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Abstract. In this paper we analyze two proteomic pattern datasets con-
taining measurements from ovarian and prostate cancer samples. In par-
ticular, a linear and a quadratic support vector machine (SVM) are ap-
plied to the data for distinguishing between cancer and benign status.
On the ovarian dataset SVM gives excellent results, while the prostate
dataset seems to be a harder classification problem for SVM. The prostate
dataset is futher analyzed by means of an evolutionary algorithm for
feature selection (EAFS) that searches for small subsets of features in
order to optimize the SVM performance. In general, the subsets of fea-
tures generated by EAFS vary over different runs and over different data
splitting in training and hold-out sets. Nevertheless, particular features
occur more frequently over all the runs. The role of these “core” features
as potential tumor biomarkers deserves further study.

1 Introduction

Surface-enhanced laser desorption/ionization time-of-flight mass spectronomy
(SELDI-TOF MS) is a recent laboratory technology which offers high-throughput
protein profiling. It measures the concentration of low molecular weight peptides
in complex mixtures, like serum (cf. e.g. [1]). Because it is relatively inexpensive
and noninvasive, it is a promising new technology for classifying disease status.

SELDI-TOF MS technology produces a graph of the relative abundance of ion-
ized peptides (y-axis) versus their mass-to-charge (m/z) ratios (x-axis). (Cf.
Figure 1) The m/z ratios are proportional to the peptide masses, but the tech-
nique is not able to identify individual peptides, because different peptides may
have the same mass and because of limitations in the m/z resolution. Currently
the graph is represented by 15000 measuring points. There is no obvious relation
between neighbouring measurement points, apart from the fact that they refer to
peptides of similar masses and that the resolution is such that the graph should
be considered a smoothed version of the true mass density.

Given proteomic profiles for a sample of healthy and diseased individuals it is
desired to build a classifier for tumor diagnostics and to identify the protein
masses that are potentially involved in the disease. Because of the large number



of features (the m/z ratios) and the small sample size (the specimens), the second
problem is tackled using heuristic algorithms for feature selection.

Fig. 1. A typical protein profile produced by SELDI-TOF MS.

In this paper we analyze two datasets obtained by applying SELDI-TOF MS
to serum samples. The first dataset concerns measurements from women with
or without ovarian cancer, was previously analized in [3,4]. The second dataset
contains samples from patients with prostate cancer and patients with benign
prostate conditions, was analyzed in [2]. Both datasets are publically available
from the NCI/CCR and FDA/CBER Clinical Proteomics Program Databank
(http://clinicalproteomics.steem.com/).

As preliminary analyses we first investigate the extent to which single m/z ratios
can be used to discriminate the two classes of healthy and cancer state samples.
Secondly we report the error rate of support vector machine (SVM) classifiers us-
ing the full protein profiles. It turns out that the ovarian cancer dataset is “easy”
for a linear SVM classifier, whereas the prostate cancer dataset is “harder”.

We perform a further analysis of the prostate cancer dataset by means of a fea-
ture selection algorithm based on EAs. We introduce an EA for feature selection,
called EAFS (Evolutionary Algorithm for Feature Selection), in order to identify
small subsets of features that discriminate the healthy and cancer groups. The
results over multiple data splittings (into training, test and validation set) and
multiple EA runs show that the method is slightly unstable. However, specific
features occur most frequently in the solutions of multiple runs. Further study
is needed in order to assess the role of these “core” features as potential tumor
biomarkers.

2 Data Analysis with all Features

The “ovarian dataset” (8-7-02) consists of 253 samples, with 91 controls and
162 ovarian cancers, which include early stage cancer samples. The “prostate
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Fig. 2. Mean values analysis of ovarian cancer data set

dataset” contains 322 samples, with 69 cancers and 253 healthy (or benign)
samples.

We analyze the two datasets in order to assess how difficult it is to separate
healthy and cancer groups. Figure 2 shows properties of the mean values of the
two classes for the ovarian dataset. Parts (a) and (b) of the figure indicate that
the healthy and cancer classes differ only in a few regions substantially in mean.
Because the variances in the two samples vary significantly with m/z ratio, the
t-test applied for each m/z ratio separately is nevertheless significant for a much
larger number of m/z ratios. In fact, as shown in part (c), there are many p-
values equal to zero all across the full range of m/z-values, and “most” p-values
are close to zero, as shown in part (d), which is a histogram with 100 bins. This
seems to suggest that it is not difficult to find a good classifier for the ovarian
dataset. The same information on the prostate data set is given in Figure 3.
We can see there are fewer features with significant difference in mean in the
prostate than in the ovarian dataset (part (d) of the figures). Thus finding a
good classifier for the prostate dataset seems to be a more difficult task.
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Fig. 3. Mean values analysis of prostate cancer data set

We classify the data using all the features and a SVM classifier. The choice
of SVM is motivated by their good performance also in the presence of many
features. In SVM classification [6], the samples of the two classes are mapped
into a feature space where they are separated by means of a maximum margin
hyperplane, that is, the hyperplane that maximizes the sum of the distances
between the hyperplane and its closest points in each of the two classes (the
margin). The inner product in the feature space can be computed in the input
space by means of a so-called kernel function. This choice is shown to affect
positively the generalization performance of the classifier. When the classes are
not linearly separable in the feature space, a variant of SVM, called soft-margin
SVM, is used. This SVM variant penalizes misclassification errors and employs
a parameter (the soft-margin constant C) to control the cost of misclassification.
In our experiments we use soft-margin SVM classifiers with C=100, and two
types of kernel functions, linear and quadratic.

Table 1 contains the results obtained by applying an SVM classifier with linear
and quadratic kernel to the ovarian and prostate cancer datasets. Experiments
are conducted using the SVM software package LibSVM. We perform 25 runs,



where in each run the data is randomly partitioned into training (60%) and
test (40 %) sets, a classifier is induced by the SVM learning algorithm applied
to the training set, and its classification error rate on the test set is measured.
Each entry of the table contains the average result over 25 runs (with standard
deviation written between brackets) for a specific pair of SVM classifier and
dataset.

Lin., Ovar. Poly., Ovar. Lin., Pros. Poly., Pros.
Test Error  |{0.0028 (0.0061)|0.0040 (0.0065) 0.0600 (0.0201)|0.0590 (0.0246)
Sens. 0.9987 (0.0044) |0.9988 (0.0042)|0.8884 (0.0596)]0.8936 (0.0719)
Spec. 0.9947 (0.0153)[0.9912 (0.0169) |0.9539 (0.0205)[0.9552 (0.0261)
Pos.Pred.Val.[0.9969 (0.0090)|0.9951 (0.0097) |0.8361 (0.0630)|0.8475 (0.0867)

Table 1. Average results over 25 runs of SVM with linear and quadratic kernel, on
ovarian and prostate data

In all the runs the SVM classification error on the training set is zero. The table
contains the average test error rate, sensitivity (number of cancer samples cor-
rectly classified divided by total number of cancer samples), specificity (number
of healthy samples correcty classified divided by total number of healthy sam-
ples), and positive predictive value (number of cancer samples correctly classified
divided by total number of samples classified as cancer).

On the ovarian dataset, the SVM classifier with linear kernel gives excellent
results, being able to output the correct diagnosis in many runs, in particular
cancer samples are almost always detected (pred. pos. val. and sensitivity are
close to 1). Thus the ovarian dataset can be considered easy for a linear SVM
classifier. Other methods applied to this dataset obtain also very good results. In
[3] a commercial package that uses a genetic algorithm (GA) based feature selec-
tion method is applied. The GA searches in the space of all subsets of features. It
uses a fitness function that scores a feature subset according to its ability to clus-
ter samples in consistent groups, that is, groups containing samples with equal
class. The authors report almost perfect classification for a specific data splitting
in training and test sets. The paper does not mention results obtained by cross-
validation. A more thorough analysis of the ovarian dataset is performed in [4],
where 10-fold cross validation is applied, and different classification and feature
selection methods are considered. Features are first “smoothed” by means of a
discretization algorithm. Perfect classification is achieved using an SVM classifier
with quadratic kernel, when all features are used but also when a small subset
of 17 features is used. This feature subset is generated using a feature selection
algorithm that iteratively constructs sets of features using the best-first-search
and a scoring criterion, for selecting a best feature subset, which considers the
correlation between pairs of features and between feature and class.

On the prostate dataset, sensitivity and predicted positive values are lower than
specificity, possibly due to the unbalanced distribution of the two classes, where



cancer samples are about 1/3 of the healthy ones. The results indicate that the
prostate data set is somewhat harder to classify than the ovarian one, when
using SVM with a linear or quadratic kernel and all the features. In [2] the
GA-based commercial package described above is applied to this dataset. The
authors identify a subset of 7 features that allow their classification method to
obtain 0.95 sensitivity, 0.78 specificity, and 0.1992 test error rate.

In summary, on the ovarian dataset a soft-margin SVM linear classifier provides
a good diagnostic tool, while for the prostate dataset the sensitivity achieved is
still too low hence does not allow a direct use of this classifier in diagnostics.
An early stage tumor diagnostic tool should have sensitivity equal to 1 and
specificity very close to 1.

3 An EA-based Method for Feature Selection

In this section we describe a novel method for feature selection based on evolu-
tionary algorithms (EA). Given a dataset and a learning algorithm, the goal of
feature selection is to find a “small” subset of features that minimizes the gener-
alization error (that is, the classification error on new examples) of the classifier
induced by the learning algorithm when run only on the selected features.

The data is randomly partitioned into a training, a test and a validation sets (in
the experiments these sets contain 60%, 30% and 10% of the data, respectively).
The training and test sets are used in the feature selection algorithm and the
validation set is used for assessing the performance of the resulting classifier
on new data. In the standard wrapper model for feature selection, one searches
for a feature subset that minimizes the test error of the classifier trained on
data restricted to that feature subset. In [5], Ng shows that the main source of
error in standard wrapper algorithms, when many irrelevant features are present,
comes from over-fitting hold-out or cross-validation data. He proposes an exact
algorithm which is more tolerant to the presence of many irrelevant features.
The algorithm, called ordered-fs, works in two phases. First, for each feature
set size ¢ € [1,m], where m is the maximum number of features permitted, the
algorithm finds a feature set of size 7 that minimizes the classifier training error.
Next, the resulting m classifiers are run on the test set, and the one yielding
minimum error is chosen.

The EA-based method we propose, called EAFS, is inspired by the ordered-fs
algorithm. The core of EAFS (illustrated below) consists of an EA which evolves
a number of populations, where each population consists of individuals repre-
senting feature subsets of a given size. The populations interact by means of
highly fit individuals which are used as seed for generating new individuals of
other populations. Genetic operators are used for moving in the search space
in order to minimize the SVM training error. At the end of the evolutionary
process, the best SVM classifier of each population is run on the test set and
the one yielding minimum error on this set is selected. Thus the test set is used



only to determine the optimal size of the feature set. The selection of an optimal
feature set of a given size is based only on the training set.

//the core of EAFS
{
generate initial population
while (termination criterion not satisfied)
{
select a population
select to parents from that population
generate offspring using uniform crossover
apply mutation to offspring
find populations with right number of features
replace worst individuals with offspring
determine fitness (error SVM on training set)
if (offspring has very good fitness)
apply migration operator

Feature subsets are represented by bit strings of length equal to the total number
of features. A bit value equal to 1 means the corresponding feature is considered
by the learning algorithm, while a 0 means it is discarded. Individuals of each
population are initialized by means of n-tournament selection which uses a fea-
ture ranking obtained from t-tests on all single features. The fitness of a feature
subset F' is equal to the training error of the SVM classifier restricted to the
features of F'. Mutation removes a feature from F' and adds a new one, where
both features are randomly selected. Standard GA uniform crossover is used.
While mutation does not affect the size of a feature subset, this is not the case
for crossover. Thus if the feature set size of an offspring is different from the one
of its parents, it migrates to another population. At each iteration of the EA,
a population is selected and used to generate two offspring. The EA uses tour-
nament selection and a steady state replacement mechanism, where offspring
replace the worse individuals of the population. When the EA terminates its
execution, the best individual of each population is chosen and the one yielding
the lowest error on the test set provides the output. In the sequel, we focus only
on the application of EAFS to the prostate dataset, and will not compare EAFS
to other EA-based feature selection algorithms.

4 Results

We used the following experimental setup: 20 populations, each one consisting
of 10 individuals, 600 iterations, tournament selection of size 5, crossover and
mutation rate of 0.95. These values have been chosen after a small number of



runs (using only training and test sets). We consider 24 random splitting of the
dataset in training (60%), test (30%) and validation (10%) sets. For each “split”
of the data we run EAFS 25 times. This amounts to a total of 600 runs. Table 2
gives the results of EAFS with linear kernel. The values are the averages over all
the 600 runs. Standard deviation is reported between brackets. Table 3 contains
the results using a quadratic kernel. EAFS with a quadratic kernel SVM achieves
best performance, but obtains sensitivity lower than that of SVM with all the
features. However, a fair comparison is not possible due to the different cross
validation approaches used.

Training Test Validation
Error 0.0617 (0.0254)[0.0880 (0.0313)|0.1116 (0.0515)
Sensitivity 0.7853 (0.0926)[0.7037 (0.1193)|0.6315 (0.2069)
Specificity 0.9827 (0.0118)[0.9658 (0.0238)[0.9484 (0.0456)
Pos. Pred. Value|0.9309 (0.0451)|0.8437 (0.0957)|0.7424 (0.2178)

Table 2. Results of EAFS with linear SVM

Training Test Validation
Error 0.0463 (0.0287)[0.0774 (0.0283)|0.1096 (0.0579)
Sensitivity 0.8360 (0.1096)[0.7502 (0.1249)|0.6779 (0.2177)
Specificity 0.9874 (0.0109)[0.9674 (0.0216)|0.9441 (0.0525)
Pos. Pred. Value|0.9502 (0.0431)|0.8547 (0.0948)(0.7671 (0.1936)

Table 3. Results of EAFS with quadratic SVM

In order to investigate whether the data “split” influences the performance of
EAFS significantly, we perform a one-way Analysis of Variance to compare the
24 samples of 25 validation errors resulting from the 24 “splits”. The difference
is statistically significant, with zero p-values for both the linear and quadratic
case. The “splits” explain about 24 % of the variance in the validation errors in
the linear case and about 35 % in the quadratic case, indicating that 76 % and
65 % is due to the randomness inherent in EAFS. A correction for the effect of
“split” on the error standard deviations in Tables 2 and 3 would reduce these
somewhat, but not substantially (e.g. 0.0515 becomes 0.045). Figure 4 gives a
visual impression of the variation due to the splitting and EAFS. The three graphs
show boxplots of the training, test and validation errors of the 600 runs (top to
bottom), organized by “split” (left) or “run”.

An important aspect of these graphs is summarized in the Figure 5, which shows
boxplots of the standard deviations of the 24 samples of validation errors corre-
sponding to the 24 “splits”. The linear SVM suffers from one extreme split, but
is otherwise more stable across relative to the splitting of the data.
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Fig. 4. Boxplot of training, test and validation errors (top to bottom), organized by
split (left) and run (right)

We analyze now the features obtained in all the runs.

Figure 6 shows histograms of the final feature set sizes found over the 600 runs.
The algorithm shows no preference for the largest possible feature set size. We
can see that EAFS with linear SVM has a peak on feature size 5, while EAFS with
quadratic SVM prefers somewhat bigger feature sizes, with a peak on feature
size 13.

Over all the runs EAFS with linear SVM finds 3935, while with quadratic SVM
finds 3797 features. Figure 7 shows histograms of the features occurring in the
solutions found over the 600 runs. It is clear that EAFS is not stable, yet the
histograms indicate the presence of few frequency peaks . By considering features
occurring in these peaks, 47 features occurring in at least 10 runs are extracted.
We perform 100 runs of the linear SVM restricted to the 47 features, with rando
mly chosen training and test set, and obtain 0.93 sensitivity (0.058 standard
deviation) and 0.98 specificity (0.016 standard deviation). These significantly
better results may be due to the fact that the selection of these features implicitly
uses (almost) the entire dataset.

5 Conclusion

This paper analyzed two proteomic pattern datasets. We applied SVM classifiers
for tumor diagnostics, and used them in EAFS, an EA-based feature selection
algorithm for the identification of potential tumor markers identification. The
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Fig. 5. Boxplots of standard deviation within the 24 runs.
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Fig. 6. Histograms of obtained feature set sizes

results do not allow us to draw strong conclusions. On the ovarian dataset SVM
with all the features exhibits excellent performance, while on the prostate dataset
it obtains relatively low sensitivity. Results of EAFS show that its performance
on the prostate dataset depends on the data splitting and EA run. Moreover,
feature subsets generated by EAFS vary per run, with a small core of features
occurring more often. This latter phenomenon was observed to happen also in
the other methods discussed in this paper.

Future work includes: the incorporation of a pre-processing phase into EAFS; the
investigation of other types of classifiers; the use of knowledge-based mutation
operators; and the use of multiple EAFS’s runs with different splitting of training
and test sets for extracting a “core” set of features from the resulting EAFS’s
solutions.
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Fig. 7. Histograms of number of feature occurrence in final solutions
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