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Abstract. Inliquid chromatography-mass spectrometry (LC-MS) based
expression proteomics, samples from different groups are analyzed com-
paratively in order to detect differences that can possibly be caused by
the disease under study (potential biomarker detection). To this end,
advanced computational techniques are needed. Peak alignment and de-
tection are two key steps in the analysis process of LC-MS datasets. In
this paper we propose an algorithm for LC-MS peak detection and align-
ment. The goal of the algorithm is to group together peaks generated by
the same peptide but detected in different samples. It employs cluster-
ing with a new weighted similarity measure and automatic selection of
the number of clusters. Moreover, it supports parallelization by acting
on blocks. Finally, it allows incorporation of available domain knowledge
for constraining and refining the search for aligned peaks. Application of
the algorithm to a LC-MS dataset generated by a spike-in experiment
substantiates the effectiveness of the proposed technique.

1 Introduction

Computational analysis of proteomic datasets is becoming of crucial relevance
for discovery of reliable and robust candidate biomarkers. In particular, quanti-
tation of changes in protein abundance and/or state of modification is the most
promising, yet most challenging aspect of proteomics. In recent years label-free
LC-MS methods that quantify absolute ion abundances of peptides and proteins
have emerged as promising approaches for peptide quantitation and profiling of
large numbers of clinical samples [1].

Briefly, peptides are subjected to (multi-dimensional) liquid chromatography
for separation. Each peptide fraction is then analyzed on an LC-MS system.
Each LC-MS run of a sample generates a pattern of very high input dimension
consisting of one intensity (relative abundance) measurement for each pair of
molecular mass-to-charge ratio (m/z) and retention time (RT) values. Ideally,
the same molecules detected in the same LC-MS instrument should have the



same retention time, molecular weight, and signal intensity. However, in practice
this does not happen due to experimental variations. As a consequence, patterns
generated by LC-MS runs need to undergo a number of processing steps before
they can be comparatively analyzed. Such processing steps include normalization
[5,17], background subtraction [8], alignment [4,13,16,17], and peak detection
(e.g., [9]). Several tools and algorithms for processing and for difference analysis
of LC-MS datasets have been introduced (e.g., [2,3,7,9,11,15,20,17]).

In this paper we focus on peak detection and alignment. As well explained in
the overview paper by Listgarten et al [10], alignment algorithms involve either
(i) the maximization of an objective function over a parametric set of (generally
linear) transformations, or (ii) non-parametric alignment based on dynamic pro-
gramming, or (iii) combination of these methods like piecewise transformations.
They act either on the full pattern or on features (peaks) selected beforehand;
they may or may not use the signal intensity and they may or may not incor-
porate scaling. Most of alignment algorithms require a reference template, to
which all time series are aligned. Peak detection is usually performed in an ad-
hoc manner [10], involving either a comparison of intensities with neighbours
along the m/z axis [19] or detection of coinciding local maxima [18].

Whether one should perform peak detection before [14,17] or after [12] align-
ment has not been clearly established. In this paper we circumvent this issue by
performing both tasks at the same time by means of a novel clustering algo-
rithm. The motivations for a new algorithm rely also on the desire to overcome
drawbacks of alignment algorithms, such as the need for a reference template,
or the assumption of a given (local or global, usually linear) transformation
in RT dimension. The versatility of clustering for simultaneous alignment and
peak detection has been already recognized by Tibshirani et al. in [16]. They
align MALDI (a technique that generates two dimensional patterns of m/z and
intensity values from each sample) data along the m/z axis by applying one-
dimensional hierarchical clustering with complete linkage for constructing the
dendrogram and a specific cutoff for extracting clusters representing peaks.

The algorithm proposed here, called Peak Detection and Alignment (PDA),
acts on blocks of m/z values. Blocks are obtained by splitting the runs along the
m/z axis (e.g., in blocks of equal size). Each block is processed individually. The
input of PDA is a set of (blocks of) runs described by a list of triplets ( m/z,
RT, run id) consisting of 'm/z’ value, 'RT’ value and run identifier. The output
of PDA is a set of clusters of (m/z, RT) pairs representing peaks, together with
information about their signal intensity.

Novel features of PDA include:

1. a similarity measure for comparing features, where a feature is a triplet (m/z,
RT, id). Weights are associated to each of the three attributes to specify their
relevance;

2. a cluster merging strategy;

3. a cluster refinement procedure for handling peaks occurring near the boarder
of blocks.



Application of PDA to a dataset generated by a spike-in experiment substan-
tiates its effectiveness. The results indicate that PDA provides a flexible, efficient
and robust approach for simultaneous peak detection and alignment of high-
throughput label-free LC-MS data.

2 Materials and methods

2.1 nanoLC-FT Mass Spectrometry Proteomic Data

Efficiently identifying and quantifying disease- or treatment-related changes in
the abundance of proteins in easy accessible body fluids such as serum is an
important area of research for biomarker discovery. Currently, cancer diagnosis
and management are hampered by lack of discriminatory and easy obtainable
biomarkers. In order to improve disease management more sensitive and spe-
cific biomarkers need to be identified. In this light, the simultaneous detection
and identification of multiple biomarkers (molecular signatures) may be more
accurate than single marker detection. Therefore, great promise holds in com-
bining global profiling methods, such as proteomics, with powerful bioinformatics
tools that allow for marker identification. The additional dimension of separation
provided by coupling nanoliquid chromatography to high-performance Fourier
transform mass spectrometry (nanoL.C-FTMS) allows for profiling large num-
bers of peptides and proteins in complex biological samples at great resolution,
sensitivity and dynamic range.

In LC-MS, the chromatographic column separates peptide mixtures based
on one or more physicochemical properties prior to MS. An ionization source
converts eluting peptides into ions which are separated by the mass analyzer on
the basis of m/z ratios. The detector then registers the relative abundance of
ions at discrete m/z values. Therefore, LC-MS yields values indicating that, at a
particular time, an ion with a particular m/z value was detected with a particular
intensity. In the proteomics community, the unit of measure of the m/z axis is
one Dalton (Da), defined as 1/12 of the mass of one atom of carbon-12.

The dataset was generated as follows. Angiotensin 1 (1296.68 Da) was spiked
at 1 fmol/ul into a background of a 50 fmol/ul tryptic digest consisting of bovine
cytochrome ¢, hen egg lysozyme, bovine serum albumin, bovine apo-transferrin
and Escherichia coli §-galactosidase. 1 ul of the peptide mixture was loaded on
column (Pepmap C18 100 A, 3mm, 75 pm x 150 mm) and was separated at 250
nl/min in a 50 minute linear gradient of 10-40% buffer B (80% acetonitrile/0.05%
formic acid). Eluting peptides were detected using an LTQ-FT hybrid mass
spectrometer; mass spectra were acquired every second at resolution 100000.
In total 12 samples were generated, consisting of six replicates for each class
(spiked, unspiked).

Figure 1 (a) illustrates a sample spectrum comprising the set of intensities
(relative abundance of ions) measured at different m/z values across a particular
range. Such spectra are measured during the chromatographic period at discrete
time points, producing what is often called a 'run’. The chromatographic period



is also referred to as elution time or retention time (RT). 2D possible visualiza-
tions of runs are given in panels (b and c) of Fig. 1, where the intensity at each
RT-m/z location is represented by a gray-level. The spectrum in (a) is the one
indicated by the vertical line at 1420 seconds in (b). The panels (d and e) are
close-up views within the range where the spiked-in peptide is located.

Each analyte (organic specimen under study) gives rise to more than one
peak in the measured spectra. Firstly, an analyte A with mass m can appear
with different charges (e.g., AT!, AT2 AT3) and because the actual quantities
being measured are m/z ratios, it gives peaks at the m/z values: m/1, m/2, m/3.
Secondly, because of the natural isotopic occurrence of the chemical elements,
different peaks are generated by the same analyte A at the same charge state.
For example, about 1.1% of the carbon atoms are carbon-13 isotopes instead
of carbon-12. These have an extra neutron in the nucleus and therefore a mass
higher by 1 Da. The spacing between the isotopic peaks depends on the charge
of the ions. A group of isotopic peaks is shown in Fig. 1(d), where the distance
between peaks is 1/3 Da, due to the +3 charge. The number of isotopic peaks
and their relative intensity depend on the chemical composition of the analyte
and therefore the distribution (pattern) of the isotopic peaks is mass dependent.
Note that our algorithm detects and align isotopic peaks. In order to retrieve
peptides from isotopic peaks procedures for assembling isotopes into peptides
can be used, such as the one implemented in msInspect [3].

2.2 Methods

PDA takes a set of runs as input and outputs a set of (isotopic) peaks. The
search strategy for detecting and aligning peaks acts on a three dimensional
search space with dimensions given by m/z value, RT and run identifier.

PDA performs the following sequence of steps:

1. Feature extraction: Extract features from individual runs (in our experiments
we use MZmine [7]).

2. Block construction: Split runs into blocks along the m/z axis.

3. Apply the following two steps to each block:
(a) Features clustering: Generate a common set of clusters using weighted

hierarchical clustering.

(b) Peak construction: Generate peaks from clusters.

4. Peak refinement: Refine peaks located nearby splitting points of blocks.

1. Feature extraction. We use a routine from MZmine [7] called ”Centroid
peak detection” for extracting features from runs. A feature in a run is defined
here as the (m/z, RT) pair of coordinates of a local signal intensity maximum.
These coordinates are computed by first detecting local maxima in each scan
(spectrum). Certain features can then be discarded if their intensity is smaller
than a chromatographic threshold of the extracted chromatogram (XIC) that
contains the local maxima. An XIC is constructed by summing all intensities
across RT present within a m/z range (or bin).
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Fig.1. (a) a sample spectrum (relative abundance of ions) measured at RT=1420s
indicated by the vertical line in (b). (b and ¢) 2D visualizations of two runs from
control and spiked-in samples. (d and e) are close-up views of the two runs within the
range 1305-1365 s and 432-434 Da where the spiked-in peptide is located.

2. Block construction. To speed up the processing, runs are split into blocks
along the m/z-axis. Clustering and peak extraction are then performed on each
block independently, thus (possibly) processed in parallel. The peak refinement
step is applied to peaks detected nearby block boarders, in order to deal with
the initial splitting of true peaks.

3(a). Features clustering. This step constitutes the core of PDA. The partic-
ularities of the LC-MS measurements lead us to introduce a weighted distance
within the clustering algorithm. The following properties of LC-MS measure-



ments were used for setting the values of weights. m/z measurements are rather
reproducible across different runs. The RT of the same analyte may, however,
greatly differ among distinct runs, even in the order of tens of seconds. It is
therefore sensible to assign a larger weight to the m/z coordinate than to the
RT, thus enforcing small m/z variations while allowing for discrepancies in time.
Moreover, since our aim is also to align peaks over different runs, it is also desired
to group features from different runs. To this aim we use also the run identifier
as attribute for comparing features.

Our clustering operates on the set of all features, augmented with a ’run
id’ component. Searching for peaks in this three-dimensional space is performed
by hierarchical clustering with average linkage and a novel similarity measure
defined below. Since the desired number of peaks is not known a-priori, we have
to estimate it. Estimation of the number of clusters can be performed by a model
selection criterion, like BIC or AIC (see e.g., [6] for an experimental comparison
of the effectiveness of these criteria). Here we adopt a more efficient knowledge-
based approach. Starting from a high number of clusters we apply a heuristic for
joining clusters which relies on domain knowledge about the minimal distance
in m/z and RT dimension between two valid peaks.

Clusters are generated as follows. Firstly, in order to overcome problems
related to different m/z and RT scale, the standardized scores of the values (also
called z-scores) are used. Informally, for a value x (here m/z or RT value) from
a set X, the corresponding z-score measures how far the observation is from
the mean in units of standard deviation. The similarity measure used in PDA is
defined as follows. For two features Fy = (mz1, RT1,r1), F5 = (mz2, RT2,72)

sim(Fy, Fy) = sqrt(wl * (mz1 —mz2)® + w2 x (RT1 — RT2)%) + w3 * I(r1,r2)

where I(rl,72) is 1 if r1 = r2 and zero otherwise, and wl, w2, w3 are weights
associated to the three attributes. We elaborate on the choice of the weights
values in the next section.

The dendrogram generated by hierarchical clustering is used for clustering
features. A (loose) user-given upper bound M on the desired number of clusters
is employed for computing the cutting threshold of the dendrogram. The output
of the feature clustering step consists of M 3-dimensional clusters.

3(b). Peak construction. In this step nearby clusters are merged to form
peaks by means of the following algorithm. The distance between the mean m/z
values and mean RT values of each pair of centroid clusters is computed and
used in an iterative procedure that generate peaks. The procedure starts from a
given centroid (selected at random) as initial part of a peak. Then, centroids are
incrementally added to that peak if their distance from at least one element of
the actual peak is smaller than a threshold in m/z and RT. The construction of
a peak terminates when no centroid can be added to it. Then the construction
of a new peak can begin using the remaining centroids. The process terminates
when the set of centroids becomes empty.



4. Peak refinement. The peak refinement step processes those peaks whose
features result distributed in clusters belonging to neighbour blocks. Because the
runs are split into independent, non-overlapping blocks, features that belong to
the same true peak may lie on either side of a certain m/z cutting point. These
features will be assigned to different clusters even if they are close to each other
(corresponding clusters fulfil the peak construction constraints). Therefore, we
introduce a peak refinement step that joins such clusters. This is accomplished
by repeating the peak construction routine on the set of cluster centroids, or
more efficiently, on centroids close to block boarders.

The computational complexity of PDA is dominated by the Features clustering
step, that is quadratic in the number of features to be clustered. This number cor-
responds to the number of intensities occurring in a block. Then on the average,
when blocks are processed in parallel and assuming features are uniformly dis-
tributed, PDA (worse case) computational complexity is O((N/nb)? 4+ nZ,,;,0ias)
where N is the number o features, nb the number of blocks, and ncenroids the
number of centroids obtained after application of step 3(b).

3 Experimental Analysis

In the feature extraction step with ” Centroid peak detection” (MZmine [7]), we
used a fine bin size (0.02 Da) and a loose chromatographic threshold of 40%,
which caused a data reduction from the original measured intensities ~ 1.8 x 107
per run to about 4.3 x 10°. We split the runs at each 5 Da and produced blocks
containing a relatively small number of features, in the order of thousands. The
upper bound on the number of clusters M is set to one tenth of the total number
of intensities present in each block. Finally, weights of the three attributes m/z,
RT, and 'run id’ were set to 2, 0.01 and 0.1, respectively. These values are suitable
for the type of high resolution LC-MS measurements used in this study. Slight
changes of the values did not markedly affect the clustering results. As long as
the the m/z weight was significantly larger than the RT and the 'run id’ weights,
diversity within a cluster was kept moderate and the results were consistent.
PDA results using different m/z and RT weights are illustrated in Fig. 2,
while Fig. 3 shows resulting clusterings based on different values of ’the run’
id weight. For the purpose of illustration, we only show results on small yet
representative m/z, RT regions. Unit weights for the m/z and RT axes (regular
Euclidean distance) lead to undesired split of the peak on the right in Fig. 2(a).
Using the m/z axis alone (w = (1 0 0)) produces clusters that contain peaks of
arbitrary different RTs (b). The RT axis alone is also not sufficient for accurate
peak detection, since peaks are split in favor of small RT deviations (c). The
output of PDA using the weights selected in our experiments is shown in (d).
The ’run id’ attribute is used to discourage shifted values (in either m/z or
RT) from joining a cluster if other features from the same run already match
well with features from other runs. However, care should be taken about the
effects on the true peaks. This is illustrated in Fig. 3 (a and b), where different
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Fig. 2. The influence of the m/z and RT weights on the clustering results (see text for
details). Different markers stand for different cluster membership of the features.

markers indicate that the features originate from different runs and large markers
indicate cluster centers. A relatively high weight value for 'run ids’ can result
in clusters that contain more than one true peak. For example, in panel (b) the
top two and the bottom three peaks are grouped in two clusters, while the five
correct clusters should appear as in (a). Panels (c¢) and (d) show a zoomed view
on a different region of the run. Note that the features in (c) belong to a cluster
that lies beyond the shown RT limit and therefore its center is at about 1282
seconds. This cluster even comprises the peak on the left in Fig. 2 which has
similar m/z values but obviously different RTs. A small 'run id’ weight value
helps in isolating sparse features, as desired (see (d)).

Since the feature clustering step uses an upper bound M on the number of
clusters, features that belong to the same true peak can be assigned to different
clusters. To fix this problem, the peak construction step 3(b) was used with
thresholds for m/z and RT of 0.01 Da and 10 seconds, respectively. The m/z
threshold relates to the minimum distance between two different peaks along
the m/z axis, and can be calculated from the instrument set-up and the type of
measurements. Two distinct isotopic peaks can be 0.01 Da apart if they originate
from an analyte with charge +10, which is not practical. The RT threshold is
chosen such that within the time window it defines, two different compounds
with the same m/z value do not elute simultaneously. Our investigation revealed
that for this dataset double peaks are observed within 30 seconds only after
increasing the m/z window to 1 Da. It is therefore obvious that at 0.01 Da, all
peaks are separated within a time window of 20 seconds.
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Fig. 3. The influence of the run identifier weight on the clustering results (see text
for details). Different markers indicate that the features originate from different runs,
large markers indicate cluster centers.

Results

The spiked-in peptide, Angiotensin 1, has theoretical m/z value 432.90032 Da
and RT value of 21.75-22.76 minutes, the latter estimated from the experiment
by our domain expert. The peptide gives rise to four isotopes (named here P,
i = 1...4) with decreasing intensity and duration, located at 432.90032 Da
(highest intensity isotope), 433.29, 433.57, 433.91. While P1, P5, P3 were accu-
rately detected by the PDA, Py was missed already by PDA’s first step (feature
extraction). This means that although the local maxima detection method is
simple, care should be taken in the choice of its parameters.

The results of PDA zoomed in a region containing the spiked-in peptide,
are shown in Figure 4. The hierarchical clustering produced a large number of
clusters belonging to the same isotope (a and c¢). Because the peak construction
step operates on the cluster centroids, their distance may exceed the estimated
RT threshold resulting in few peaks belonging to one isotope. More specifically,
P, and P both resulted represented by two peak clusters, with 31, 159, and 19,
117 features, respectively. P3 was detected as single peak with 33 features. All
clusters contain features from all the six spiked-in runs.

To get an estimate of the actual RT shifts across the runs we computed, for
each obtained peak cluster, a value here called ’average time shift’. This value is
defined as the mean of the minimum RT (pairwise) distances between features
within a cluster belonging to different runs. This measure describes the average
shift needed for alignment of features in a given cluster. The minimum pair-wise
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Fig. 4. Results of hierarchical clustering (a, ¢) and PDA (b, d). Occasionally, isotopic
peaks can result in more than one cluster as in (d).

distance reflects the amount of time required to consider two sets of features
(from two different runs) aligned. The behaviour of average time shift for some
values of the RT threshold used in the peak construction step is illustrated in
Figure 5. The horizontal line within each box represents the median value. The
vertical limits of each box are at the lower quartile and upper quartile values.
The rest of the observations extend between the lower and upper whiskers. The
large amount of outliers (marked with ’+’) illustrates the difficulty of the align-
ment problem and substantiates the robustness of PDA. Even large drifts in RT
do not obscure the PDA. Different RT threshold settings (between 5 and 30 sec-
onds) do not cause significant changes in ’average time shift’, which indicates the
consistency of our initial assessment for a suitable threshold value. Moreover the
figure indicates the good quality of the experimental data. The observation that
75% of the shift values are within a range of less than 10 seconds suggests that in
most cases, local small shifts are sufficient for alignment. Thus local alignment
schemes seem to be suited for this type of mass spectrometry data.

Finally, to get a flavour about the performance of other algorithms for LC-
MS data alignment and peak detection, we consider two popular LC-MS data
processing tools: MZmine [7] and MetAlign [2]. They both perform first peak
detection followed by alignment. The nine parameters of MZmine’s peak detec-
tion routine, as well as the twenty parameters of MetAlign were set by our local
MS domain expert. We did not succeed in detecting the spike-in peptide using
MetAlign. MZmine detected isotopes only in few of the spiked runs, represented
by multiple peaks. In particular, the peak detection routine of MZmine detected
isotopes in four of the six spiked-in runs, with detection of only one or two of the
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Fig. 5. The behaviour of the minimum shifts among features within each cluster. 75% of
the values (within boxes) are smaller than 10 s indicating that local shifts are sufficient
for alignment. Different RT thresholds (5 to 30) did not cause significant changes, as
the general trend is only slightly increasing. The outliers (marked with ’+’) shows
robustness of PDA.

four isotopes. This lead to alignment results where P; was detected four times,
three times represented by one peak from one run and the other time represented
by two peaks from different runs. P» was identified by two peaks from different
runs and P; by a single peak from a single run.

4 Conclusion

In this paper, we proposed a method for simultaneous peak detection and align-
ment with nanoLCFT-MS data. Results on a spiked-in dataset indicate the ef-
fectiveness of this approach. We are currently working on further refinement
steps such as: filtering out small cardinality clusters, irrespective of their loca-
tions within runs, removing clusters whose diameter in RT is too big (the elution
time range of a peptide is limited), and improving the peak construction step.
Moreover, we are planning to incorporate this technique in advanced biomarker
detection algorithms based on feature selection. Such a comparative profiling
implies the identification of clusters that contain relevant features for discrimi-
nation between control and case classes. A comparative analysis of results of the
extended method on other datasets will provide more through assessment of its
power as a computational tool for disease biomarker detection.
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