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Abstract. Chromosomal aberrations are differences in DNA sequence
copy number of chromosome regions 3. These differences may be crucial
genetic events in the development and progression of human cancers.
Array Comparative Genomic Hybridization is a laboratory method used
in cancer research for the measurement of chromosomal aberrations in
tumor genomes. A recurrent aberration at a particular genome location
may indicate the presence of a tumor suppressor gene or an oncogene.
The goal of the analysis of this type of data includes detection of locations
of copy number changes, called breakpoints, and estimate of the values
of the copy number value before and after a change. Knowing the exact
locations of a breakpoint is important to identify possibly damaged genes.
This paper introduces genetic local search algorithms to perform this
task.

1 Introduction

Array Comparative Genomic Hybridization (array-CGH) is an approach for
genome-wide scanning of differences in chromosomal copy numbers. Normal hu-
man cells contain two copies of each of the 22 non-sex chromosomes. In tumor
cells one or both copies of parts of chromosomes may be deleted or duplicated.
Chromosomal copy numbers are defined to be 2 for normal cells, 1 or 0 for single
and double deletions and 3 and higher for single copy gains and higher level am-
plifications. Ideally the purpose of array-CGH is to construct a graph of the copy
numbers for a selection of clones (normal mapped chromosomal sequences, i.e.
small pieces of DNA) as a function of position of the clone on the genome. DNA
copy-number aberrations are used in cancer research, for instance, by searching
for novel genes implicated in cancer by analyzing those genes located in regions

3 Aberrations can occur without change of copy number, but these aberrations are
not the subject of this paper.



with abnormal copy numbers. It is therefore of fundamental relevance to identify
as precise as possible chromosomal regions with abnormal copy numbers.

Because copy numbers cannot be measured directly, tumor cells are compared
to normal cells. A large number (up to 2500) of clones are printed on a glass
slide (micro array), which is next treated with a mixture of DNA originating
from tumor and normal cells, both cut into fragments. Before applying the DNA
mixture to the micro array the two types of DNA are labelled red (Cy5) and
green (Cy3), respectively. The labelled fragments hybridize (“stick”) to a spot
on the array with a matching DNA sequence. The measured red/green ratio for
each of the spots on the array is roughly proportional to the quotient of copy
numbers for tumor and normal tissue. This experiment is repeated for a number
of tumors. A more elaborate introduction to array-CGH can be found in [5].

Unfortunately, a sample of cells taken from a tumor will generally consist of
multiple cell types, which may differ in their chromosomal copy numbers. In
particular, the sample usually consists of tumor cells and admixed normal cells.
In some cases the sample may also contain tumor cells that are intermediate in
the development of the tumor and have fewer copy number changes. It is assumed
that the actual tumor cells occur by far the most in the sample. In our case the
experimental samples were selected by the pathologist to have more than 70%
tumor cells. The values found in the experiment then represent the copy numbers
of the actual tumor cells plus some “noise” generated by the normal cells and
some experimental noise.

When the observed relative copy numbers (or their logarithms) for the clones
are ordered by location on the genome, the values form “clouds” with different
means, supposedly reflecting different levels of copy numbers. We introduce a
“smoothing” algorithm that tries to adjust the observed array-CGH values such
that they represent the copy number of the most common tumor cells. That is,
the algorithm tries to set the values to the means of the “clouds”. Since the copy
number of a clone is always quite small (normally 2, varying from 0 to about
10), we would like to set means of “clouds” that are close to the same value,
because they represent the same copy number. Next we also want the number
of value changes (“breakpoints”) to be small.

The problem can be formalized as model fitting to search for most-likely-fit
model given the data. A model describes a number of breakpoints, a position
for each, and parameters of the distribution of copy number for each. Then one
has to estimate the real parameters of the model from the observed array-CGH
values.

We assume that the data are generated by a Gaussian process and use the max-
imum likelihood criterion for measuring the goodness of a partition, adjusted
with a penalization term for taking into account model dimension. We intro-
duce a local search procedure that searches for a most probable partition of the
data using N breakpoints, for a given N. The procedure is incorporated into
a genetic algorithm that evolves a population of partitions with possibly dif-
ferent number of breakpoints that may vary during execution. We design two



algorithms based on this approach. The first one is a genetic local search algo-
rithm that iteratively selects two ‘good’ chromosomes, generates two offspring
using uniform crossover, applies mutation and the local search procedure to the
offsprings and inserts them in the (worst chromosomes of the) population. The
second algorithm generates only one offspring, applies local search and tries to
further optimize the offspring with an ad-hoc procedure.

We analyze the performance of these algorithms on array-CGH measurements
for 9 gastric cancer tumors. For each chromosome of a tumor, we compare the
smoothing of the two GAs, the multi-start LS and the SA algorithm. The best
algorithm we compare with the expert.

2 Breakpoint Detection

In our CGH experiments copy numbers are measured for approximately 2200
clones spread along the genome. We apply our algorithm to each of the 23

chromosomes separately. Denote by z1,...,z, the measured CGH values for a
given chromosome. The main goal is to cluster these values in a small number
of clusters (1,...,%y, ), (Tyi 415> Tys ), - -5 (Tyn+1, - - -, Tn) such that the copy

numbers of the clones in each cluster are identical. We refer to the indices yg =
0<ys <---<yny <n=ynyt1 as breakpoints.

Our algorithm is motivated by the working hypothesis that the measured value
x; is equal to the relative copy number of clone j plus random noise that is
independent across clones. Thus our model stipulates that for y;—1 < j < y; the
observed CGH value z; can be considered as drawn from a normal distribution
with mean y; and variance o? particular to the ith cluster. This leads to the
likelihood function
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The maximum likelihood estimators are the parameter values for which this
expression is maximal. Given breakpoints yp =0 < y; < - < yny <N = Yn+1
the maximization relative to the u; and o7 is equivalent to performing maximum
likelihood estimation on each of the samples xy, ,11,...,%,, separately, which
leads to the usual estimates
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Reinserting these values into the likelihood we are, after some simplification, left
with
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The next step is to find suitable breakpoints by maximizing this relative to
Y1, ---,Yyn. Equivalently, we minimize minus the logarithm, which up to an ad-
ditive constant is equal to

N+1

D (yis1 — yi) log

=1

Note here that the &; in this expression also depends on the choice of y1,...,yN.
However, it is obvious that the highest value of the likelihood is obtained by
choosing the highest possible number of breakpoints, as this gives more flexibility
in choosing the parameters p; and o;. The last minimization step is therefore
not well defined. We remedy this by adding a penalty to the criterion, in order
to discourage a large number of breakpoints. A simple penalty of the form AN,
for A a suitable constant, performed well in our experiments. This leads to the
following function to be minimized.

N+1
JYN) = Z (Yi+1 — i) log i + AN

=1

flys, - (1)

If we consider there to be 3N parameters (2N continuous parameters and N
breakpoints), then the choices A = (3/2)logn and A = 3 correspond to Bayesian
information criterion [7] and Akaike information criterion [1], respectively. In
our experiments the choice A = 10 was appropriate.
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The assumptions of normality and independence may be slightly violated, as
illustrated by the normal probability plots [6] (data are normally distributed
when they lay near the dotted line). This holds also for normal tissues, as shown
by the corresponding plot.

Nevertheless, in our experiments the resulting criterion gives adequate results.

The most obvious violations of the normality assumption are caused by ampli-
fications. Results can be further improved if the clones in amplification areas



are removed from the data. However, it is not easy to define an amplification
unambiguously. An amplification area starts with a “big” increase of CGH value,
last for only a “few” clones, after which the CGH values decrease “steeply”. The
number of clones for which an amplification lasts at most is a parameter. The
increase and decrease of the value that are at least necessary to form an amplifi-
cation depend on all value changes between consecutive clones. Say the average

value change is d and the standard deviation of the value changes is sq. Then
di—d
Sd

the criterion is > T, where T is a parameter.

In the sequel, we do not apply pre-processing for dealing with amplifications.
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3 The Genetic / Local Search Algorithms

The local search algorithm takes as input the CGH data !l = z; ...z, of one chro-
mosome, a number N of randomly generated indices y1,...,yny € [1,n] indicat-
ing potential (locations of) breakpoints, and updates repeatedly the breakpoints
(locations) in order to minimize the function f given in (1), where the first term
is the negative log-likelihood of the data and the second one is a penalization
with parameter A which punishes partitions containing many breakpoints. The
algorithm uses f as scoring function. At every iteration an update rule is applied
to each breakpoint, selected randomly. The update rule chooses randomly a di-
rection (left or right) and moves the breakpoint location of one position in that
direction only if the move improves the scoring value (that is if f decreases),
otherwise it moves the breakpoint of one place in the opposite direction if this
yields an improvement. The iterative process terminates when the application
of the update rule to each breakpoint does not improve the scoring. We call this
algorithm LS. We use LS in a multi-start local search algorithm, and as local
optimizer in the two heuristic algorithms described in the sequel.

Genetic local search algorithms, also called memetic algorithms [4], use local
search for optimizing the population after the application of the genetic opera-
tors. So at each iteration of the evolutionary process the population consists of a



set of local optima. We introduce the two memetic algorithms illustrated below
for identifying breakpoints in array-CGH data of a chromosome, called GLS and
GLSo, respectively.

In order to avoid confusion, in the sequel we say ‘individual’ instead of the
standard genetic algorithms term ‘chromosome’ for indicating an element of the
population.

GLS
{
generate initial population
while (termination criterion not satisfied)
{
select two parents from population using roulette wheel
generate offsprings using uniform crossover
apply mutation to each offspring
apply LS to each offspring
replace two worst individuals of population with offsprings

GLSo
{
generate initial population
while (termination criterion not satisfied)
{
select two parents from population using roulette wheel
generate offspring using OR crossover
apply LS to offspring
apply JOIN to offspring
replace worst individual of population with offspring

Our genetic algorithms use a representation where an individual is a bit string
denoting chromosome locations with a 1 in each location containing a breakpoint
and a 0 elsewhere. The fitness function to be minimized is the score function (1).
The initial population is constructed as follows. For each IV in a fixed range, a
number k of elements is generated, where an element is a bit string with N 1’s
randomly placed. The local search LS is applied to each individual.

GLS uses (blind) uniform crossover, while mutation randomly decides whether
to add or remove a breakpoint and then applies the chosen operation (that is
flipping the value of the selected individual location). The ‘remove’ operation
consists of removing the breakpoint that yields the best fitness function score.
Note that this operation is applied even if it does not decrease the fitness of
the individual. The ‘add’ operation selects the segment (a region between two
consecutive ones) with relative chromosonal array-CGH region (set of clones




values) having the highest standard deviation, and places a breakpoint in the
middle of that region.

The termination criterion is satisfied when either a maximum number of iter-
ations is reached or when the fitness of the best individual does not decrease
and there is no pair of corresponding clones in the population having a differ-
ence in smoothed value of more than 0.01. The smoothed value of a clone is
the mean value of the (chromosomal array-CGH region corresponding to the)
segment containing that clone.

GLSo generates one offspring per iteration by selecting two individuals and con-
structing one offspring by taking the union of their breakpoints (by performing a
bitwise OR of the two individuals). Then the offspring is optimized using LS and
further optimized by removing breakpoints using the JOIN procedure. The JOIN
procedure repeatedly selects the breakpoint whose removal yields the biggest
improvement (decrease) of the fitness function, and continues until the fitness
does not decrease anymore.

4 Experimental Results

Genomic DNA was isolated from snap-frozen tumor samples taken from gastrec-
tomy specimens. The samples were obtained from the archives of the department
of Pathology of the VU University Medical Center. Array-CGH experiments were
performed according to [8] and ratio measurements according to [3]. The scan-
ning array comprised DNA from 2275 BAC and P1 clones spotted in triplicate,
evenly spread across the whole genome at an average resolution of 1.4 Mb. Chro-
mosome X-clones were discarded from further analysis since all tumor samples
were hybridized to male reference DNA, leaving 2214 clones per array to be
evaluated. Each clone contains at least one STS for linkage to the sequence of
the human genome. These data is analyzed in [9].

The 9 tumors used to test our method are all gastric tumors. A manual smooth-
ing for these tumors, carried out by the expert B. Ylstra, is used to assess the
performance of the algorithms and the maximum likelihood function as approx-
imation for the expert. We run our algorithms on each chromosome of these
9 tumors, for a total of 207 chromosomes containing an average of about 100
clones.

The following GA parameter setting is chosen. The initialization generates 40
individuals containing N breakpoints, with N that varies from 1 to 10. An
individual with 0 breakpoints is also added, thus giving a total of 401 individuals.
The maximum number of iterations allowed is 100000. Crossover and mutation
rates are equal to 1.

The multi-start LS performs 100000 plus 1 runs, where the number N of break-
points varies from 1 to 20, with an equal number of runs assigned to each value
of N. Also a run with 0 breakpoints is done. The final result is the solution with
best score over the runs.



We compare the performance of GLSo, GLS, multi-start LS, and a multi-start
variant of LS based on simulated annealing (SA). The annealing schedule of SA is
as follows. The starting temperature is 100000. After 10000 changes of breakpoint
location it cools down to 0.00001. After each change the actual temperature is
divided by 10107°, After 10000 changes we make the algorithm behave exactly
like LS. The other settings are similar to the multi-start LS, except that it only
performs 2001 runs to make the comparison more fair in terms of computation
time.

We compare the performance of the four algorithms in minimizing the function
(1) by the median and mean values obtained for the 9 x 23 = 207 chromosomes
in our gastric tumors. In the tables below mLS and mSA denote multi-start LS
and SA, respectively. As shown in the following table method GLS performs best
according to this criterion followed by the second genetic algorithm GLSo.

Algorithm|Median| Mean |
mLS  [-192.99]-218.77
mSA  |-193.29|-220.07
GLSo |-194.47|-220.83
GLS |-196.00|-223.08

At closer inspection the nature of the differences in performance of the four
algorithms vary considerably over the 207 chromosomes. For 22 chromosomes
all four algoritms yield an identical smoothing, and for as many as 76 chro-
mosomes the smoothings produced by at least three of the four algorithms are
identical. For this reason we also investigated the differences in fitness for the
207 chromosomes for each pair of algorithms. Medians, means, 20% trimmed
means, and the number of chromosomes with identical smoothing are given in
the following table, together with the p-values of the sign test. The latter test
(cf. [6]) indicates if the observed differences (in obtained fitness values) between
the pairs of algorithms are statistically significant, under the assumption that
the 207 chromosomes can be considered a random sample of chromosomes.

Algorithm |Median|Mean|Trimmed Mean|# Zeros|P-value
mLS-mSA | 0.00 | 1.30 0.52 67 0
mLS-GLSo| 0.00 |2.06 0.22 50 0.63
mLS-GLS | 0.70 |4.31 1.84 81 0
mSA-GLSo| 0.00 |0.76 -0.08 31 0.47
mSA-GLS| 0.79 |3.01 1.66 62 0
GLSo-GLS| 0.24 |2.25 1.50 48 0

From these numbers we conclude again that GLS is best, followed by GLSo, mSA
and mLS. Furthermore, the superior performance of GLS is statistically signifi-
cant, whereas the observed differences between the other methods may not be
replicable on data of additional tumors.

To illustrate the results of the four algorithms we show below pictures of the
smoothing/breakpoints found by each of algorithms on one of the tumors in



which various types of chromosomal aberrations (gain, loss and amplification)
occur.
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Tumor 2008c, dots are raw data, line is result of multi-start LS.

=) s00 1000 1500 =000 =500

Tumor 2008¢, dots are raw data, line is result of multi-start SA.
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Tumor 2008c, dots are raw data, line is result of GLSo.

o so00 1000 1500 =000 =500

Tumor 2008c, dots are raw data, line is result of GLS.

In order to assess the convergence behaviour of the genetic algorithms we give
below plots of a typical histogram of the distribution of breakpoints within the



solutions of the pool after the stopping criterion is satisfied. The plots indicate
that the evolutionary process ends with individuals with breakpoints in nearby
locations. Observe that the stopping criterion is such that shifting a breakpoint
within an area that has no clear breakpoint stops the iterations. In such a case
there is “no clear breakpoint”, meaning that the means of the two corresponding
segments in all individuals are close. This may cause the algorithm to stop after
a few iterations even if the individuals have breakpoints in different locations.

GLSo, tumor 2730, chrm 1 GLS, tumor 2730, chrm 1

Next, we compare the robustness of the genetic algorithms, that is the sensitivity
of the outcome to the initialization and other random operators used. Below we
plot a typical histogram of the location of breakpoints of the best individual of
the final population over 100 runs of the genetic algorithms on chromosome 1.

1

o 50 100 150 o 50 100 150

GLSo, Tumor 2730, chrm 1 GLS, Tumor 2730, chrm 1

Finally, we compare the smoothings and breakpoints obtained by GLS with those
manually produced by the expert. The manual smoothings have been built un-
der the assumption that there is a small number of different smoothing levels,
reflecting the observation that few copy number values are present in chromo-
somes. In order to incorporate this constraint in our method, we perform a post
processing step that joins close smoothing levels. To this aim the k-means algo-
rithm is applied to the set of CGH values generated by running GLS over all the
chromosomes of a tumor, and then the resulting smoothing levels that are closer
than a fixed threshold are joined. Over all tumors the average difference between
the values of the clones is 0.0513, indicating that GLS followed by post process-
ing (denoted below by GLS-pp) is a satisfactory approximation of the manual



smoothing. GLS seems more sensitive to outliers. This can be explained by the
fact that the expert sometimes knows an outlier is meaningless and so ignores
it.

=) s00 1000 1500 =000 =500

Tumor 2730, dots are raw data, line is result of GLS-pp.

=) s00 1000 1500 =000 =500

Tumor 2730, dots are raw data, line is result of the manual smoothing.

o so0 1000 1500 =000 =500

Tumor 2730, dots are the difference between GLS-pp and the manual
smoothing.

5 Discussion

The results of the experiments indicate that GLS performs better than the other
algorithms in minimising function (1).

Both GAs converge within the maximum number of iterations in case the data
contains clear breakpoints. The stopping criterion prevents the algorithm from
searching for optimal locations of breakpoints that are not clear.

GLS-pp finds smoothings that are very similar to the manual smoothings. It
should be noted that an expert produces smoothings based on more information



than just the CGH values. An expert also keeps in mind information like mis-
placement of clones on the genome and recurring aberrations of clones due to
known experimental artefacts. From the normality plots shown it seems that the
final expert smoothings are reasonably well normally distributed. Lacking data
combining CGH values with known copy numbers in cell types and frequencies
of cell types in samples, we were not able to test the suitability of our model to
remove noise from the experiment and some cells of types that occur in small
numbers. This remains an open problem for future research.

We conclude with some words on related work. To the best of our knowledge,
nothing has yet being published on automatic breakpoint detection and estima-
tion of copy number values. We are aware of work in progress carried out at
UCSF Cancer Center by Jane Fridlyand, who is trying to use Hidden Markov
Models to tackle this problem, and at the Memorial Sloan-Kettering Cancer
Center by Adam Olshen who is using change-points and Markovian methods [2].
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