
The Interdependence of E�ects and Uniqueness?

John Boyland

Department of EE & CS, University of Wisconsin-Milwaukee

boyland@cs.uwm.edu

Abstract. A good object-oriented e�ects system gives the ability to

de�ne abstract regions (or \data groups") of state within objects that can

be extended in subclasses. Then one can specify (for instance) read and

write e�ects on these abstract regions. Additionally, e�ects on \wholly

owned subsidiary" objects should be seen as e�ects on regions of the

owning object. For instance, an assignment within a bucket of a hash

table should be seen as an e�ect on the hash table alone. Correctness

of this transfer of e�ects depends on the bucket being accessible only

through the hash table; it must be unique.

Uniqueness can be guaranteed using destructive reads (in which a unique

variable can be used at most once). Destructive reads are inconvenient,

so most uniqueness systems permit borrowing reads as well, in which

a temporary alias of a unique variable is permitted. But if the unique

variable is read during the lifetime of this alias, the uniqueness invariant

fails. So we wish to ensure that this read e�ect does not happen. For

modularity reasons, we use e�ects annotations on methods to check for

such read e�ects.

Thus we see that e�ects and uniqueness depend on each other. Our

position is that the use of annotations breaks the cyclic dependence as

long as the annotations are given semantics independent of the analyses.

As a semantics of uniqueness annotations is already available, we then

sketch a semantics of e�ects annotations independent of uniqueness. Thus

decoupled, one can prove the correctness of a uniqueness analysis and an

e�ects analysis without regard for the other.

1 Interdependence

Properties of code e�ects and alias con�nement are important when analyzing

the meaning of complex programs. Putting checked annotations on methods

aids sound modular reasoning, because a component of a system can then be

independently veri�ed.

? Work supported in part by the National Science Foundation (CCR-9984681) and

the Defense Advanced Research Projects Agency and Rome Laboratory, Air Force

Materiel Command, USAF under contract F30602-99-2-0522. The views and con-

clusions contained herein are those of the authors and should not be interpreted

as necessarily representing the oÆcial policies or endorsements, either expressed or

implied, of the National Science Foundation, Defense Advanced Research Projects

Agency, Rome Laboratory, or the U.S. Government.



class Point {

public region Position;

private int x in Position;

private int y in Position;

public scale(int sc)

writes Position

{

x *= sc;

y *= sc;

}

}

class ColorPoint extends Point {

public region Appearance;

private int color in Appearance;

}

class Point3D extends Point {

private int z in Position;

public void scale(int sc)

writes Position

{

super.scale(sc);

z *= sc;

}

}

(a) (b)

Fig. 1. The de�nitions of (a) classes Point and ColorPoint, and (b) class Point3D

"
""





J
J

b
bb

Position

x y

Appearance

Instance

color

Fig. 2. Hierarchy of regions for class ColorPoint

In this section we motivate e�ects and uniqueness systems and show how each

may depend on the other in the context of a hash table example. In Section 2, we

discuss how the interdependence can be resolved by giving independent semantics

to uniqueness and e�ects annotations. Since a semantics of uniqueness already

exists, we propose the rough outline of a semantics of e�ects annotations.

1.1 E�ects

In an object-oriented e�ects system (such as of Greenhouse and Boyland [8] or

Leino [11]) the mutable �elds of the object are abstracted as \regions" of state

(the term used in this paper) or \data groups" [11]. This abstraction permits

the e�ects of public methods to be declared using public abstractions that hide

the names of actual �elds. Regions are inherited along with �elds and can be

extended to include new regions and �elds. Thus a subclass can extend the

behavior of the superclass's methods to read or write additional �elds. Figure 1

gives an example of a Point class with two subclasses illustrating extension



possibilities. The non-executable annotations are in slanted style. Figure 2

shows the hierarchy of regions within the ColorPoint class.

Often, not all the notional state of an object is actually contained directly

within it. Part of the state of the object is contained in \wholly owned subsidiary"

objects, private objects known only to the implementation of the class. Consider

for example, Java's Vector class; the contents of the vector are stored in an

array, which may need to be changed if the vector outgrows the array. The code

for addElement is basically as follows:

public void addElement(Object elem) {

ensureCapacity(size+1);

contents[size] = elem;

++size;

}

where size and contents are private �elds. Ignoring the e�ects of the call

to ensureCapacity, this code has two side-e�ects: the array in contents is

updated, and the private �eld size is changed. In this case, the size �eld is in

a region Size. Thus the second change can be given as a (read and a) write to

the Size region of the receiver (this) of the method call. The class has a second

region Elements which contains the array �eld, but the array assignment does

not actually change the array �eld itself, it changes the elements of the array

that is stored in the �eld. The indirection causes a problem; it is not useful to

the caller to say that \some array somewhere is changed" or even \some array

which is referred to by a �eld in the region this.Elements is changed."

Instead of treating the array as a separate object, it is preferable to consider

the array to be part of the vector, which is reasonable since the implementation

arranges that every vector has its own array. So we use a transfer of e�ect from

the array to the vector and declare the e�ects of the method as \state in this

vector is changed." The transfer is declared in the Vector class using some

syntax such as the following:

private Object[] list in Elements with [] in Elements;

Here the �eld is placed in the Elements region and the individual array elements

(in a region [] of the array) are placed in the Elements region of the vector.

Figure 3 gives a fragment of a hash table class using e�ects transfer. The e�ects

on �elds of the buckets are transitively transfered to the hash table object itself.

The soundness of this transfer of e�ect depends on several conditions. For our

vector example, it is not enough that the array �eld be private; rather, the client

must not have access to the array object through some other means. Otherwise,

it could observe the e�ect on the array. For instance, two vectors must not use

the same array, otherwise a change in one vector could be observed through the

other vector. The invariant that we need is called a \uniqueness invariant." If

an object is unique, e�ects on its regions can be safely mapped to e�ects on

the object which refers to it. The e�ects analysis checks an e�ects transfer using

uniqueness annotations.



class Bucket {

public region Key, Value, Structure;

Object key in Key, value in Value;

Bucket next in Structure with Key in Key,

Value in Value,

Structure in Structure;

Bucket(Object k, Object v, Bucket n) { ... }

Object get(Object k)

reads this.Key, this.Value, this.Structure, any(Object).Equal

{

if (key.equals(k)) return value;

else if (next == null) return null;

else return next.get(k);

}

.

.

.

}

public class Hashtable {

region Key; region Value; region Structure;

private Bucket[] buckets in Structure with [].Key in Key,

[].Value in Value,

[].Structure in Structure;

private int size = 0 in Structure;

public synchronized Object get(Object k)

reads this.Key, this.Value, this.Structure, any(Object).Equal

{

int h = k.hashCode() % buckets.length;

Bucket b=buckets[h];

if (b == null) return null;

else return b.get(k);

}

.

.

.

}

Fig. 3. Hash tables with e�ects transfer



1.2 Uniqueness

There have been a number of uniqueness proposals: Islands [9], Linearity [2],

Ei�el� [16], Balloons [1], Virginity [15], and Alias Burying [3]. Islands and Bal-

loons are not useful for modeling a vector class because they would not permit

a vector to hold any shared references. Essentially the contents of the vector

would have to be unique or immutable references. Flexible Alias Protection [18]

describes how to avoid these problems but uses ownership [6] rather than unique-

ness.

Baker's Linearity and Minsky's Ei�el� (as well as Hogg's Islands) use de-

structive reads in which a read of a unique variable also implicitly stores null in

it. Destructive reads ensure uniqueness or null; instead of having multiple aliases

to an object, all but one will hold null. Destructive reads, however, are not a

satisfactory solution. First of all, it is diÆcult to program using such \slippery"

variables: many methods that take unique variables must also return them as

well as their normal result. Figure 4 shows how to code the hash table fragment

from Fig. 3 in a system with strict destructive reads (which are underlined). We

assume that operations such as == and [.] are overloaded to work for unique

objects, so that comparisons and array accesses can be made without destroy-

ing unique objects. The second problem is that the code now has many more

side-e�ects than previously, which will be diÆcult to ignore in an e�ects analysis.

More importantly, the code must now be prepared for the fact that the unique

variable may actually be null. For example, the hash table get method must be

prepared for the possibility that the �eld holding the array, or the array element

holding the head of the bucket chain might currently be null due to an ongoing

get call. Such a situation may take place, for instance, if the equals method for

an object requires looking something up in a hash table. Aliasing errors may thus

be transmuted into null pointer errors. While possessing the virtue of immediate

detection, null pointer errors can still have devastating run-time consequences for

the program. More desirable is a static checking system that can ag potential

alias errors at compilation time. For instance, the hash table class does not put

any �elds into the Equals region (that may be read by the equals method). If

an equals method tries to access a hash table, e�ects analysis would ag the

access as an error.1

For these reasons, some systems with destructive reads (such as Ei�el� and

Islands) provide \non-consuming" or \borrowing" reads in which certain kinds

of so-called \dynamic" aliases of unique variables are permitted. Methods can

be written to take borrowed receivers or parameters and promise not to store

them anywhere. At the conclusion of the call, then, uniqueness is restored au-

tomatically. Alias Burying similarly supports controlled aliasing, but as soon as

the unique variable is read, the aliases must be dead (\buried"). In particular,

if a method call may read the unique �eld, even indirectly, it may not be passed

1 Unfortunately the new collections framework requires equals on maps to compare

contents. Personally, I believe it was a mistake to require mutable containers to

override equals and hashCode.



class Bucket {

Object key, value;

unique Bucket next;

Bucket(Object k, Object v, unique Bucket n) { ... }

Pair<Object,unique Bucket> get(Object k) unique

{

if (key.equals(k)) return value;

else if (next == null) return null; // we assume == doesn't destruct

else {

Pair<Object,unique Bucket> p = next.get(k);

next = p.second;

return new Pair<p.first,this>;

}

}

.

.

.

}

public class Hashtable {

private unique Bucket unique [] buckets;

private int size = 0;

public synchronized Object get(Object k)

{

// NB: if buckets is null, we die with a NullPointerException

Pair<int,unique Bucket unique []> p = buckets.unique_length();

buckets = p.second;

int h = k.hashCode() % p.first;

unique Bucket b = buckets[h];

Object result;

if (b == null) {

// NB: b might be null due to an ongoing 'get' call

result = null;

} else {

Pair<Object,unique Bucket> p2 = b.get(k);

result = p.first;

b = p.second;

}

// need to restore array element

buckets[h] = b;

return result;

}

.

.

.

}

Fig. 4. Hash tables with destructive reads (underlined)



an alias of that same �eld. With Alias Burying the uniqueness annotations given

in Fig. 4 can be used with the code of Fig. 3; we do not need destructive reads.

Virginity and Alias Burying both provide ways to check uniqueness statically

without changing the underlying language semantics. In an interesting conver-

gence, both systems require \reads" clauses to ensure that uniqueness is not

compromised [3, 14].

When a unique pointer is passed out of the scope of the owning object in a call

(for example by calling a method), there must not be another call on the owning

object that uses the unique �eld until the �rst call is complete. Otherwise, the

uniqueness invariant would be violated; in the case of destructive reads, a null

pointer would be encountered unexpectedly. In the case of alias burying, one

of the called method's parameters is suddenly no longer valid. Thus the static

analysis needs to ensure that the unique �eld is not read during the dynamic

lifetime of the call. The Alias Burying paper [3] suggests listing the complete set

of �elds read during every procedure but concedes that this requirement breaks

information hiding. A much better solution is to use an object-oriented e�ects

system, but that brings us full circle.

Thus we see e�ects analysis depends on uniqueness analysis which depends

on e�ects analysis. Leino has also noticed this interdependence [12].

2 Resolving the Interdependence

In this section, we show how the interdependence can be resolved soundly by

giving a semantics to the annotations. Then we show how one can give semantics

to uniqueness annotations and �nally we sketch an idea for giving meaning to

e�ects annotations.

2.1 Separating the Analyses

The interdependence is a concern to us when we are trying to determine whether

the e�ects analysis and uniqueness analysis are both sound, and if so, writing a

proof. If both analyses depend on each other, we need to prove the correctness

of both together. In our situation, however, we are working with annotations

on methods and classes that summarize their behavior in particular ways. The

annotations provide some indirection: in the same manner as type checking,

analysis checks the annotations on an entity while using the annotations on

other entities, or (in the case of self-reference) itself.

Proving the soundness of the analysis, then, naturally requires that the an-

notations be assigned some meaning against which the analysis is checked. Fur-

thermore, to avoid tautologies, and to permit the substitution of more accurate

analyses, the semantics should be de�ned at a lower level than the analyses. In

particular, we wish to avoid giving an annotation a meaning such as \Analysis A

gives result B when applied to this method." Rather we are interested in mean-

ings such as safety properties: \Event E will never happen while executing this

method as long as the program state at the point of entry satis�es predicate I."



Assuming then that we can place the semantics on a complete (semi-)lattice

and de�ne our analyses monotonically on this lattice, proving the correctness of

the analysis becomes an application of the theory of abstract interpretation [7].

In particular, we can prove the soundness of a uniqueness analysis separate from

any e�ect analysis, and vice versa.

2.2 Semantics for Uniqueness

In a current paper [4], we give a capability-based low-level language that can

be used to give a meaning to uniqueness annotations. Uniqueness is expressed

through the exclusive holding of read and write access rights. Uniqueness invari-

ant failures are converted into capability failures, so that any analysis that en-

sures the absence of capability failures ensures the correctness of the uniqueness

annotations. Furthermore, the only way lack of an access right can be observed

is through a capability failure, and thus if a program is guaranteed to never

have failures, it can be executed in an environment that ignores access rights

completely. In particular, no space is needed to store the access rights.

2.3 Semantics for E�ects

A useful semantics of e�ects is not yet available. Our earlier paper [8] gives an

indirect basis for de�ning the soundness of e�ects annotations: whether a conict

detection analysis using the e�ects annotations always catches data dependencies

between adjacent program portions. But it does not give a semantics to the

annotations directly, and the conict detection analysis is overly conservative in

several situations.

Leino's abstract variables [10] (from which data groups were derived) have

a clear meaning in the context of a program speci�cation. However, because of

e�ects transfer, when a module speci�cation uses modifies clauses2 the client of

a module cannot make interesting use of the information in a sound manner [13].

Any problem in e�ects transfer shows up as unsoundness in the client, which is

\unfair" because the client has no control or even awareness of the transfer.

The semantics of e�ects could be speci�ed using uniqueness or ownership [17,

5] but that would tie us to a particular system, not directly related to e�ects.

Uniqueness systems �nd it diÆcult to model doubly linked lists and ownership

systems �nd it diÆcult to model transfer. Thus we prefer an e�ects semantics

not depending on the particular method for alias containment.

We suggest instead that the implementation of a method be charged with

ensuring the soundness of e�ects transfer. In particular, the state thus mapped

into the state of another object must not be available to any caller that does not

have access to the object through which the transfer is e�ected. Our position

is that this intuition can be formalized through a run-time hierarchy of actual

regions. E�ects transfer is implemented by mutations on this tree.

2 Leino does not currently use reads clauses.



At the start of a program, the entire state (the set of all �elds) is available for

reads and writes. Whenever a method with an e�ects annotation is called, the

available state is pared down to the intersection of the currently available state

and the state implied by the annotations. The available state is then restored

after the call. When a new object is created, all of its �elds are made available

for both reads and writes. When a �eld with an e�ects transfer is assigned to,

we check that the object's state is fully available for reads and writes (except

perhaps for immutability), and then transform the region hierarchy. If a read

of a �eld outside the permitted area occurs, the state is presumed immutable,

because reads of immutable state need not be declared. It is marked as such for

the duration of the program. When a write occurs, the system checks that the

�eld is in the area currently permitted for writes and that the �eld is not marked

immutable. An error causes evaluation to get stuck.

In this way, we achieve a semantics of e�ect annotations and transfer that

does not depend on a particular de�nition of uniqueness or ownership. The

details of this suggested semantics remain to be worked out.

3 Summary

Two apparently di�erent problems, (1) describing the reads and writes of meth-

ods and (2) upholding uniqueness invariants, are nonetheless interdependent.

The connectivity presses us to de�ne the semantics of e�ects separately from the

semantics of uniqueness. We currently have a promising semantics for unique-

ness, but an e�ects semantics which has the desired properties remains to be

fully eshed out.

Acknowledgments

I thank Aaron Greenhouse, Bill Retert and the FTJP 2001 reviewers for their

many useful comments. I also thank Rustan Leino for a good technical conver-

sation which encouraged me to write up this interesting interdependence. All

omissions and errors are strictly my own.

References

1. Paulo Sergio Almeida. Balloon types: Controlling sharing of state in data types. In

Mehmet Ak�sit and Satoshi Matsuoka, editors, ECOOP'97 | Object-Oriented Pro-

gramming, 11th European Conference, Jyv�askyl�a, Finland, June 9{13, volume 1241

of Lecture Notes in Computer Science, pages 32{59. Springer, Berlin, Heidelberg,

New York, 1997.

2. Henry G. Baker. `Use-once' variables and linear objects|storage management,

reection and multi-threading. ACM SIGPLAN Notices, 30(1):45{52, January

1995.

3. John Boyland. Alias burying: Unique variables without destructive reads. Software

Practice and Experience, 31(6):533{553, May 2001.



4. John Boyland, James Noble, and William Retert. Capabilities for sharing: A gen-

eralization of uniqueness and read-only. To appear in ECOOP 2001, 2001.
5. David G. Clarke, James Noble, and John M. Potter. Simple ownership types for

object containment. To appear in ECOOP 2001, 2001.
6. David G. Clarke, John M. Potter, and James Noble. Ownership types for ex-

ible alias protection. In OOPSLA'98 Conference Proceedings|Object-Oriented

Programming Systems, Languages and Applications, Vancouver, Canada, October

18{22, ACM SIGPLAN Notices, 33(10):48{64, October 1998.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lattice

model for static analysis of programs by construction of approximation of �xed

points. In Conference Record of the Fourth ACM Symposium on Principles of Pro-

gramming Languages, Los Angeles, California, USA, pages 238{252. ACM Press,

New York, January 1977.
8. Aaron Greenhouse and John Boyland. An object-oriented e�ects system. In Rachid

Guerraoui, editor, ECOOP'99 | Object-Oriented Programming, 13th European

Conference, Lisbon, Portugal, June 14{18, volume 1628 of Lecture Notes in Com-

puter Science, pages 205{229. Springer, Berlin, Heidelberg, New York, 1999.
9. John Hogg. Islands: Aliasing protection in object-oriented languages. In OOP-

SLA'91 Conference Proceedings|Object-Oriented Programming Systems, Lan-

guages and Applications, Phoenix, Arizona, USA, October 6{11, ACM SIGPLAN

Notices, 26(11):271{285, November 1991.

10. K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California

Institute of Technology, Pasadena, California, USA, 1995. Available as Technical

Report Caltech-CS-TR-95-03.

11. K. Rustan M. Leino. Data groups: Specifying the modi�cation of extended state.

In OOPSLA'98 Conference Proceedings|Object-Oriented Programming Systems,

Languages and Applications, Vancouver, Canada, October 18{22, ACM SIGPLAN

Notices, 33(10):144{153, October 1998.
12. K. Rustan M. Leino. Some thoughts about rep exposure and alias con�nement.

December 2000.
13. K. Rustan M. Leino and Gren Nelson. Data abstraction and information hiding.

SRC Research Report 160, Compaq Systems Research Center, Palo Alto, CA,

November 2000.
14. K. Rustan M. Leino and Raymie Stata. Smothering rep exposure with reads

clauses. November 1999.
15. K. Rustan M. Leino and Raymie Stata. Virginity: A contribution to the speci�-

cation of object-oriented software. Information Processing Letters, 70(2):99{105,

April 1999.
16. Naftaly Minsky. Towards alias-free pointers. In Pierre Cointe, editor, ECOOP'96

| Object-Oriented Programming, 10th European Conference, Linz, Austria, July

8{12, volume 1098 of Lecture Notes in Computer Science, pages 189{209. Springer,

Berlin, Heidelberg, New York, July 1996.
17. Peter M�uller and Arnd Poetzsch-He�ter. A type system for controlling represen-

tation exposure in Java. In Sophia Drossopolou, Susan Eisenbach, Bart Jacobs,

Gary T. Leavens, Peter M�uller, and Arnd Poetzsch-He�ter, editors, 2nd ECOOP

Workshop on Formal Techniques for Java Programs, Nice, France, June 12. 2000.
18. James Noble, Jan Vitek, and John Potter. Flexible alias protection. In Eric Jul,

editor, ECOOP'98 | Object-Oriented Programming, 12th European Conference,

Brussels, Belgium, July 20{24, volume 1445 of Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, New York, 1998.


