
Feature Selection for Classification with Proteomic
Data of Mixed Quality

Elena Marchiori
Department of Computer Science

Vrije Universiteit Amsterdam
The Netherlands

Email: elena@cs.vu.nl

Niels H.H. Heegaard, Mikkel West-Nielsen
Department of Autoimmunology

Statens Serum Institut, Copenhagen
Denmark

Connie R. Jimenez
Department of Biology

Vrije Universiteit Amsterdam
The Netherlands

Abstract— In this paper we assess experimentally the perfor-
mance of two state-of-the-art feature selection methods, called
RFE and RELIEF, when used for classifying pattern proteomic
samples of mixed quality. The data are generated by spiking
human sera to artificially create differentiable sample groups,
and by handling samples at different storage temperature. We
consider two type of classifiers: support vector machines (SVM)
and k-nearest neighbour (kNN). Results of leave-one-out cross
validation (LOOCV) experiments indicate that RELIEF selects
more stable feature subsets than RFE over the runs, where the
selected features are mainly spiked ones. However, RFE outper-
forms RELIEF in terms of (average LOOCV) accuracy, both
when combined with SVM and kNN. Perfect LOOCV accuracy
is obtained by RFE combined with 1NN. Almost all the samples
that are wrongly classified by the algorithms have high storage
temperature. The results of experiments on this data indicate that
when samples of mixed quality are analyzed computationally,
feature selection of only relevant (spiked) features does not
necessarily correspond to highest accuracy of classification.

I. INTRODUCTION

Feature selection (FS) for classification can be formalized as
a combinatorial optimization problem, finding the feature set
maximizing the quality of the hypothesis learned from these
features. FS is viewed as a major bottleneck of supervised
learning and data mining [1]–[3]. For the sake of the learning
performance, it is highly desirable to discard irrelevant features
prior to learning, especially when the number of available
features significantly outnumbers the number of samples, as
is the case in bioinformatics. Because of its computational
intractability, the FS problem has been tackled by means
of heuristic algorithms based on various machine learning
techniques, e.g., [1], [4], [5].

Biological experiments from laboratory technologies like
microarray and proteomic techniques, generate data with a
very high number of variables (features), in general much
larger than the number of samples. Therefore FS provides a
fundamental step in the analysis of such type of data [6]. By
selecting only a subset of features, the prediction accuracy
can possibly improve and more insight in the nature of the
prediction problem can be gained.

Various machine learning and statistical techniques for
feature selection have been applied to proteomic data, like [7]–
[13], in order to detect potential tumor biomarkers for (early)
cancer diagnosis (clinical proteomics). A summary of actual

challenges and critical assessment of clinical proteomics can
be found, e.g., in [14].

In this paper we consider feature selection for classification
with pattern proteomic data consisting of samples of mixed
quality. This issue is related to broader questions about re-
producibility and validity of results in the discovery-based
“omics” research [14], [15]. For instance, in a special session
on genomics in a recent issue of Science an essay entitled
“Getting the noise out of gene arrays” noted that “[t]housands
of papers have reported results obtained using gene array ...
But are these results reproducible?” [16]. A controversy about
reprodicibility and validity of results from pattern proteomic
data is ongoing [14], [17]: it has been observed that data and
results may change depending on the particular way samples
are handled [18], on the instability of the laboratory tech-
nology, as well as on the computational analysis techniques
applied.

We compare experimentally two state-of-the-art feature se-
lection techniques, RELIEF [19], [20] and RFE [21], and
two classification techniques, Support Vector Machines (SVM)
[22], [23] and k-nearest neighbours (kNN) [24], on proteomic
data of mixed quality. Pattern proteomic profiles generated
with MALDI-TOF technology are used. The data is generated
from human sera samples, using spiking to artificially create
differentiable sample groups, and handling the resulting sam-
ples at different storage time. The sample preparation proce-
dure utilized to generate such data is described in detail in
[18], where the data has been analyzed using also commercial
software.

We consider four algorithms obtained by applying fea-
ture selection followed by classification: RELIEF+SVM, RE-
LIEF+kNN, RFE+SVM, RFE+kNN. LOOCV is applied to
these algorithms for comparing their performance. Results of
the experiments show that RELIEF selects feature subsets that
are rather stable over the (leave-one-out) runs, and that contain
only relevant (spiked) features. Feature subsets selected by
RFE are less stable over the runs and contain also features
that are not spiked. Performace of the algorithms in terms of
average accuracy varies. An expected result is the superior
accuracy of RFE+SVM over RELIEF+SVM, due to the fact
that RFE uses a bias from SVM when selecting features. A
somewhat suprising result is the superiority of RFE+kNN over



RELIEF+kNN for small values of k. In particular, RFE+1NN
achieves perfect LOOCV accuracy, while average accuracy of
RELIEF+1NN is 0.9271 (with 0.2614 standard deviation). In
general, misclassified samples correspond to samples having
high storage temperature, thus substantiating the crucial role
of laboratory sample handling for the success of clinical
proteomics.

II. CLASSIFICATION TECHNIQUES

We consider two popular classification techniques from
the instance based and neural networks learning approach,
respectively.

k Nearest Neighbour Classifier

This technique has been thoroughly studied by the machine
learning community (see e.g. [24]). In kNN classification, the
training set is directly used to classify new samples. Given
a sample x, the k training samples which are most similar
to x are selected and the class of the majority of them is
assigned to x. The number k of samples is a parameter. The
similarity measure between samples that is generally used is
the Euclidean distance:
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where n is the number of features. Despite of its simplicity,
kNN is a popular and effective classification technique which
has been applied successfully to real world problems (cf.,
[25]).

Linear Support Vector Machines

In linear SVM binary classification [22], [23] patterns of two
classes are linearly separated by means of a maximum margin
hyperplane, that is, the hyperplane that maximizes the sum of
the distances between the hyperplane and its closest points of
each of the two classes (the margin). When the classes are
not linearly separable, a variant of SVM, called soft-margin
SVM, is used. This SVM variant penalizes misclassification
errors and employs a parameter (the soft-margin constant C)
to control the cost of misclassification.

Training a linear SVM classifier amounts to solving the
following constrained optimization problem:

minw,b,ξk
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with one constraint for each training sample xi. Usually the
dual form of the optimization problem is solved:
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such that 0 ≤ αi ≤ C,
∑m

i=1
αiyi = 0. SVM requires O(m2)

storage and O(m3) to solve.
The resulting decision function f(x) = w · x + b has

weight vector w =
∑m

k=1
αkykxk. Samples xi for which

αi > 0 are called support vectors, since they uniquely define
the maximum margin hyperplane.

Maximizing the margin allows one to minimize bounds
on generalization error. Because the size of the margin does
not depend on the data dimension, SVM are robust with
respect to data with high input dimension. However, SVM
are sensitive to the presence of (potential) outliers, (cf. [21]
for an illustrative example) due to the regularization term for
penalizing misclassification (which depends on the choice of
C).

III. FEATURE SELECTION TECHNIQUES

One can distinguish three main approaches for feature
selection: wrapper, filter and embedded.

• In the wrapper approach features are selected by taking
into account their contribution to the performance of a
given type of classifier (e.g., SVM).

• In the filter approach the selection of features is not
(directly) biased towards the performance of a specific
type of classifier, but is based on an evaluation criterion
for quantifying how well feature (subsets) discriminate
the two classes.

• Finally, in the embedded approach feature selection is part
of the training procedure of a classifier, like in decision
trees.

The performance of these approaches depends on the ap-
plication domain. The wrapper approachis favoured in many
works since the selection of the features is directly linked to
the performance of a chosen type of classifier. On the other
hand, algorithms based on the filter approach, like RELIEF, are
in general more efficient and have been successfully applied
to real life domains [26]. Techniques based on the embedded
approach provide a global approach, where feature selection
is a by-product of the training algorithm for classification.

In this work we consider a wrapper technique, called RFE,
and a filter technique, called RELIEF.

Recursive Feature Elimination (RFE)

The weights wi of a linear SVM classifier provide infor-
mation about feature relevance, where a bigger weight value
implies higher feature relevance. In this paper a feature xi is
scored by means of w2

i , as in the original RFE algorithm [21].
RFE is a recursive algorithm. Each iteration consists of the

following two steps. First feature weights, obtained by training
a linear SVM on the training set, are used in a scoring function
for ranking features as described above. Next, the feature with
minimum rank is removed from the data. In this way, a chain
of feature subsets of decreasing size is obtained.

In the original RFE algorithm one feature is discarded at
each iteration. Other choices are suggested in [21], where
at each iteration features with rank lower than a user-given
theshold are removed. In this paper we use a simple instance of
RFE where at each iteration half of the features are discarded
until a user-given number of final features is reached. The
pseudo-code of RFE is given below.



RFE
%input: training set X, number of features

to be selected M
%output: subset Selected of M features
Selected = all features;
num_feat = size(Selected);
while num_features < M
train linear classifier with SVM on X

restricted to Selected;
score features using the squared value of

the weights of the classifier;
if size(Selected)/2 < M then
num_feat = size(Selected)/2;
else num_feat = size(Selected) - 1;
Selected = num_feat features of Selected

with highest score;
end;
return Selected;

RELIEF

RELIEF [19], [20] is a feature ranking algorithm that
assigns a score to features based on how well the features
separate training samples from their nearest neighbours from
the same and from the opposite class.

The algorithm constructs iteratively a weight vector, which
is initially equal to zero. At each iteration, RELIEF selects
one sample, adds to the weight the difference between that
sample and its nearest sample from the opposite class (called
nearest miss), and subtracts the difference between that sample
and its nearest neighbour from the same class (called nearest
hit). The iterative process terminates when all training samples
have been considered. Subsamplingcan be used to improve
efficiency in case of a large training set. The pseudo-code of
the RELIEF algorithm used in our experiments is given below.

RELIEF
%input: training set X, number of

features to be selected M
%output: subset Selected of M features
nr_feat = total number of features;
weights = zero vector of size nr_feat;
for all samples exa in training set do
hit(exa) = nearest neighbour of exa

from same class;
miss(exa) = nearest neighbour of exa

from opposite class;
weights = weights-abs(exa-hit(exa))+

abs(exa - miss(exa));
end;
Selected = M features with highest

weights’s value;
return Selected;

IV. PROTEOMIC PATTERN DATA

The proteomic pattern data here considered is obtained
by surface-enhanced laser desorption/ionization time-of-flight
mass spectronomy (MALDI-TOF MS), a recent laboratory

technology which offers high-throughput protein profiling. It
measures the concentration of low molecular weight peptides
in complex mixtures, like serum (cf. e.g. [27]). Because it
is relatively inexpensive and noninvasive, it is considered a
promising new technology for classifying disease status and
for tumor biomarker detection.

SELDI-TOF MS technology produces a graph of the relative
abundance of ionized peptides (y-axis) versus their mass-to-
charge (m/z) ratios (x-axis). (see Figure 1) The m/z ratios are
proportional to the peptide masses, but the technique is not
able to identify individual peptides, because different peptides
may have the same mass and because of limitations in the m/z
resolution. There is no obvious relation between neighbour
data points, apart from the fact that they refer to peptides of
similar masses and that the resolution is such that the graph
should be considered a smoothed version of the true mass
density.

Given proteomic profiles from healthy and diseased indi-
viduals it is desired to build a classifier for tumor diagnostics
and to identify the protein masses that are potentially involved
in the disease.

The data considered in this study consists of 96 profiles
obtained from human sera of eight adult persons. Spiking has
been used to produce the two classes, and 6 different storage
temperatures (t=0, 1, 4, 8, 24, 48 hours) have been used to
produce data of mixed quality. Each profile contains 22572
m/z points.

The complete procedure for generating such data is de-
scribed in detail in [18].

V. RESULTS OF EXPERIMENTS

We consider the following four algorithms, obtained by first
applying feature selection and next by training a classifier on
the training set restricted to the selected features.

1) RFE+SVM: RFE is applied for feature selection and
SVM for classification.

2) RFE+kNN: RFE is applied for feature selection and
kNN for classification.

3) RELIEF+SVM: RELIEF is applied for feature selection
and SVM for classification.

4) RELIEF+kNN: RELIEF is applied for feature selection
and kNN for classification.

Because of the small size of the data, LOOCV is used for
a comparative analysis of the algorithms (cf., e.g., [28]). At
each leave-one-out run, all but one element of the data is used
as training set, and the left-out element is used for testing the
predictive performance of the resulting classifier.

The number of selected features is set to 10, corresponding
to the number of spikes present in the samples. The SVM
soft-margin constant C is set to 10, chosen based on results of
few runs on one training set (these results indicated that the
value of this parameter is not crucial on this data).

A. Comparison of RFE and RELIEF

We compare the sets of features selected by RFE and
RELIEF over the runs. RFE selected a total of 37 features
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Fig. 1. A MALDI-TOF MS profile: x-axis contains m/z values of peptides and the y-axis their concentration.

over the 96 runs of LOOCV, while RELIEF only 15. Figures
2 and 3 show m/z value (x-axis) and number of occurrences (y-
axis) of the selected features. The circles in the figures indicate
the position of the spiked peptides. The results indicate that
RELIEF is more stable than RFE and selects only features
corresponding to spike m/z values, while RFE selects also few
features which are not in the neighbourhood of the spikes.

The difference in stability of the two algorithms can be
explained by observing that (linear) SVM training is rather
sensitive to the samples considered, since the hyperplane
generated by SVM is uniquely determined by the support
vectors, hence it does change when one support vector is
removed. On the other hand, the procedure used by RELIEF
to score features is less sensitive to the removal/addition of
one sample [24].

B. Comparison of RFE+SVM and RELIEF+SVM

TABLE I

AVERAGE LOOCV SENSITIVITY, SPECIFICITY AND ACCURACY OF SVM

WITH RELIEF AND RFE FEATURE SELECTION, RESPECTIVELY.

STANDARD DEVIATION IS REPORTED BETWEEN BRACKETS.

SENSITIVITY SPECIFICITY ACCURACY

RELIEF
+ 0.8542 (0.3567) 0.9583 (0.2019) 0.9062 (0.2930)

SVM

RFE
+ 0.9375 ( 0.2446) 0.9792 (0.1443) 0.9583 ( 0.2009)

SVM

(RELIEF
union 0.9375 (0.2446) 1.0000 ( 0) 0.9688 (0.1749)
RFE)

+
SVM

We used accuracy, sensitivity and specificity as quality mea-
sures for comparing learning algorithms. Other measures, like
AUC (Area Under the ROC Curve), can be used. As illustrated
in [29], there is good agreement between accuracy and AUC
as to the ranking of the performance of the classification
algorithms.

When RFE and RELIEF are applied to select features and
SVM is trained on the selected feature subsets, we obtain
average LOOCV results reported in Table I. Sensitivity and
specificity are the fraction of correctly classified spiked and
non-spiked samples, respectively. Accuracy is the fraction of
samples correctly classified. RELIEF+SVM wrongly classifies
a total of 9 samples: 2 normal samples with t=48, and 7 spiked
samples, 2 with t=0, 1 with t=1, 2 with t=24 and 2 with t=48.
RFE+SVM wrongly classifies a total of 4 samples: 1 normal
sample at t=24, and 3 spiked samples, 1 at t=0 and 2 at t=48.
Only the latter two samples are wrongly classified by both
algorithms.

The results indicate that a significant improvement in sen-
sitivity is obtained by RFE+SVM over RELIEF+SVM, and a
non-significant increase in specificity. The superior accuracy
of RFE+SVM over RELIEF+SVM is a somewhat expected
result, since RFE incorporated SVM into the feature selection
process. However, it is not clear why this neat superiority is
achieved in terms of sensitivity.

A slight improvement is obtained by taking the union of
features selected by RFE and RELIEF as input features for
SVM: perfect classification on the set of non-spiked samples
is obtained, while sensitivity remains equal to the one of
RFE+SVM.

C. Comparison of RFE+kNN and RELIEF+kNN

We analyze experimentally the LOOCV predictive perfor-
mance of the three classifiers obtained by feature selection
followed by kNN. Figures 4, 5 and 6 show plots of average



1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100

Fig. 2. Features selected by RFE: the x-axis contains the m/z values and y-axis the number of times a m/z value is selected over all the LOOCV runs. The
circles on the x-axis correspond to the m/z values of spiked peptides.
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Fig. 3. Features selected by RELIEF: the x-axis contains the m/z values and y-axis the number of times a m/z value is selected over all the LOOCV runs.
The circles on the x-axis correspond to the m/z values of spiked peptides.

accuracy, sensitivity and specificity of the three resulting kNN
classifiers, for value of k (number of nearest neighbours) equal
to 1,3,5,10,20,30,40,50. The results of experiments indicate
that RFE+kNN is superior to RELIEF+kNN. For all the values
of k considered, RFE+kNN obtains higher sensitivity than
RELIEF+kNN, and higher specificity for values of k smaller
than 40. In particular, perfect classification is achieved by
RFE+1NN. The plots show that taking the union of features
selected by the two algorithms affects positively specificity,
which becomes equal to 1, while sensitivity remains inferior
to the one of RFE+kNN.

VI. CONCLUSION

We have considered the issue of feature selection for clas-
sification with pattern proteomic data of mixed quality. We
analyzed computationally data from a previous study about
sample preparation in mass spectrometry proteomics. Two
state-of-the-art feature selection techniques, RFE and RELIEF,
and two popular classification techniques, kNN and SVM,
have been applied to the data.

A comparative analysis of these techniques have been
performed, in terms of stability, intepretability, and quality of
results. The results of LOOCV experiments indicate that RFE
selects features that yield better predictive performance both
when SVM and kNN is used as classifier. On the other hand,
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Fig. 4. average accuracy (y-axis) of LOOCV with k-NN for different values of k (x-axis): data restricted to m/z values selected by RELIEF (dashdotted
line), RFE (solid line), and the union of them (dotted line).
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Fig. 5. average sensitivity (y-axis) of LOOCV with k-NN for different values of k (x-axis): data restricted to m/z values selected by RELIEF (dashdotted
line), RFE (solid line), and the union of them (dotted line).

features selected by RELIEF are more stable over the leave-
one-out runs, and consist of relevant (that is spiked) features.
While features selected by RFE are more diverse over the runs
and contain also features that do not correspond to spiked
peptides.

In general, the results seem to indicate that better predictive
performance does not necessarily correspond to stability of
the method and intepretability of results. This observation fits
in the ongoing discussion about results in the discovery-based
“omics’ research: better understanding of results does not seem
necessarily to imply better prediction, and better prediction
seems possible without complete understanding of the results.
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