA| 1097 0 0 0
Esp-GA|| 1 0 0 0 0
H G 1 1] 0.49 0 0 0
09 |HGA 2 1| 0.36 0 0 0
H GA 3 1| 0.35 0 0 0
Arc-GA| 1] 0.17 0 0 0

Table 4: SR of Esp- GA, H GA. {1, 2, 3},and Ar c- GA

found that Ar c- GA has the worst success rate while both
H- GA and ESP- GA find more solutions. The only exception
to this is in density-tightness combination (0.9,0.1) where
ESP- GA finds no solutions and Ar c- GA still finds 17 so-
lutions out of a hundred experiments. In general one can
also conclude that H- GA. 1 outperforms all other algorithms
when looking at S R again with a single exception in density-
tightness combination (0.1,0.9). When looking at the AES
of the algorithms in the mushy region we found a tie be-
tween H GA. 1 and Ar c- GA as in density-tightness com-
binations (0.1,0.9), (0.3,0.7) and (0.7,0.3) H GA performs
better while in density-tightness combinations (0.5, 0.5) and
(0.9,0.3) Ar c- GAhas the best performance. About the three
versions of H- GA we conclude that the heuristic asexual ver-
sion outperforms the multi-parent crossover operator and that
the addition of an heuristic mutation operator, based on the
asexual crossover operator does not improve performance.
Based on the good performance of H GA. 1 when looking at
SR and the fair performance when looking at AES we con-
clude that H GA. 1 is the best algorithm of the five tested.
We suspect that the success of H- GA. 1 lies in the fact that it
uses heuristics in such a way that premature convergence of
the population is avoided while still providing guidance the is
strong enough to find a solution.

den-| alg. tightness
sity 0.1 0.3 0.5 0.7 0.9

Esp- GA 10 17 28 68
HG& 1 10 12 14 23 190
01 HGA 2 11 292 907 | 1942
H GA 3 11 261 956 | 1989
Arc- GA 10 18 32 77 319
Esp- GA 14 52 667 | 81891 -
HG& 1 11 19 63 272 -
03 |HGA 2| 279| 2381| 6567| 24123 -
H GA. 3| 293| 2400| 7087 | 24226 -
Arc- GA 16 50 452 - -

Esp- GA|| 23| 268 18648 - -
HGA 1| 13| 34| 4205 - -
05 [H GA. 2| 998| 4826| 24455 - -
H GA. 3| 897| 4885| 21430 - -
Arc-GA| 92| 88| 955 - -
Esp- GA|| 31| 22218 - - -
HGA 1| 17| 179 - - -
07 |H GA 2| 1621| 10259 - - -
H GA. 3| 1637 10284 - - -
Arc-GA|| 37| 367 - - -
Esp- GA|| 43 - - - -
HGA 1| 19| 1776 - - -
0.9 |H GA 2| 2310| 30443 - - -
H GA. 3| 2314 32095 - - -
Arc-GA|| 46| 1439 - - -

Table 5: AES of Esp- GA, H GA. {1, 2, 3},and Arc- GA

5 Conclusion and Further Research

It is interesting to compare the results with those reported in
[8], where three EAs using adaptive fitness functions have
been tested on the same benchmark instances as used here.
The best success rates in that article were obtained by the
microgenetic iterative descendent genetic algorithm (M D)
of Dozier et al [3]. This algorithm employs heuristic infor-
mation in the reproduction operator as well as an adaptive
penalty mechanism in the fitness function.

den- tightness

sity |01]03]05]| 07 | 0.9
0.1 1 1 1 1 ]0.96
0.3 1 1 1 1052 0

0.5 1 1 (09| O 0

0.7 1 1 0 0 0

0.9 1 1 0 0 0

Table 6: Success rates for M D

Table 6 reports the success rates obtained by M D, it in-
dicates that M D can solve random binary CSPs much bet-
ter than the algorithms considered in this paper. M Dis also
faster with respect to AES in all cases (cf. [8]). The suc-



cess of M D can be explained from the fact that it belongs to
both classes of EAs mentioned in the introduction: it uses a
heuristic method incorporated into the mutation operator and
an adaptive mechanism redefining the fitness function during
the run. It is reasonable to assume that the search for a solu-
tion does profit from the combination of these two features.
Future work is directed to assess the performance of the com-
bination of the heuristics applied in H- GA. 1 and the fastest
method from [8, 7], called SAW-ing EA, that uses an on-line
fitness adjusting mechanism adaptively raising penalties of
variables that are often involved in constraint violations. Fur-
thermore, the use of a restart-strategy for ‘fast’ algorithms
with low SR and, different (combinations of) heuristics will
also be studied.
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