
ECOOP;2001 Workshop 4

3rd ECOOP Workshop on
Formal Techniques for Java Programs

Informal proceedings,

Budapest, 18th June 2001

Program Committee:

Sophia Drossopoulou (Imperial College, Great Britain)
Susan Eisenbach (Imperial College, Great Britain)
Gary T. Leavens, Iowa State University, USA
Peter Müller, Fernuniversität Hagen, Germany
Arnd Poetzsch-Heffter, Fernuniversität Hagen, Germany
Gilad Bracha (Sun Microsystems, USA)
Doug Lea (State University of New York at Oswego, USA)
Rustan Leino (Compaq Computer Corporation, USA)
Erik Poll (University of Nijmegen, The Netherlands)

Organizers:

Susan Eisenbach (Imperial College, Great Britain)
Gary Leavens (Iowa State University, USA)
Peter Müller (FernUniversität Hagen, Germany)
Arnd Poetzsch-Heffter (FernUniversität Hagen, Germany)
Erik Poll (University of Nijmegen, The Netherlands)

3rd ECOOP Workshop on
Formal Techniques for Java Programs

Budapest, 18th June 2001
Programme

9:00 – 10:00 Opening Session, and Invited Talk
Gilad Bracha Adventures in Computational Theology:
 Selected Experiences with the Java(tm) Programming Language

10:15 – 11:15
Alessandro Coglio
 Improving the Official Specification of Java Bytecode Verification
Kees Huizing and Ruurd Kuiper:
 Reinforcing Fragile Base Classes

11:25 –12:25
Davide Ancona, Giovanni Lagorio, and Elena Zucca
 Java Separate Type Checking is not Safe
Mirko Viroli
 From FGJ to Java according to LM translator
Mats Skoglund and Tobias Wrigstad
 A mode system for read-only references in Java

12:25 – 13:45 Lunch
13:45 – 15:45

Pierre Boury and Nabil Elkhadi
 Static Analysis of Java Cryptographic Applets
Peter Mueller, Arnd Poetzsch-Heffter, Gary T. Leavens :
 Modular Specification of Frame Properties in JML
Gilles Barthe, Dilian Gurov, and Marieke Huisman
 Compositional specification and verification of control flow based
 security properties of multi-application programs
J Strother Moore, Robert Krug, Hanbing Liu, and George Porter
 Formal Models of Java at the JVM Level: A Survey from the ACL2 Perspective

16:00 – 17:30
Peter Mueller and Arnd Poetzsch-Heffter
 A Type System for Checking Applet Isolation in Java Card
John Boyland
 The Interdependence of Effects and Uniqueness
Ana Cavalcanti and David Naumann
 Class Refinement for Sequential Java
Joachim van den Berg, Cees-Bart Breunesse, Bart Jacobs, Erik Poll
 On the Role of Invariants in Reasoning about Object-Oriented Languages

17:45 – 18:30 Short presentations and closing session
Claus Pahl:
 Formalising Dynamic Composition and Evolution in Java Systems
M. Carbone, M. Coccia, G. Ferrari and S. Maffeis
 Process Algebra-Guided Design of Java Mobile Network Applications
Peep Kungas, Vahur Kotkas, and Enn Tyugu
 Introducing Meta-Interfaces into Java

Preface

This is the proceedings of the second workshop on Formal Techniques for Java
Programs, June 12, 2000, held in Sophia Antipolis, France. The workshop is affiliated
with the 15th European Conference on Object-Oriented Programming, ECOOP 2001.
Papers in the proceedings are included here based on the reviews of the workshop
organizers.

The papers are also available from:
 http://www.informatik.fernuni-hagen.de/import/pi5/workshops/ecoop2001_papers.html
As in the two previous years, we also plan to organize a special issue of an appropriate
journal with long versions of selected papers from the workshop and additional invited
papers on the topic.

The objective of the workshop is to bring together people developing formal techniques
and tool support for Java. Formal techniques can help to analyze programs, to precisely
describe program behavior, and to verify program properties. Applying such techniques
to object-oriented technology is especially interesting because:

1.The OO-paradigm forms the basis for the software component industry with
their need for certification techniques.

2.It is widely used for distributed and network programming.

3.The potential for reuse in OO-programming carries over to reusing
specifications and proofs.

Such formal techniques are sound, only if based on a formalization of the language itself.

Java is a good platform to bridge the gap between formal techniques and practical
program development. It plays an important role in these areas and is on the way to
becoming a de facto standard because of its reasonably clear semantics and its
standardized library.

Sophia Drossopoulou, Susan Eisenbach , Gary T. Leavens , Peter Müller
Arnd Poetzsch-Heffter, Gilad Bracha, Doug Lea, Rustan Leino, Erik Poll

Invited Talk

Adventures in Computational Theology:
 Selected Experiences with the Java(tm) Programming Language

Gilad Bracha (SUN Microsystems)

��������	
�� Æ���� ��������
��� ��

���� ��
����� �������
���

���������	
	���	

������ ���������

���� �������� ������� ���	 ���	�
� �����

������������	
��	��	�

��������	
��	��	�

��������

�������� ��	
����
�
� ��� ��
 �����
�� �� ���	�� ���� ������
 ��� ����

�
	���� ����
�� �
�� ���� ����	
��
� ����� � ���� �������
�������
��

�� ���
��
�
��
 ��� �Æ�
�� ����
����
� �� �������� ��	
����
� �� ���� ��

��		���
���������
�� ���	� ����	
�� �� �� �	���� �
� ����	 ����!��

��� ����
����
� �� �	������ ���	���
��	�������� �� ���� �� ��
� ��	�

� ��
�	���� ��� ���	����
�� ����	���� �� ����
�
�� �� ��� ���� ������	��

� �������	�
��

�������� ��	
����
�
� ��� ��
 �����
�� �� ���	�� ���� ������
 ��� ���� �
	�
���� ����
� ������� ��� ��	����
� �� ������
�� ���� ��	��
 ���� ������ �	���	�
��
�	� ������ ���
���� ��� ��������
� 	�� ���	���	� ���
��	�	���	 �	 !����
��
��
����
��	 �� ��
� ����"� �� ���� �	���	�
�� 	�����

 �����	 ��	��	�����

������� ���� ����	
��
� ����� � ���� ������ $%�&&' ��		���
���������
� ��
�������� ��	
����
�
� �� ��	�����
���	���� �� ��� ����	
�� �� �
���������
�
� �� ��� ���� (����
 �������� ��	
����
� ����
���� �����
�� ��
�� �� �����"
�)���
����� �� ���
�
��� �	�#	��� ���#� ������� �	�� 	����� �
��� �� ��� ���	����

��� �Æ�
�� ����
����
� �� ��� ��� $*+&&' ��
��
������ � ����	
��
� ��
�������� ��	
����
�
� �	
���

��	��� ,#�
�� �	���� -�
�� ��
� ����
����
�

� ������ 	����	 ����	
� ���� ����
 ����
���.���
�� �� ���
#�
�
��� ���
	
�	�����
� ��	�
����	�� �	�������
� ��	 ����	
����	
�
��� �����	�� ���� �� ��������
��	
����
� ������� �		�����
��	�	����
� �� ���� �� �		�����
���������
��

��
� ����	 �)����� �� ����/�� ���
���.���
�� �� ���
#�
�
��
 ��� �Æ�
��
����
����
� �� �������� ��	
����
�
 0���
� 1� �� ��� �	������ ���	���
��	����
����
 0���
� 2� 3�����
# 	���	"� �	� #
��
 0���
� 4� 5�	 �	��
�� ���
�Æ�
�� ��� ����
����
�
� ������ �� 6�07� ��
�
���� ������	� �	 ���������
��
��
� �	� ������ �� �����
���
	 ����	 ��#� 6�02�87� 0��� "�����#� �� �0

� ��������

���� ����� ����	
���� ����� ��������
� �������� ������	���
 	�� ���������
 ��	�� ��	��
�
	� ���� 	� ������	� ��
����� ������ ����� �� 	��	� �
�������

8

��� #��� �� ��
� ����	 �
"� ����	�
 ��� ����
� ��
��	��� ��� ���	����

����	��� �� ����
�
�� �� ��� ���� ������	��

� �����
�

�04 ����	
��� ��� ��	��� �� ���
� ����� ����� 3���� ��	
����
�
� ��� �	����� �� ����"�

���� � ���� ��.���� ����
����� � ���
� ����� ���� 3���� ��	
����
�
� ����	
���

 �04�&�8 �� ���
��
# �� ���	 ������� 9����� 8 �� 1 �	�
 ���	#� �� ����"
���
��	��� �� ��� ����� ��� �)����
����� ���� �����.����� ���� ����
���� �������:
����� ��� �����	
�� �� ����� �����.����� �	�
���
��� ��	
������ 8 �� 1
���
�
� ���� 2:� 	�����
�
�
�� �� ��	
�� ���� ���� �� ���� ������ ���
� ���� ��	
�
�
�
���� ������� 9��� 4 ���
��� �� ��� ����"� ��	��	��� �� 	������
�
���
���� ������
� 	���	���� �� ������� ����� �� ������� �	� ��		���; ��� ����#�

� ��� �� ��"� ����� ����	� �)����
� ���� 4
� ���
��	�� ��#
����� ��	� �� �����
��	
����
��

�������� ��	
����
�
� ���� 2� 0�
�
� � ��	� �� ����� ��	
����
�� � ����
�

� ��� ����
��	���
�� ���
���� ��	�; ��� 	��� �� ����� ��	
����
�
� 	����
����
��	�
#����	��	� �� ���� �� �	���� ��!�	 �
Æ����
���

�������� ��	
����
�
� ����	
���
 �04�< �� �04�&� �04�< �	����� ����	�
��
���� � ���� ��.���� ���� ���
���
 �	��	 �� 	��	���� ���
� ������ ����� ���� �	�
�
�
���
�� ������ �� ���������� ����	�
��� �04�& �)���
�
 � .�
�� ��#�	
���
�
��� ��� ���� ����	�
�� �	� ����"��� ����� ����	
��
�� �	� �� ����/���

��� ������ 	
��������

�04�<�8 �	����� ����
� ����	�
�� ��
�� � ���� ��.���� ���� ���
���
 �	��	
�� 	��	���� � ��.���� �� ��		��� ��������
��	���
�� �
�� ��		��� ������� ��
���	���� =�� ���
��	���
��: ���	��� �	� ����	�� �� ��� �
�� �� ����	�
��

�04�<�8 �� ��� 	�.�
	����� �	� .�
�� ��	�
#����	��	��

���	�
� �� 	�.�
	���� ����#� ���� ����� ��� �� ������ �� ������ ���� ��� ���

��	���
�� ���� �� ���� �� �	���� �
����� �� �
��	���� �	 �� � ����	���
������

��
�
� �	�� ���
�
� #
��
 ��� ����)� �� 	���	
��
�� � ���:� ���	��� 0
��
��� 	���	���� � ����� �� ��� ��� ����� ������ �� 	�������
 �	��	 �� ����	�
�
������	
�
� �
��	���� � ����	��� ����� �	 � ������	��� ������ 0� ��
"� ���
��� ����	 ����	�
�� #
��
 �04�<�8 ��
� �� ���� �� ����"�� � ��� ���	��
�����

5�	���	 ��
���� ���� ��� 	�.�
	����
� ��� �� �����
� #����	�� �	�� ��� ����
���
# ��� ����	���
��� ��� �	��
� ���� ��� ����
����
� �� ��� ���
��	���
�

�0> ������ ���� � �)����
�
� ��	��
� ��� 	������� �����
� ����	��� �	
�
�
� �

��	����� ��
� ���� ���� ��
� ����"
� ��� �� 	� �
���

��� ����� ����	���
�
� ���� ����	
��	���
�� ���� 	���	��� ������� ����� �	
�������
 ���
	 ���	��� ���� 	�.�
	� ����"� �
�
��	 �� ��
� ��� 5�	 �)����� ���
�������	
��	���
� 	�.�
	�� ��� 	������� ���� �� �� �� ����
�� ��
� 	�.�
	����

� #
�� �� � 	���
�� ����"
 ��� ����
����
� �� �������	
 �0> �� �� � ����
�
����	�
�
 �04�<�8� ��� ���� ����� ��	 ��� ����	
��	���
���

1

��� �������� 	
��������

0���
� ����	�
�� ����
���� ��� ��	�
#����	��	� ��	� �� �������� ��	
����
�� ?
��� ����	 ��� ��	����	�� ����	�
�� �	������
 �04�<�1 ����
���� ���
��	����

# ��	� ����� #���
� �� ��	
�� ���� ��	��
 ���� ������ �	���	�
�� �	� ���
���� ���
��� ����
� �)������� 0�	����	�� ����	�
�� ����� ��
��	���
� ��.������ 0� ����
������ ���� ����
� ����	�
�� �	� ���
����� @���	"� ����� ��	����	�� ����	�
��
�������

����� �����	
�
�

��� ��	�� 6����
�7 �� 6��	����	��7 ����
�� �� ��� ����	�
�� #
��
 �04�<�8
�� �04�<�1 	������
���� ���� � �
���� �����
�� �
�����
#� ���� "
�� ��
����	�
�� �	� ���� �� �� ����"�� ���������	 �
����� �)����
��� ����A
 ��
�
���� �	
�	 �� �)����
��� ����� 0� ��
��� ��!���
�� 6����
�7 ��� ��	 ��� �	��
"
� �� ����	�
�� ���� �� ����
�����

-
�� � ��	���� �� �����
��	�	�� ��	����	�� ����	�
�� �� 	�.�
	����� ����
���� �� ���
���� �� 	� �
�� ��� ����#� ���� �	� ����"�� ����
����� �� ��	
����
�
�
��� (�����	 ����
� ����	�
�� ���� �� ���
���� �� 	� �
�� �� ����� ��
� ��
�
����� ��	����	�� ����	�
�� 	���		
# �� 	� �
�� ��	��� ��	
����
� �
��
� 	��
�
���

 0���
� 1�1�1�

����� �	�����������

��� �� ��� ��	����	�� ����	�
�� �)�	��� ����� ���� ���� ���� ��� ��	��

�
��	���
�� �	� �)������� 5�	 �)����� ��� �������	
� �)������ ��� ��� �� ���
���	�� ����" ���� ����
 � 	���	��� �� � ��!��� ����� �����
� �� �������� ���
��� �� ����
��� �� ���
��	���
�:� ���	���

(�����	 ������
��
��
� "
� �� �	���	�
�� ��"� �
��	����
� ����
������
=�
�
� �����"��
 �	�#	�� �����
� ��� ����	���
�� ���	�)
���
�� �� ��
��#�	
���
����� ��������� 3�	��
�� ����� ��	����	�� ����	�
�� �	� ���� �� ��
����"�� ��� ���	�)
������� ��
� �����	�� ��� �
�� ���� ��	����	�� ����	�
�� ��
������ ����� �� 	� �
�� �� �� �� ��	
����
� �
�� �� ���
���
 0���
� 1�1�8�

��� ��	����	�� ����	�
�� �	� #
��
 ��� ����)� �� ��� ��	��� �� ���
� �����
����
���
 �04� 0�
� ����� ���� ��	� ���	��	
��� �� �	��
�� ����	�
�� ����
�� �� �������� �� ���� �� �� ���� �� � ����
� ���
�
� �� ���
� ����� �����
��
�
� �
�������
 ��	� ����
�
 0���
� 2�1�1�

����� ����	��	�

��� �	�� ����	�
� �� ��� �
�� ������ ���� ����
��	���
� ���� �� �)������ �
�� �
���	��	
��� ����	 �� ���� �� ������
 ��� ���	�� ����" �� ����� ��	
������ ���
��
� �� 6���	��	
���7 �� �� ����	�
�� �� ��� ����
����
� �� ���
��	���
�
#
��
 �0>� 5�	 �)����� �������	 	�.�
	�� ��� ��� �� ��� ���	�� ����" �� ����

� 	���	��� �� �
����� �� ��� ����� ����
��� �� ���
��	���
�:� ���	���

�� ��	� ��� ���� ��� ���� 	�.�
	���� � �������	
� ������ �)��
�
��� �� �
����	��� ��	����	�� ����	�
�
 ��� �
��� (�����	
�
� ����	�� 	������ �������

� �� �� ��	
��� �	�� ��� �	�� ���

=����	 ����	�
�
 ��� �
�� ������ ���� �
��	���
� ���� ��� ��	� ������
�	�� ��� ���	�� ����" ���
� ����
� �
��� � ����" ���	B�� ���� ����	�� =#�

2

��
�
� � �
���� ����.���� �� ��� �	�� ����	�
�C ����
��	���
� 	�.�
	�� ���
�	����� �� � ��	��
 ����	 �� ������
 ��� ���	�� ����" �� ��� ����� ������
�	� �������

=� � �����	 �� ����
� ����� �� �	#��� ���� ��� ��� �	�� ����	�
� �� ��� �
��
�
	������� ��� ����
����
� ��
��	���
�� #
��
 �0>
������ ��� ����� �� ���
������ ���� ����
��	���
� �)����� �� ��
 ��� ���	�� ����" �� ����� ��	
������
=� �)���
��
 �0>�8
�
� ��� ���" �� �������� ��	
����
� �� ���	� ���� �����
�)������
�� �	� ���� 0� ��� �	�� ����	�
� �� ��� �
�� �� ������ ���� �� 	�����
��� ����
���

����� ����
� �����	���
	

��� ���
���
� ��	 ����	�� �� ��� ��	����	�� ����	�
��
� ���� ������� (�����	
���� ����	�
��
 ��� �
�� �� �� �����	 �
	����� 	������ �� ���� ������ �� �
�)��
�
� ���
���
�
� #
�� ��	 ����
 �04�<�1�

= �)�����
� ��� ����	�
� ����
���� � �

�
��
/�� ��!��� �� �� �	����

 ��� ���	�� ����" �	 ����� ��	
����� ��� � ���"��	� �	���
� ��"�� �� ����
������ ���� � �

�
��
/�� ��!��� �� �� �	����
 � ����� ��	
����
 ���� �	�������
�� � �)����
� �����	�

?���	 �)������ �	� ��� ����	�
�� 	������ �� ���	���
��C ���	���
�� ����
�� ������ 	���	�
����; ���
��	���
� ������
�
�� ��� �� 	���	�� �� ��� �� �
�
#�� ���; ���� 	���	 ���	��� �� �� 	���	�� �� �� ���� ���; ����

+�� �����	 �)�����
� ��� ����	�
� 	�.�
	
����
� �
��	���
� �� ��
�)������ ���# �
D�	�� �)����
� ����� ��� ���	�� ����" ���� ���� ��� ���� �
/�
�	
�	 �� �)����
� �� ���
��	���
��

=������� �
�� �)�����
� ��	 ����� ����	�
�� �� �� ��	
��� �	�� �04�&� ��
�

� �
�������
 0���
� 1�2�

����� �
	��������
	

���	� �	� ��� ��	����	�� ����	�
�� ���� ���	��
�� ���� ����	� ��� �	�� ���� ����
����� �� � �

�
��
/�� ��!��� ���� �� ��������; ��� ��!��� ���� ��

�
��
/��
�	��� ��� ��� ����� ���� ���� ��� ���� �� � ����	����	 �� ���	� ������
��
���� ����� �� ��� ��!��� ����
� ��

�
��
/��A��
�� ��	
���� ����"

� ��
��
�

�
��
/���

���� !
""��� #��
� !����

= ��	����	�� ����	�
� ������ ���� ��� ������������
��	���
� ���� 	���	���
�
�����

�
��
/��
� ������ � ������
 ��� ��		�� ����� �	 � ������
 �
����	����� �� ��� ��		�� ������ 3���"

� ��� ������ ����#� �� � ����	����� ��
��� ��		�� ����� 	�.�
	�� 	�����
��� ������ �� ��� ������ =��# ��� ���� �
�
�� 	����
# ��	 ��� ����	�
� � ��� �
�������
 0���
� 1�8
� ����� �� �	#���
���� ��
� �	���	�� ���� �� ����"�� �� 	� �
�� �� �� ��	
����
� �
���

= ��	����	�� ����	�
� 	�.�
	�� ���� ������ 	���	
��	���
� ����� �� �������
�� �������� �� ����� ��� ������:� 	���	 ����� ��
�
� � �
���� ����" ���� ����
��
����� ���� �����
��� 0� ��
� ����� ���� �� � ����
� ����	�
� ���# �����

��� ������ ���� 	
	����� �� �������� �� ����� ��	� ��� ����	
� ��	�� 	��	�� �	� 	 �	��� ��
��� ����� ���� ���
 ��� �
��������
 �� � ������� !������ ���� �� ������� �� ��� ���� ��������	�
��
���	�
� �
 ��� ����
	���� ��	� �	�� �
��������
 ���� �� � ������ ���� 	
 	�������	��
�����

4

�04�<�8�
=����	 ��	����	�� ����	�
�
� ���� �)����
� ���	 ����� �D ��� ������ �� ���

��	���
� ��.����� ��
�
� ���� 	����	 �
���� �� ����" �� ���� ��
����� ����
�����
�� ���
����� ��� ����
��	���
� �� ��� ��.���� ���� �� �� ���� ����
�	����	 ���	�� �� ��� ���)
���� ������
�� �
	����� �	
�
	������� 0��� ����
�
����	�
��
 �04�<�8 ���	� ���� ��� ���	�� �� ���� ���	�� �	����	
��	���
�
���#� �	������ ��
�� �� �
��	���
�
 ��� ���� �� �� ����
��
� �	
 ���
�
���� �� �
��	���
�� 5�	 ����� 	����� ��� 	�.�
	���� ���� �)����
� ����
���� �D ��� �� �� ���� ����� �� ���� �� � ����
� ����	�
� ���# �����
 �04�<�8�

����$ %����
��	���

= ��� 	���	"
� ���� ��� ��	����	�� ����	�
�� �
����
 �04�<�1 �	� ��������
6����	�#�����7� ���� �� ���� ����� �	���	�
�� ���� ���� ���� ��� ��	��

�
��	���
�� �	� �)������� ?���	� �����
����� 	�.�
	����� 	����
��� ����
���
�)����
��C ��	 �)����� ���� ���
��	���
� ������
�
�� �� �� 	���	�� �� ��
� �
#�� ����

(���	�#��
��
� �� ������	
�� ���� (�����	
� ��	��
�� ���	���� �
�� ���
����#��
�� �� ����
� ����	�
�� ��
�� �	� ��� �����
��	���
� ������� ��
���	�����

��� ��������
� ���
����

�04�& �"������ � ��#�	
��� ��	 �������� ��	
����
�� ��� �	�� ��	� �� �04�&�1
�����
���� �)���
� ��� �� ����" ����
� ����	�
�� ��
� .�
�� ��	�
#����	��	�� =
�
����
��	���
��
�
� ���� ��� �)�����
�
������ ����"
���� �)����
�
���� ���� �D ��� �� �� ����� ��
� �����	�� ��� �
�� �� ��
� 	�.�
	���� �� �
����
� ����	�
� �� �	#���
 0���
� 1�1�>�

��� ����� ��	� �� �04�&�1 �)���
� ��� �� ����" � ���
����� ���	�)
���
� ��
��	����	�� ����	�
�� �� ���� �� � ���� B�� �����
� $EE(&<'� ��
� ����	
��
�
�
��������
 �04�&�2 ��	��#� �04�&�> �� ���� ���	
����
�� ����	
# ��� �	������
�� ��	��

��	���
��� @���	"� ����� ����� ����	
��
�� �������

����� &����	�
� #����	� '���� ���"

����
��	���
� ��	 ��� ���	�� ����" ���
��� �� � ��.���� �� ����� �����
#
��� �
/� �� ������ �� ��� ���	�� ����"� ��� ��#�	
���
� ����	
��
� �� ��� ����
B�� �����
�
 �04�&�1 �	���	
��� ���� ����
��	���
� ��	 ��� ���	�� ����" ��
�� ��	#�� ��� ��� �
/�� �	� ��� �����

����#� �� ��� ��� ����
�
�
�� $3�#F8�' ��
�
� ��	��
�� � ���
��� ��	���#�
���� �
���
��� ��� �����
�� � �� ����
� �	��
��� ���� �)�����
� ��	 �� ��
��� ��	����	�� ����	�
�� ���
���
 0���
� 1�1�4 ����� ���� ��� ���	�� ����"
���� ���� ��� ���� �
/� ���# ��� �)����
� ������ 0� ���� ��	����	�� ����	�
�
�

���� ���� � 6��	��	� 	���	���7 �� ��� ���� B�� �����
� ��#�	
���� ��
� ��������
������#�� ��� �
�� ���� ��	����	�� ����	�
�� �	� !��� ����
����� 	�.�
	�����
���� ���� ���� �� 	� �
�� �� ������� �� ����	
�
# � ���������� ���	�)
���
��

	
� ���� �� �	�����
���� "�
������# �	�� 	������ �� ���$ ��
���� �	
 �� ��	
������ �� ��� �������
� �
��������
 ���

�����
�
� ���� ��� �	���� ��������
��
�%��� ��� � ������
 �� ��� ���������
� �
 ��� ��������� �
 &�����
 '�(�

G

��
� ���� ���� ����
����� 	�.�
	����� �� ���
����� ���	�)
���
�� �	� �
)��

 �04�<�1�

����� ������	�� ���"

��� ��#�	
���
� ����	
��
� �� ��� ���� B�� �����
� ���"� ����� 6	���	��� �����7
���� �	� ���
#�� �� ���	�� ����" ���
�
�� �� ����� ��	
����� �	���#���� ��	��#�
���	�� B�� ����� ��	#�� ���� (�����	
� ��
�� �� ��"�
� �)��
�
� ������	 �����
	���	��� ����� �	� !��� ���� �	 ���� ���� ����� �����	���

%
�� ���� ����� �����	� �	� 	��
�� ��!���� ��� ��� ��� ��	 ��� ��#�	
��� ��
"�� ���
���
�
�� �� ��� �����	� ����� �� �� �������� ���� ��� �������� ��
�
�

���	��� �
�� ��� #��	�� �	
�
��� ������
 ����	�� ��
�� �� �0 ���� ������� ���
�� ������ ��/
��
� �� ��� ���� �	� 	�.�
	�� ��	 �)����
��

���	���	� ��� ���� 	��������
��	�	����
� �� ��� 6	���	��� �����7 ����

��� ��#�	
���
� ���� ���� �	� ��� ����� (�����	
� ��	� ��� ���� ��
� ���" ��
���	
��
� ��� �	
#
 �� ���� ���� ������ ��#� $3%F8 �(&&'�

����� (������� ���"

��� �	�� ��
�
� �� �0 �	���	
��� ���� ��� 	����� �� ��	#
# ��� 	���	��� �����
�
���
	 �	�� ����� ����	����� �	 ����	
��	����� ��
� ��	"� �� ��	 ������� ���
��� �	�� ����� ����	
��	���� �� ���
��	����� ��� �� �� �
.�� ������� ��
����
���
��	
�����

���	���	�
 ��� ����� ��
�
� �� �0 ��� �������� ��� ��� ���#�� �� !���
��� ���� ��� 	����� �� ��	#
# ��� 	���	��� �����
� ���
	 �	�� ����� ����	������
0
��
����������
���
� ���
��	�� � ����	����� �� ���	�
��	���� ��� 	����� ��
��	#
���
��	�����
� ������
����������
����

��� ��
� 	�.�
	�� � ����
�� �	������ ��
����������
��� ���
�
� ��� ��	#��
�� � ��������������
��	���
�� 0
��
����������
��� ��� ��	
�� �	��
��	#
���
��	���� ����� �������� ��	
����
� ������ ����� ��������������

�� ���	��� �
�� ?���	�
�� �������� �	������ �� ���� ����
��	� ����� �� 	�!������
E�	����� ��������������
� ��� ������� �� ���	��� � � ����� ����
�����

���� ���
��	���� 	���	���� �� �������������� �	 � � ���
��	���� ��
�A��

����������
���
� �� �� ����� � �	��	 �� ��
��
 ���� ������ � 	���
��
����"
� ������	� ��� � ��������������
��	���
�
� �)�������

��� ����	���
�� ����� �� ��
� �	������ ��
��	���� ������ ��� �	��
� ����
�

� �� ��	�
����	�� ����� ��� �����
� ���� �0 ���� �� ��"� ����	 ���
���
���
��
�� ��
� ���	���� ��#� ���� 	���
�� ����"� �	� ������	� ��	 ���������������

����� #�)��� (������*���
	

�������� ��	
����
� ���� ���	� ���� ��!���� �	�

�
��
/�� ����	� ���� �	� �����
� �	��	 �� �� ���� ��� ���� B�� �����
� ��#�	
��� ���� ��� � ����
�� ���� ��	 ���
	���	��� �� � ���� �	����� �

�
��
/�� ��!���� ��
� ����
�� ����
� ���#�� �� �
	�#���	 ����� ���� ����	 ��� ����	����	
�
��"��� 0
�� ����	�� ���
�� �� ��� ��!���
	���	��� �� �� ���	��
 ��� ���	�� ����" �	 ����� ��	
����� ����	�
��"
���
����	����	 ��� ��� ����		���� �� ��� ����
�� ���� ���� �� ���#���

�)� ��	��� �
 *&+�, 	 ��	�� �� �
����	�� �
 ��� *-. �� ���
����� �� ��� ������ ��	������
	��
���� ��� ���
�
� ��	����

>

=���	 � ��!��� �� � �����
� �	����� �� ����	� ��� ��!���
�

�
��
/�� �����	
��!��� �� ��� ���� ����� ����� �� �	������ ��� ��#�	
��� ���� �
��
#�
�� ������
����� ��	 	���	���� �� ��� �	�� ��!��� �� ����� ��	 	���	���� �� ��� ����� ��!����
��� �����
� �	���	
���
 �04�&�4
� �� ��� ���
��) �� ��� ���
��	���
� �
���

�� ���
�
�
 ��� ����� �� ��	� �� ��� ����
�� ���� ��	 �

�
��
/�� ��!����� � ��
�
��� �
�� �
D�	�� ��!���� �	� �	����� �� �
D�	��
��	���
�� ���� ���� �
D�	��
����� ���
#�� �� �����

= �����
�� ���	�� �� �	�����
� � ���
��	���
� ��
# ��	� �� � ����� ��
�
�
����
��� �� #� ��	��#� ��� ���� �
�����

�
��
/
# ��� ��!��� ��� �� ��� ��#�	
���
�
��
#�
�� ������ ��!���� �	����� ��	
��� �
D�	��
��	��
�� �� ��� ����H ��
���
� ��
� �	����� �04�&�4 �	���	
��� ���� ��� ��#�	
��� ���� ��"� ��	� ����
� ���� ��	 � �

�
��
/�� ��!��� �)
���
 ��� ���	�� ����" �	 ����� ��	
�����
������	 � ���"��	� �	���
� ��"�� 5�	 ����#��� 	�����
� �	���	
��� ����
� ���� ��	 � �

�
��
/�� ��!��� ���� �)
���
 � ����� ��	
����

��	���
��
�	������� �� � �)����
� �����	��

��
� �	��
��� ���� �)�����
� ��	 ��� ��	����	�� ����	�
�� ���
���
 0���
�
� 1�1�4 ����� ������ �� �

�
��
/�� ��!���� ��� ���"��	� �	����� �	� ��"�
��
 ���� �	������� �� �)����
� �����	�� ��� �
�����
�
 0���
� 1�2�8 ���
��
�� �� ����C ���� �	� ��	��	� 	���	���� �� ��� ��#�	
��� �� ���� �������� �
)
����
����� ����	�
�� �
�� ���
����� ���	�)
���
���

��� ��� ��
 ��
�
� ���� ����� 	���	
��
�� � ������ ��	� �

�
��
/�� ��!����
�	� ���������� �������	�� ��
�
� ����	
���
 ����
� �� ��	����� �	����

$3�#F8�'�

���
�
���� ��� 	����
� ��� ������
#� 3��
��	 ��	 �)����� ��� ��� ����
B�� �����
� �������� ���� ���
#���� ��	 ���
��	���
�� �� � ����� 0��	�
#
�	�� ��� �	��
��	���
� �� ��� ������ � ���� ��	 � �

�
��
/�� ��!��� �� ��
���
�	������ �� � ���
��	���
�� =���	
� ��� ���� �� �� ���
�� �	���� �� �
���"��	� �	���
� ��"� �� �
��	���
� �	����
# ��� ��!��� �	���
�
��	���
�
��� ����� ���
#�� �� ��� �	���
��	���
� �	� ��	#�� �
�� ����� �� ��� ��	#��
�� ��� �	���� 0
�� ��� �����	 �� ��
����� ��� ���� ���� ��	 ��� �

�
��
/��
��!��� ���� � ���� �
������	� �� � 	����� �� ��	#
#� 0� ��� ��� ���
��	���
�

� 	������ �#�
 ���	�
� � ���� �� ��� ���� ��	 ��� �

�
��
/�� ��!���
�	������
��	
# ��� �	��
��	��
� �� ���� � �����
� �� �	
���

����� '���
���	�"

0��	���
�� ����
���� ��� �	
�"
��� ������ �� �������� ��	
����
�� ��� 	����
�
����
 �	��	 �� ��	��	� ����	��� ����
��	��� ��� B�� �� ���	�� ����	�
�� ��
���	���
�� ���� �� ��"�
�� ������� (�����	 ���	���
�� ��� �� �� ��)������
���
�
��� �� ��� �� �)
���
���
�
��� �� �	���
# �	 ��	��
�)����
�� �
���
�� �� � �����

(�	� 6����	��� ����
��	���7 ���� ����
��	��� ����
� ���� ��		��� �
���
���� �� ����� ���� ������ �� �� �	�"�� �� �� �)����
���� ���	�)
����� ?
�� ��� �
������
��� �	������� �� ���	���
�� ����� ���	� ��		������ ���
����� 	�!��� �	�#	��� �	������ �� ����
��	�� ? ��� ����	 ��� ��	� �����	���
�	������� ����� ������ ��� ����
��� �	�#	��� ��� ����� 	�
�� ��� 	
�" ���� ����

�/� ����������
� 	�� ����
 �
 ��� ����	
� ��	�� ���	��� ��� ��	�� �� ������� ���
 	
 � ������

�� �����
0��� �����
 � ������
 �� ���
 ������ �
�� ��� ��	���

I

������ ����� �� �	�"�
� ��� �	���	�
�� ��
���
���
�� �� ���� �	������� �	� ��
����� ���	������

= ����
��� �
�����
� �� �����
����� �� �� ����
 $3�#F8�' ��
�� ����
������
� ���	��#� �����
� �� ��� �	������ �� ���	���
�� ����	
���
 �04�&�> �� �04�<�1
���# �
��
�� ���
���
��� @���
���
��
� �����
� ��	� ����� ��"� ��
� ����	

���	��	
����� ��#C ��� 	����	
� 	���		�� �� $3�#F8�'�

� � ������� ��� ��
 ��
�� �	� ��� ������
#� � �04�&�> � ���	���� �� ��	
��
�������� �
�� ���	���
��
� �"������� ��� ��	����	�� ����	�
��
 �04�<�1 ����
	���	 �� ���	���
�� �� �� ���
��	�� �� �	��
�� ��	���	
��	���
� ����� ���
���	�����

��� ��� ���	��� ����	
��
� ��
��
���	��� ����
�� ���� �� ��� �� ��	#� �
���
��
�� ��	#��� ���
�� �	� �����
���� ��
��	���
�� �� �	���	
���
 �04�&�>� �	��
����	#
# ���	�� B�� ������

0��� ������� �� ��� ���	���� ���� �� "���
# �	��" �� ���
��� ��	
����� ��
���� �� �
� �����	� �	� �)��
�
��� ���
�����
 �04�&�>� ?���	 ������� �� ��� ���
�	���� ���� �� �	��
�
�
# 	���	�
�� ���	���
� ����� �	� �� �)��
�
��� ���
������
�� ��	� ��� ���� ��� 	���� ���
� ���� �� ����� ��)���
�� 	���	
��
��
� ��
#��	���� ���� ������� (�����	 ����	� ��	 ��� �� �� �������	� �� ��
� ��	�����

� ���
�
� ��� ���	���� ��� �� 	�!���
# �������� ���� �� �� �	������ ��
����
��	�� 5�	 �)�����
 ���� 1 0JK 8�1 ��	 0���	
� �������� ��	
����
� 	�!����
���� �	������ �� ��� ����
��	; ��� $3�#F8�' ��	 ����
���

���
����������� �� ��� ����	
��
� �� ��� ��
��	� �� ���	
�� ��� ���� �� ���

�
����� 	���	
��
�� ��	�� �� #��	���� ���� ������ ��� ��� �����
�� ��
��		���

��	�	����
� ����
��
���������
�� ���	� ���� ������ ����� �� �	�"�� �
���
�
� ��� ������)
�� �� ��� ���	���� �	�������
�� ������)
�� �� ���
�����
�����
� ��
�� 	�.�
	�� ��	� �D�	� ��
� ��	� �������
��� �� ��#� �� �����"��
*��� ��� �� ����� ��� 	�!���
� �� �������� �	������ �� ����
��	�
� ����
	����
�� �
�������
 0���
� 2�1�1�

� ������������

� �� ��

� ���	� �	� ��� ��
 ����
 ��
�� ��� �Æ�
�� ����
����
� �� ��������
��	
����
� ������ ��
��	����� 5
	�� ��� ����� �� �������� ��	
����
� ������ ��
���	
���� 0���� � �	��
�� ���	����	
/��
� ��
� ������ �� #
���

��� ��
��

��� #��� �� �������� ��	
����
�
� �� ����
����� ������
�� ���� ��	��
 ���� ������
�	���	�
�� ������ ���� �� 	� �
��� � ��
� ��� ���
��	�	���	 �	 !����
��
��
����
��	 �� ��
� ����"� �� ���� �	���	�
�� 	�����

 �����	 ��	��	�����

��� �)��� ���� ������ �	���	�
�� ���� �������� ��	
����
� ���� ������
�� �� ��
����	�
�� �	�� ��� ����
����
� �� ��������
��	���
��
 �0>� ���� ����
����
�

������ ��������� ��
6����7 ���� �� 6��� ��� �� ��� ����" ���� ����
 �
����� �� ���� ���7� =� �)���
��
 �0>�8 ��� ���
�� 6����7
� ���� ���
�)����
� �#
� �)����� ��� �)�	����� 	�.�
	����� �� ���� ��
�
� ��� ���" ��
����� ��	
����
� �� ��"� ��	� ����
���� ������

������ 	�� 	 ��� � ������
� �� ���� ��	����
� ���� �������	���
� �� �
��������
� �
 *&1 ��	� ���
"����# ��� ������ �
��
��� �� �� ��������� 	� ��
 �����)
 � 	���� �� ��� ����	�� �
��������
�

<

0��� �� ����� 	�.�
	����� �	� ���	�� �� ��� 	������
� �	������ = �)�����

� ���� ��� ������ ������
����� 	���	���� �� � ������
�����
�
��	���
� ����
�)
�� ���� ���
�
����� �	#���� �� 	���	 ����� �� �� ������
��� �� ��� �����
���	� ��� ������
�����
�
��	���
�
��

?���	 	�.�
	����� �	� ���	�� �� ����"
��� ����
� ����	�
�� � ������
���� #
��
 �04�<�8� = �)�����
� ���� ���
��) �� � ����� ��	
���� ���� ��
� ���	�� �� �
��	���
� ���� �� �
��
 ��� 	�#� �� ����� ��	
����� ��	 ���
�������

��� 	���

# 	�.�
	����� �	� ��� ���� �����
� ��	�
� �� �������� ��	
����
�
�� = �)�����
� ���� ��� ��� �� ��� ���	�� ����" ���� ����
 � ����� �� ����
��� ��� ��	��

��	���
�� �	� �)�������

���	� �	� � ��� �����
���
�� ����� ��� 	�.�
	����� ���	�� �� ��� ���� ����
��
�� ����� �����
���
�� �� ���
	 �����
�� �	� �� �
��������

����� +�"���������
	
� ������	�� ���"

=� �
�������
 0���
� 1�2�1 �0 ��
�� �� ���	
�� ������	 �������� ��	
����
� ������
��� ���� ��� �	 ���� ���� �����	�� ��� ���� 	��������
��	�	����
� ��
��
��� ��� ������#� �� �����
��/
�	 ����� ����

� ���� �������� ��	
����
� ����
���� ����

��
�
� ��		��� �� ��# �� ���	�
� �
����� �
����
#���
� ��	 ����� ����
�������
�� �� �����
��� �� ���	�� ���� ��� �
����
#���
�
 � ������
� ���
�
���� �
�� ��� ��
 �����	 ������ �
�� ��
�� ��!���� �	� �)���#��� 3��
��	
��� ������
# �)������ = ������ �� ��� � �	#���� �� ���� � �� ����� ����
�����
����� �
����
#���
�
 ��
� � ����� � �
���
��� �� ��� ��� � ���� �
�����	�� E�� ������� ���� �����	 ������ �� ����� �� ����
� ��!��� �� ����
� ��
�� �� �
� �
����
#����� �� � ����� ��
 ��
� ���� �� ��� ���� ���� � L ���
?���	�
�� ���� ������ ����� �� �	�"��

� ��� �	�� ��
�
� �� �0 �����
����� ��	� �� ���
���� ���� ������ ��#�
	������ �� �����
����� ��	� ����
 ��	�
�	
���������
�� �� ��� ��� $0�	&I
J5-&>'�

����� ��#� ��	� ��		����� �� ���
�	�����
� �� ����
# ����	�
�� $*�&<' ���
��	
���
 �0G� *���
# ����	�
�� ���	� ���� ������� �)���#
# ��!���� ��	��#�
������� �� ����� �#	�� � ��� ������ ������� �� ����� ��!���� �� ��� � ���
	
����� *���
# ����	�
�� �	� �)��	�� �� �������� ��	
����
�� ���� �	� ��	� ��
��� ����� ����
�����
��� ��
�� ��������� �������� ��	
����
� �� ���	��
���� ������ ��#����	 �
�� 	������
� �� 	��
���� 	���
�� ����"��

5�	��� ��
���� ���� �������� ��	
����
� �� ��� ���� ��� �� ����� ��
����
# ����	�
�� ��� ���" �� ���
�
���
#�
�
�� ������ ������� �
�� ��� ����
���
� #
��
 $M%3FF'�

����� &����	�
� ������	�� ���"

�04�&�1 �	���	
��� ���� ��� 	����� �� ��	#
��� ����� ���� � �� �
� ���� ��� ���
���
	 �	�� ����� ����	������ ��
� 	�.�
	�� 	�����
� �� � �� ������ ������� ��

2�� �������	���
 �	�� ��	� ��� ���� �� ��� ��3��� �� ����� ���� �� 	����
��
������	����� ���� ���
�����
�
� ���� �� ��� 	��	�� !������ ��� �	�� �������	���
 ��	��� ��	� 	 ��
����� � ������

�� �����
 �� ��	� ��
�� ��� �	��� &� ������� ��� ��� �� "����# �� �� ���	� ��	� �� ��
�� ��� �	��
�� �������� ������	���
 �� �
���� ��	� ��������� ��� �	�� 	������ �� ��� ����� ��� �
��������
�
����� "����# �� ���� ��� 	 ��
����� ������

&

��� �	���	�
���
	 �����	� �� �� ���
	 �	�� ����� ����	������ =
����
���
�	�����" �� ��
� ���	����
� �	�����	� ����� ����
#� = ��	� ��	
��� �	�����"
�
���� ���� ������ �� �� �	�"� $3%F8'�

�� ��	� ��� ����
�
� ����
��� �� ���
� ��
� �	�����	� ����
�� ���
#
�
��
���� �� ����
����� �� !��� ���� �� ����� ��	
����� �� ���	�� ����" ���
�
��
$%��&< M
�&&'� ��	#
�� ��� �� ��� �
���� ��� ��� ��
� ���� �	����� ���� ������
�	�� ��
# �	�"� $3%F8'�

��� ��� �� ���� �� ���� ���� �	��
��� � �����	 �	������ ��
��	������ ���	����
���� �	� �	����� �)����� �
"� ����� ������ 0
�� ��	#

� ��� �
� ����
���

��	
���� ��
��	����� ���� �� ����
���� � �	����� �� ���	�
� � ��� �� ���

����������
��� �� ��� 	����� �� ��	#
#� ���	���	� � ����
�� �	������ ��

����������
���
� ������	� �� ���� � 	���
�� ����"� ���� �� ��	��	���
��� ��������������
� �)�������

����� '����� ������
	

?����
����� ��	
# �������� ��	
����
� � 	���	��� ���� �
� ��� ��	#�� �� �
������
�����
�
��	���
� ����� ���	�� ����
��� � �� ��� ����� �	
��	����
�� �����	��
� ��	 ��� ������ �� ��
��"��� -�
�� ��� �)
����� �� ��� ������

� ����"�� ��	
# 	������
� �������� ��	
����
� ���� ���	� ���� �
� � �������
�� �� �04�&�8 �	���	
��� ���� ��� ��� ���� �	� 	�������
 �	��	 �� ����" ���� ���
���
	�� ������� 	����
� ������ ��� ��
� 	������
 �	�����	� ����
#�

= �����	 ���	����
� �� #��	��� � ������� ����	�
� �� ��� ��	� � � � $%��&<
M%3FF 3%F8'� 0������ ����	�
�� �	� ����"��
� �� ��� ������� �	� �������
��
�
� ����#��� �� ��� �	������ �� ��� ����
# ����	�
��
�	������
 $*�&<'�
� ���� ����� ��� "
�� �� ����	�
�� �� ��
��#	����
 ��� ���	��� ����� ����
#
�����
��� �� ��	��� �	#����� �� �� �	��
��� ���� ���� ������
� #��	�����
$M%3FF'�

����� !�
������ ,����" �	� &��-
�"

= ������ �� ���� �#������ ��
� �� �������� ��	
����
�
� 	������ �� �	�������
����� �� �������� ��� ����
����
�� �� ���
��	���
�� �� ������ ����� �� �����
���
����� ��� ������
# 	�.�
	����C
� ��� 	���	���� ���� �	 ������
� �	�������
��
� �����	�� �
���	
 ��� ��		�� ����� �
��� ��� �� ����� ���� ��	��	�� ��� ����
�	 ������ ������� �	
 �� ��
�� ����	������� ��� ��� ����� �� ��� ��!��� �����
���� �	 ������
� ��
�������� ���� �� �
���	 ��� ��		�� ����� �	 � �������� ��

��

��
� 	�.�
	���� ��	
��� �	�� � ����#��� 	�.�
	���� ������
 ��� ����
����
�
� �� ��� ���� �	�#	���
��#��#� $%�0�FF'� �� ��� �� �� �
�� ��� �	
�
���
���� �	������� ����� �	 ������� �� � ��!��� �� ��� �� �������� �	�� ����
�� ���
	
���"�#� �� ���� ����
� 	�����
��� ��
������� ���� ��!����

=���� ��
� 	�.�
	���� ������ �� ������� ����"�� �� �������� ��	
����
��
?���	�
�� ���
�
��� 	���
�� ����"� ����� �� ������ ��
�
� �� �)��
�
��� ���
�
���
 �04�< �	 �04�& ���
� �� �� ��	
��� �	�� �0>�

�2
 �	�� ������� 	
	�� ��
���� 	 ��	�� �� 	
 �
����	�� �	
 �� �
�� �������
�� �� �������
�
���
	��� 4�� �
��	
�� �� 	 ������ �	� 	
 	�����
� �� ����
 ��	� ����� ��
��� 	 ��	�� 	� ����
	� 	
 �
����	���

8F

= ��	�
#����	��	� �����
�
� �� 	������ ��� ���� �	 ������ ���
�
�
� �	�������
�� �����	��
 ��� ��		�� ����� �	
 � ����	����� ��
 ���� ���� ����" ���� ���
����� ���� ���
#�� �� ��� ���	�� ����" ���
�
�
 .����
�
� ��� ��		�� ����� �	
� ������� ��
��

�� ���
� �	�����	� ����
# ��� ���� ����" ����� �� 	������� �� ��� #��	��
� ��
� ������� ����	�
��� ��� ��� ������� ����	�
� ���� �� ���
���� ���
� ��� ����
�	 ������
� �	������� �� �����	��
 ��� ��		�� ����� �	 � ����	������ ?���	�
��

� ���� �� ��� �� ���� ��
�
� �������� �	�# �� 	�.�
	�
� �� �����

��� �����
�
� �� #��	��� � 6���
�
���7 ������� ����	�
� ����� ���
�
�
����
�
��	���
� ����� ��� ���� �	 ������ $3�#F8� 3�#F8�'� 3��
�
���
������� ����	�
�� �� ��
��#	���� �
�� ��� ����
�
��� ��� �� ����"��
��/
��
� �� ��� ������� �	� ������ �� ����� �	 ������� �	� 	��������

��� 	�����������
�

��� �����	� �� ��� �
�����
� �����
� ���� ��� ���� ������ �	���	�
�� ���� �����
���� ��	
����
� ���� #��	���� �� �� ��	
��� �	�� ��� ����
����
� ��
��	���
��
#
��
 �0>� � ���
�
� �������� ��	
����
� �� �� ���� � ��	��� ����
���
������� �� ��� ���� ��
� ���
����� �� ����
� ���� ��.���� ��
��� ��	�
��	��� �� �� ������ ���� �������
�� �� ���� ����)�
��	���
� ���� �� ���
������:� �
#���	�� ��� 	���	�� ����	
� �
���	 ��
��	� �	 �������� � ��� �����	
���� ���� ������� ����	�
�� ���
�
��� �	 ����
�
��� �� ���� �� #��	�����
�������� ��	
����
� ���	 ���� �� ���� �� ������

�� ��� 	����#���	 ����� �� 5
#�	� 8 	��	����� ��� ����
��� ���� �
��� ��� ���� ���
.������ ��� ��	#�	 ���
���
� ���� ���
�
�� ��� ���� ����
� ��������� �� ��������
��	
����
�� ��
� ���
��� �� ��� ���� ��.����� ���
���
��� ������
# ��� 	�.�
	��
����C �	�� ���� ���� 	��	���� ��.����� �� �������	���
��	���
��; ����� ���

��	���
� ��.���� ���� ���
��� ��� ���� ������ �	���	�
�� ��	
��� �	�� �0>�

����� '�.��	��"
� /���0,
���� ("������
	"

��� �	�� 	�.�
	���� �����
���� ������ �� ���
�����
� �� ��� ����
� ����	�
��
#
��
 �04�<�8� 0���
� ����	�
�� #
�� � �	��
�� �� ���������� ���	����	
/��
�
�� ��
�� ���� ��.����� 	��	���� ��.����� �� ���
�
��	���
���

-�
�� ���� �� �� ��	
��� �	�� ��� ����
����
� ��
��	���
��
 �0>
� ���
�� ������ �� ������� ���� ���
 �� ����� �� �0A��		���� �04�<�8�

� �� ��

� ��� ��� ������	� �	 ���
	��
��	������� �	� 	����
���
����	�
� ����� ��� �
�������
 0���
� 1�8 �� ���
# ��� ��� ����	�
�� �����
	���	
��	���
�� �� �)����
� �� ����
�D ��� �� �� ���� ���� �
�������

 0���
� 1�1�>� =��� ����� � ��� �	#�����
 0���
� 1�1�8 ��� ��	� 6����
�
����	�
��7 ����� �� 	������� �� ������
�
"� 6�������	������ ����	�
��7�

����� ��� '���� !�
������"

��� ����� 	�.�
	���� ��	 ���������� ����
��� ��� ���� ������ �	���	�
�� ����
���� �� #��	����� �� 	� �
�� �� �� ������ �	��
����� ���� �����
���� �����
��� � ��� �����
�� �� ��������
��	���
��� N��	�������
�
� ����
�����
������	 �
��	���
� ��.���� ���
���� ��
� ���	����	
/��
� �	 ��� 0� ��������
��	
����
� ���� �� � ���
����� ���	�)
���
� �� ��
� ���	����	
/��
�
�
�����
�� ��� �
���
/� ��������
� ����
 5
#�	� 8C ��� ���� ���
�
�� ������� �����

88

compiled
code

acceptable
code accepted

code

code

5
#�	� 8C 3��	����	
/
# �������� ��	
����
�

= ���
��	����
� ���� �� ���� �	������ �� ��		��� ����
��	�
� �������� ��
�������� ��	
����
�� �� ����� �� �
�����
�

� ����	 ������������ ����
�
#
� ���� �	�#	�� ��� ��� 	�!����� ��� 	�����
����� ����� �
����� ���� �
���
�	������ �� ����
��	��
� ���
�
��� �� ��� ������	 ��������
� ����
 5
#�	� 8�
0� ��� ����
��� 	����
���
� ���# ��� ����� ���� �� ��
�
�����
 ��� �#�	��

5	�� � ��
� �� �
�� �� ���
�� �� ��� ������������� ����
� �� �� ��# ��
�
�
����
��
 ��� ��������������� ���� �� ����
� ��� ����
�������� ����� 5�
��	�
�� �
���	 ����
��� ����� ����� ���� ������� �	 	�!���
� �� ����
��� �����

-�
�� ���������� ���� �� �� ���	����	
/�� �	��
���� ����� � ��� ����
����
�
��
��	���
�� ����
��� ���� ������ � ��� ����
��	� �	�
���������� ,��
�
��� ��		�� ����
��	� ���� ����� ����
���
� ��	���#
�� ����	� ����
��	� �
#��
��� �� ��	���#
�� �� #��	��� �����	 ����� ���	���	� ��� ����
�������� ����
� �
���
# ��	#�� �� ���� �� ��	� ��
����� �� 6�
��	���7 ���	����	
/��
��

��� ���� ���	����
� �� #
�� � �	��
�� ���	����	
/��
� �� �������� ����� =��
��
�������	� �� ��� ��� ������ �	
�� �������� ��	
����
� ��#�	
���� ���� �)�����
	���#
/� ��� ����
��� ������� ��� ����
����
� �� �������� ���� ����� ���� ������
� ���	��� ������ ��������	� �� ����
��	� �� �� ��� ���C �� ��# �� � ����
��	
�	������ ���� ���� �����
�
�� ��� ������ ���� ����
� �������� �� �������� ��	
��
���
��

��� ���
�
� �� ��� ������������� ������ ���� ������ � ���
��� �	�����D
������ ��� �	
��	
�� ��� �	�� �	
��	
�
� ���� �������� ��	
����
� ������ �� ��
�
���� �� �Æ�
�� �� ����
���� ��� ����� �	
��	
�
� ����
� ������ ������ ��
���� ���� �� ����
���� 9	
�
��#
# ��� �	�� ����� �
�
� ����	� ����
��	� �	 	�!���
���� �	�� ��		�� ����
��	�; �	
�
��#
��� ����� ����� ��"�
���������
��
��	� �������
��� �� �		�	� �� ���� �� �����"� �)���
�
# ��� �		�	��

81

����� � ��� ����� ���
��	��
�� ��� ������
# �	� ��� ������	� �	 ���
	��

��	������� ��	 �0
 �� ��

�� 5
	�� �� ��� ��� ��
� �� ��	����	�� ����	�
��
������ �� ��	
��� �� ����� ��	��	� 	���	���� �� ��� ���������� ���	�)
���
�
����� ���	�� ����" �
/� �0���
� 1�2�8� �

�
��
/�� ��!���� �0���
� 1�2�4� ��
���	���
�� �0���
� 1�2�G�� @������ ����	�
�� ������ ���� �� ��
�
����� ���
���	��
��
� 	�#�	�
# ������	 � ����	����	 �� ���	� ������
�� ����� �� �
�

�
��
/�� ��!��� ������ �� 	������� ��	���� �� �
������
���� �������
�
�
���
��� ��	
����
� $3�#F8� 3�#F8�'� =��� ����� � ��� �	#�����
 0���
�
1�1�8 ��� ��	� 6��	����	�� ����	�
��7 ����� �� 	������� �� ������
�
"� 6���
#
����	�
��7�

� ��
� ��� ����� ����	�
�� ����� �)�	��� ��� ��� ���� ������ �	���	�
�� ����
���������� ���� ���� ���
���� E��� ���� ����� �	���	�
�� �	� 6����#�����7
 ����
����A��� �
�����
�
 0���
� 1�1�I� -�
�� ����� �� �� ��	
��� �	�� �0>
� ���
�� ������ �� ������� ���� ���
 �� ����� �� �0A��		���� �04�<�1�

��	�
���	��� ��� ��#�	
���
� ����	
��
�
 �04�& ������ �� ���� ���� ��	�
�������� �� �	��
��� �� ������ �� ��
��� ��� ���� ��� ��#�	
���
� � ���	�)
���
�
� �� ��� ����
����� ����	�
��� ���
��	���� �	������� �� ��!���

�
��
/��
�
�0���
� 1�2�4� ��	#
# �� 	���	��� ����� �0���
� 2�8�1� ������� 	����
� �0���
�
2�8�2� �� �	������� �����	� �0���
� 2�8�4� ������ ��
��	��	����� = �����
�
�� ��� �	����� ���
���
 0���
� 1�2�G �� ����
��� �������� ��
# 	�!�����
������� �� ��� �	������ �� ���	���
��
� #
��
 $3�#F8�'C ��
� �����
� ������
�� ����
��	��	����� = ��	��� ����	
��
� ���� ������� ��� �� ����� �	
��	
�
� #
��

 $3�#F8�'�

5
����
� ������ �� ���� ����	 ��� �������� ��	
����
� �����	���� �
�� ���
����	 ���� ������ �����
��� �� ��� ���� ������
����� ��� ��� �� ����� ����

 �������� ��	
����
� �� ��� �
����
#���
� �� ���� �� ������� �� ���� �� ���
#��	��
� �� ������� ����	�
�� �� ������� �� ����
��������

� ���	���
��

��� ���
� �� ���� �������� ��	
����
� ��� ���	����� ���
��	��� �� ����	�� 	��
���	���	�� =� � 	����� ���	� ��� ��� � ��	#� ����	 �� ����
���
�� � ��� ����
!��� $3%F8 3%M&< 3*&& 53FF 53F8 5�&&� 5�&&� 5�&&� 5	�&< %��&<
(�&< ��&< KEFF E
�F8 ?:3&& 9��&& 9�&< M
�&& M
�FF @�.FF @@&<
0=&& 00�F8 +��&&'� ����� ��	"� ���� #	����� ���	
����� �� ��� ���	
����
� ��
"��
�����
 �������� ��	
����
�
����
��
�
��� ����
���.���
��
 �0
�� �	����

��	��������

�� �� "�����#� ��
� ����	
� ��		���� ��� ��� ��	" �� �	��
�� � ����	����
�
�� �����
� �� ��� �Æ�
�� ����
����
� �� �������� ��	
����
� �� � ����	����
��
��� ��	
��	������� 0��� ����
�� �� ��� �����
� ��
��	������� ���#� ����
	���
��� �	� ����	��
 ����	 ����	� ���� �	� �)��
�
��� 	���		�� �	�� ��
� ����	�

��� ��� �� ���
	� ��
��	��� �0
 ��	�
����	 ��� ����	
��
� �� ����� ��	�

����
� 6
������ �� ��� ��
� �� ����
���
# � ��	��� ����
����
�7
� �)��
�
���
������
 ��� =����
) �� �0� ��
� ����	 ���	
����� �� ���� #����

82

�������	��

$3%F8' =������	� 3�#�
� �� =��� %�����	#� ���� ������
 ��� ���C 0���
�	������
 ���� 1 0JK 8�1 �� �	������ �����
��� �
��������	�
�������� ��� ��������� 1FF8� �� �����	�

$3%M&<' =������	� 3�#�
� =��� %�����	# �� O���� M
�� ����	�� �
�	���������		���
���������
� �� ��� ��� �������� ��	
��	� � ��
��
��������� �
���

� !
���� "���������#�
$ %�&� ?�����	 8&&<�

$3*&&' *����
� 3����� �� ��� *��
� *���� = ��	��� ����
����
� �� ��� ����
�������� �����
�� ��
��� � ������� � ��
�� '�� ����� �
���

� !
���� (�� ��)��� $
� %�&� ��
#���� ��� 8&&&�

$3�#F8�' =������	� 3�#�
�� ���� �������� ���	���
�� ������
���� ����
��� 	��
��	� K���	�� ���
���� 1FF8� 5�	�����
# �� ��������������������	��

���

$3�#F8�' =������	� 3�#�
�� ���� �������� ��	
����
�C = �������� ��	����

/��
�� ����
��� 	���	� K���	�� ���
���� 1FF8� 5�	�����
��
��������������������	��
���

$3�#F8�' =������	� 3�#�
�� ���� �������� ��	
����
�C =����	 �������� ��	�
���
/��
�� ����
��� 	���	� K���	�� ���
���� 1FF8� 5�	�����
��
��������������������	��
���

$J5-&>' J	�� J�� ,���	� 5���� �� J� -������� ���� ����	
��C 5	��
(������ �� E������� �� ������ � ��
�� *��� �	�
����
$ �������	
��� ���&��	 ��#�� 8&FP1FF ��� 8&&>�

$53FF' 9�
�
� 5�# �� @���	� 3���	�� 9	��� �
"
#C ������	 ��	
����
� ��
���
�� �	�#	���
 ��� �	����� �� ��/� ����
� �
"
#� ��+ (������,
��
��
� �
$�-��� ��#�������# ��� +��
�
�
#	 .(���+/ &�4�C2I&P4F&
?�����	 1FFF�

$53F8' 9�
�
� 5�# �� @���	� 3���	�� 9	��� �
"
#C J
��	
����� ��	
����
�
�� ���� ���������
 ��� �	����� �� ����
��� ����������	�� � ��
�� '��
%�&� 0������ +�� ��� 1������ ��� (�� �
�
#	 �	�
���� .%0+�2'/
��#�� G2P>>� N0,E�Q 1FF8�

$5�&&�' 0����� 5	��� �� ��� �
������� = ��	��� �	�����	" ��	 ��� ����
�������� ��#��#� �� ��	
��	� � ��
�� '3� ��+ �
�$������
� ��4���,
�������� ��
#������#5 �	�����5 ���#��#��5 ��� �������
�� .���,
������/ ������ 24 ����	 8F �� ��+ �*6���7 7
����� ��#�� 84IP
8>> ?�����	 8&&&�

$5�&&�' 0����� 5	��� �� ��� �
������� = ���� ������ ��	 ���� �������� ����
	���
�� �� �)����
��� ����
��� E��� 0�=E�30��E�&&�&8 3������	
0�
��� J���	���� 0����	� N
��	�
�� =�#��� 8&&&�

$5�&&�' 0����� 5	��� �� ��� �
������� = ���� ������ ��	 ��!���

�
��
/��
�
�
 ��� ���� �������� ��#��#�� ��+ (��������
��
� ��
#������#
���#��#�� ��� �	����� .(�����/ 18�>�C88&>P81GF E������	 8&&&�

84

$5	�&<' 0����� 5	���� ��� ����� �� ������ �� ���� �������� ���	���
��� �
��
�� ��������� �
���

� !
���� "���������#�
$ %�&� ?�����	
8&&<�

$%�0�FF' ����� %���
�
�� ��� %�� 0����� �� %
��� �	����� (� %�&���

���#��#� ����8����
�� =��
���-����� ����� ��
�
� 1FFF�

$%��&<' =��� %�����	#� = ����
����
� �� ���� ����
# �� �������� ��	
����
�
�� � ��
�� 9� ��+ �
�$������
� �
����� ��� �
���������
��
�������	 .������/ ��#�� 4&PG< E������	 8&&<�

$%�&&' *
 %�#� *����� %�&��� : ����$
�� �������	� =��
���-����� 8&&&�

$(�&<' �����
 (�#
�� �� ="
�
"� ��/���� ? � �� ������ ��	 ����B��
�����
� �� ���� �
	���� ����
� ���	���
��� � ��
�� 9� ������ ����	���
�	�
���� .������/ ������ 8GF2 �� ������� 7
��� �� �
����� �������
��#�� 8IP21� 0�	
#�	 0�������	 8&&<�

$��&<' ��	" ����� ��� ����
�� �� ���� ��������� � ��
�� ���������
�
���

� !
���� "���������#�
$ %�&� ?�����	 8&&<�

$KEFF' %�	�
 K��
 �� ���
�� E
�"��� ��	
��� �
#����
#�� �������� ��	
��
���
�� � ��
�� :�� ����� �
���

� !
���� (�� ��)��� $
� %�&�
��
#���� ��� 1FFF�

$*�&<' 0��# *
�# �� %
��� �	����� J���
� ����� ����

 ��� ������

�
	���� ����
�� � ��
�� ';� ��+ �
�$������
� ��4���,�������� ��
,
#������#5 �	�����5 ���#��#��5 ��� �������
�� .���������/ ������
22 ����	 8F �� ��+ �*6���7 7
����� ��#�� 2>P44 ?�����	 8&&<�

$*+&&' �
� *
����� �� 5	�" +���
� (� %�&��� 0������ +�� ��� ����8��,
��
�� =��
���-����� ����� ��
�
� 8&&&�

$E
�F8' ���
�� E
�"��� ��	
��� �������� ��	
��	�� � ��
�� 3� �
�$������

� !
������
��
$ �
$�-��� ������� ��� �
������
� ���������� .!��,
�����2'/ ������ 1F2F �� ������� 7
��� �� �
����� ������� ��#��
24IP2>2� 0�	
#�	 =�	
� 1FF8�

$EE(&<' 5����
E
���� (�� @

� E
���� �� 3�	
� (�"
� ���������
$
��
#��� ����	���� 0�	
#�	 8&&<�

$?:3&&' @���	� ?:3������� = �
���� ����	����
�� ���� ������ ��	 ���� �����
���� ���	���
��� � ��
�� :<� ��+ �	�
����
� ���������
$ ��
,
#������# ���#��#�� .�������/ ��#�� IFPI< ����	� 8&&&�

$9��&&' 3�	��
� 9����� 9	��
# ��� ������� �� � ���� �������� ��	
��	 ����
��
���
�
 ��������R(?*� � ��
�� 9� �
�$������
� (

�� ��� ��#
��� ��
$
� � � �
��������
� ��� ����	���
$ �	����� (������� ������ 8GI&
�� ������� 7
��� �� �
����� ������� ��#�� <&P8F2 ��	�� 8&&&�

$9�&<' �����
� 9���##� �� (�	��� ��#�� ���� �������� ��	
����
� ��
#
����� ����"
#� � ��
�� ��������� �
���

� !
���� "������,
���#�
$ %�&� ?�����	 8&&<�

8G

$M%3FF' O���� M
� =��� %�����	# �� =������	� 3�#�
�� = ��	���
����
����
� �� ���� ����� ����
#� � ��
�� '9� ��+ �
�$������

� ��4���,�������� ��
#������#5 �	�����5 ���#��#��5 ��� �����,
��
�� .�������22/ ������ 2G ����	 8F �� ��+ �*6���7 7
,
����� ��#�� 21GP22> ?�����	 1FFF� *�# ��	�
� ���
����� �� �������

�������������	��
���

$M
�&&' O���� M
�� = ��	��� ����
����
� �� ������ �
	���� ����
�
��	���
�
�� ��	 ��!���� ������� �� ���	���
��� � �
� =�����5��� ��
��	
!
���� �	���� ��� ���������
$ %�&��� ������ 8G12 �� ������� 7
���
�� �
����� ������� ��#�� 1I8P281� 0�	
#�	 8&&&�

$M
�FF' O���� M
�� 0����	� �)��
�
��	��
� ��	 ���� �������� ��	
����
��
��+ (��������
��
� ��
#������# ���#��#�� ��� �	����� .(�����/
11�4�C>2<P>I1 ���� 1FFF�

$@�.FF' =��
� @�.���� = � ����� ��	 ���	
# ������� �� � ��	#� ������ ��
��� ���� 3�	� �
	���� ����
�� � ��
�� 9� �1�*+ �
���

� !
����
+��
�� $
� *��������� �������� �	����� .!+*���22/ ��#�� 1&P4G =�	
�
1FFF�

$@@&<' ,�� @��� �� K	
���D�	 @���� *
#����
#�� �������� ��	
����
�� � ��
��
��������� �
���

� !
���� "���������#�
$ %�&� ?�����	 8&&<�

$0=&&' @���
� 0���� �� ��	�ST =���
� = ���� ������ ��	 ���� �������� ����
	���
��� ��+ (��������
��
� ��
#������# ���#��#�� ��� �	�����
.(�����/ 18�8�C&FP82I ����	� 8&&&�

$0�	&I' �
!�� 0�	������ ����
� �� ���������� ����
��� 	���	� =�U� @����	��
8&&I� =��
����� �� ����������������������������
� ���������

$00�F8' @���	� 0�V�	" �����
� 0���
� �� ,#� �V�	#�	� %�&��� ��� � � %�&���

0������ +�� ����=�8����
�5 0���8����
�5 0�������
�� 0�	
#�	 1FF8�

$�(&&' ="
�
"� ��/��� �� �����
 (�#
��� 3�	���� �����
� �� ���� �����#�
� ��
�� %�&�,*�$
�����
��,(�#� '��� .%*(���/ ��#�� 1&FP1&>� 0�	
#�	
0�������	 8&&&�

$+��&&' 9�
��
� +������ = ������
�
��� ������ �� ��� ���� �
	���� ����
��
� ��
�� :<� ��+ �	�
����
� ���������
$ ��
#������# ���#��#��
.�������/ ��#�� GIP>& ����	� 8&&&�

8>

Reinforcing Fragile Base Classes

Kees Huizing and Ruurd Kuiper??

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven,
The Netherlands,

keesh@win.tue.nl, wsinruur@win.tue.nl

Abstract. The Fragile Base Class problem is approached from the angle
of a proof system for class invariants. It is shown that the source of
the FBC itself can be understood as a problem of dynamic binding of
predicates in the correctness proof of invariants. A solution is presented
based on an extension of the concept of behavioural subtyping and the
novel notion of cooperative contracts. Thus, exible boundaries of reuse
can be speci�ed for each class.

1 Introduction and Position

When a developer believes in the assumption that changing the imple-
mentation of a method within the boundaries of the speci�cation (con-
tract) should leave the behaviour of other methods unchanged, he may
be caught o� guard by the Fragile Base Class problem (FBC).

Speci�cally: if a reuser subclasses a class C to a class D by inheritance,
and later the provider of C revises C, keeping its contract, the reuser
may �nd that D no longer satis�es its contract.

For this, inheritance is often blamed and therefore rejected as a vehicle
for code reuse. This we regard as an unacceptable limitation on code
reuse. Similarly, we regard disallowing the provider to change the base
class as too restrictive.

In the literature, the solution to the FBC is mainly sought in syntacti-
cally restricting the allowed class dependencies during development. We
propose a di�erent approach that leads to a more �ne-grained, or if you
like, semantic, check of the dependency between classes and methods.

When we study the proof obligations in a formal proof system, we can pin
down the problem to dynamic binding. Either the provider of the base
class has to prove the invariant of a (future!) subclass, or the subclass
developer needs access to the implementation of the base class to prove
the invariant.

We solve this problem in two steps. First, we remove the dependency of
the base class on the derived class by extending the notion of behavioural

?? The authors are partially supported by ITEA DESS.

2

subtyping. This means that the developer of the subclass has to prove
additional clauses for methods that are inherited.

The second step of the solution is a notion of cooperative contract. The
developer of the base class can use a kind of parametrized postconditions
that allow the reuser to derive more properties about a method than
could be derived from an ordinary contract, without giving the reuser
access to the implementation. Without cooperative contracts some code
would not be amenable to reuse.

By choosing a level of cooperation in the contract, the provider can de�ne
the boundaries of reuse.

Workshop Position: Both providers and reusers of classes should be
allowed to make adaptations to classes; the FBC should be understood
and remedied in the context of a proof system:

1. user developments from the base classes should be in accordance
with a new notion of behavioural subtyping;

2. provider's changes to a base class should respect a new notion of
cooperative contract.

2 The Fragile Base Class

The following example is modi�ed from an example in [8]. Consider a
class Set that represents a set of integers with methods add(int) and
addSquared(int). The �rst method simply adds an integer to the set;
the second one computes the square of an integer and then calls add()

to add the result to the set. In Java this class could be de�ned as follows.

class Set f
h I: truei
...

public add(int n) f
...

hpost: s = s~ [fng i
g

public addSquared(int n) f
add(n*n);

hpost: s = s~ [fn2g i
g

g

We write assertions surrounded with angle brackets to avoid confusion
with the Java curly brackets.

3

Here, s represents the contents of the set; a variable in a postcondition
with a �-symbol attached represents the old value, i.e., the value at
the start of the method. To keep the example simple, we used a trivial
integrity check.

Now a subclass CountingSet of Set is made that adds an instance vari-
able keeping track of the number of elements in the set. For this purpose,
method add() is overridden and we get the following class.

class CountingSet extends Set f
h I: jsj = size i
int size;

...

public add(int n) f
size++;

...

h post: s = s~ [fng ^ size = size~ + jfng n s~ji
g

Here, I is the invariant of the class, which speci�es the consistent states
of all objects of this class. A user of an object of this type may expect the
invariant to hold. As a consequence, all public methods should establish
the invariant at method return.

Note that the postcondition of add() has been strengthened with infor-
mation about size.

CountingSet has no need to override addSquared(), since this latter
method calls add() and thanks to dynamic binding, the correct version
of add() will be executed, depending on the type of the object underhand.

This is an example of the design pattern Template Method, where exe-
cution of a primitive operation (add() in this example) is delegated to a
subclass [1].

Now suppose the class Set is revised. For some reason, maybe of eÆ-
ciency, the method addSquared does not call add() anymore, but puts
the element directly into the set. This seems harmless, since the con-
tract of addSquared is maintained. For Set-objects everything works.
For CountingSet-objects however, things go wrong. Since add() isn't
called anymore, the variable size will not be updated when an element
is added by means of addSquared(). As a consequence, the invariant I
is not maintained.

This problem is known in the literature as the Fragile Base Class Prob-
lem ([5]). This version is called the semantic problem. There is also a
syntactic version, which concerns the problems when the subclass is not
recompiled after revision of the base class. Since Java solves the syn-
tactic problem, the semantic one is even more important. In this paper,
we will mean the semantic problem when we speak about the Fragile

4

Base Class problem. There are several related problems, such as in�nite
recursion as a consequence of incorrect overriding. As we only consider
partial correctness here, we will not treat this problem. For an extensive
list of issues related to the Fragile Base Class problem, see [8].

3 Pinning down the problem

When we use a formal veri�cation system, it becomes clear where the
intuition makes an unjusti�ed assumption that causes the FBC problem.
For this purpose, we use a proof system along the lines of the one pre-
sented in [2]; other systems such as [7] could do as well. The problem is
centered around the concept of dynamic binding.

3.1 Dynamic binding

In Java, the method call b.m() means: choose the �rst de�nition of m
that you �nd when going up in the type hierarchy, starting in the class
to which object b belongs, and then execute this method in the context of
object b. With \object b" we mean the object that results from evaluating
the expression b. Note that this value depends on the state, and so does
the class of which method m() is chosen. This state dependency of method
choice is called dynamic binding.

We extend this notation to predicates. The expression b:I means: inter-
pret predicate I in the context of object b. As with method invocation,
the choice of I depends on the class of b.

To simplify the discussion, without losing anything of the essence, we
formulate a proof rule for a parameterless method in the absence of
recursion.

for all classes C containing m:
hthis:pre ^ this:I ^ : : :i bodymC hthis:post ^ this:I ^ : : :i

hb:prei b:m() hb:post ^ b:Ii

The premise requires proofs for the bodies of all the methods that could
be executed as a result of the call b:m(). We keep on the safe side by
taking every method called m. Since the correctness of all these bodies
should be proven anyhow, albeit not for this speci�c call, we are not
interested in removing this redundancy from the rule.

On the dots, more invariants may appear, depending on the proof sys-
tem and the circumstances. This does not interfere with the exposition,
however; details can be found in [2].

The object this in the premise refers to the object on which the method
body is executed. We write this:pre etc. to stress that the predicate pre

5

has to be evaluated in the context of this object and likewise for post

and I.

Now dynamic binding puts us a problem. What are the predicates pre,
post, and I? Since we don't know the dynamic type of b, we don't know
which version of m() will be executed and hence, which precondition,
postcondition, and invariant will apply.

3.2 The solution

In practice, the pre- and postconditions will not arbitrarily change in
a subtype (inheritance) hierarchy. A method in a subclass should at
least ful�ll the contract of the method it overrides. This idea is called
behavioural subtyping after [4] and it amounts to the requirement that,
when D <: C (D is a subtype of C), the following implications should
hold:

{ preC) preD
{ postD) postC
{ ID) IC

This is a principle of good OO design and it enables us to replace in
many cases dynamic reference to predicates with static ones. When b is
an object and P is a predicate (pre/postcondition or invariant), we use
the notation b:P for the staticly bound P , i.e., if C is the static type of
expression b, then b:P = (C)b:P , where (C) is the type cast operator.
We assume that the static type of an expression is always known. Surely
it can be derived from the program context. Under assumption of be-
havioural subtyping, we can formulate a friendlier proof rule for method
call:

for all classes C containing m:
hthis:pre ^ this:I ^ : : :i bodymC hthis:post ^ this:I ^ : : :i

hb:pre ^ : : :i b:m() hb:post ^ b:I ^ : : :i

In this rule, all occurrences of dynamic binding of predicates are removed,
except one: this:I in the premise. In a minute we will see how to get rid
of this dynamic binding also.

The dynamic references in the conclusion can be replaced by static ones
because of behavioural subtyping. This is in fact an application of the
rule of consequence: hP i S hQi implies hP 0i S hQ0i if P 0) P and
Q) Q0.

Substituting this:pre and this:post in the premise is allowed because of
the rules for method choice in Java and most other OO languages. If the
dynamic type D of this di�ers from the static type C, there can be no
method m de�ned in D, since otherwise method m from D was chosen
instead of C.

6

For the invariant in the premise, however, this reasoning does not apply,
as each type may have its own invariant, independent of whether m

is overridden or not. The stronger obligation to prove this:I remains
here. It is here that the intuition unjusti�edly assumes that proving the
invariant of class C is enough.

In terms of the fragile base class example: The method addSquared has
been de�ned in class Set and hence the proof of its correctness is per-
formed in the context of Set (the static type of this is Set). Since
addSquared is not rede�ned in CountingSet, exection of this method
may well be in the context of an object of the class CountingSet and
then the dynamic type of this is CountingSet.

In the most pregnant examples of the Fragile Base Class, the development
of base class C is both in time and place remote from the development
of derived class D. E.g., company X produces a class library of which C

is a part. Then company Y uses this library and reuses C by inheritance.
X cannot be held responsible for the invariants of subclasses yet to be
made. On the other hand, passing the proof obligation to the developer
of D would require X to give its users insight in its source code. This is
unpractical and from a commercial point of view unwanted. Furthermore,
it denies the concept of abstraction by contract.

So the only reasonable proof obligation in the premise is this:I.

This obligation is too weak, however, and would render the proof rule
unsound. To solve this, we propose a strengthening of the notion of be-
havioural subtyping: When D has a stronger invariant than C, it should
be proven from the contract (speci�cation) provided by C.

De�nition 1 (Reinforced Behavioural Subtyping). Type D is a
reinforced behavioural subtype of C if:

1. ID) IC

2. for every method mD overriding mC:
premC) premD
postmD) postmC

3. for every non-private method m not overridden in D and any object
d of type D:
d:(I � invm ^ I� ^ postm ^ IC)) d:I.

Here, the set invm consists of the variables that are not changed during
execution of m. It is derived from the speci�cation of m. (This set is
speci�ed explicitly or implicitly by specifying which variables are allowed
to change. Here, we do not elaborate on how to specify inv precisely.)

The predicate I� is de�ned as the predicate I with all variables adorned
with the symbol �. It simply says that I was true at the start of the
execution of m.

Obligation 3 is new. It requires the developer of D to prove the possibly
stronger invariant of the derived class after execution of m. For this he

7

may use the invariant of the base class IC , the postcondition of m, the
stronger invariant restricted to variables that do not change under m,
and the knowledge that this stronger invariant held at the start of m.

Since this proof obligation is about a method that is not overridden in
D, it is possible that the developer of D has no access to the contract of
m, e.g., if m is a private method of C of a supertype thereof. This would
make obligation 3 impossible to ful�ll. We take the approach, however,
that private methods need not establish the invariant, as in [3].

This proof obligation leaves not much room for the developer of the de-
rived class to strengthen the invariant. In the Fragile Base Class example,
e.g., the invariant of CountingSet cannot be proven. For situations like
this we propose the concept of cooperative contracts. The postcondition
of a method may contain references to postconditions of other methods,
in particular methods to be overridden in subclasses. In proof obliga-
tion 3 of reinforced behavioural subtyping, the interpretation of these
references depends on the type of d. This way, such a reference may re-
sult in a stronger predicate if the corresponding method is overridden in
the subclass. To see this, suppose postm refers to a postn, the postcon-
dition of another method n. When this method is overridden in D with
a stronger postcondition, the conjunct postm will be e�ectively stronger
too, since it is evaluated in the context of an object of class D. If done
right, this makes it possible to prove the stronger invariant of class D.

So under the assumption of Reinforced Behavioural Subtyping we have
the following proof rule for non-recursive method call:

for all classes C containing m:
hthis:pre ^ this:I ^ : : :i bodymC hthis:post ^ this:I ^ : : :i

hb:pre ^ : : :i b:m() hb:post ^ b:I ^ : : :i

Now we can go back to the example of the Fragile Base Class and change
the postcondition of addSquared() to:

postaddSquared : postadd(n
2)

Proof obligation 3 now becomes (we assume there are no relevant invari-
ance properties in the speci�cation of addSquared):

d:(js�j = size
� ^ postadd(n

2))) d:(jsj = size)

which is equivalent to

d:(js�j = size
� ^ s = s

� [fn2g ^ size = size
�+ jfn2g n s�j)) d:(jsj = size)

which follows easily from the facts

jx [yj = jxj+ jyj � jx \ yj

and

jx n yj = jxj � jx \ yj

8

Of course, we could have strengthened the postcondition of add in the
class CountingSet with the invariant. This would have trivialized the
proof above, however. We believe that the current proof is more inter-
esting because it shows the role for the predicate I�.

This shows that the correctness proof of the subclass is based on the
speci�cation only of the base class, in contrast to the original situation
where formal correctness needs the code of the base class. As a conse-
quence, this allows for revising the base class, within the boundaries of
the contract. E.g., in the method addSquared above, the implementation
of the integrity check could be altered without fear of the Fragile Base
Class problem. The provider of the base class can decide how cooperative
the contract will be.

4 Conclusion

We have shown how to use formal methods to better understand the
Fragile Base Class problem and how to solve the problem. Other ap-
proaches to this problem can be found in the literature. [3] has an exten-
sive framework to specify properties of (Java) programs. It elaboreates
on properties of the call graph, wehereas we use a more assertional ap-
proach, concentrating on the validity of invariants.

In [6], the notion of cooperation contracts is introduced as part of a
solution of the Fragile Base Class problem. Their approach is purely
syntactical and their notion is not the same as our cooperative contracts,
which play a central role in proving the validity of assertions.

Mikhajlov and Sekerinski in [8] formulate several requirements that guar-
antee true re�nement of superclasses. These requirements are more re-
strictive and do not allow the example of a subclass invariant that com-
bines instance variables of the subclass with those of the superclass as in
the CountingSet example.

We believe that we have clari�ed the Fragile Base Class problem, and,
with it, similar problems connected with inheritance and dynamic bind-
ing in object-oriented languages. The novel approach of cooperative con-
tracts allows for a �ne grained semantic solution to the problem of safe
code reuse in the subtle frameworks that can be found in many object
oriented program designs.

References

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

2. K. Huizing, R. Kuiper, and SOOP. Veri�cation of Object Oriented
Programs Using Class Invariants. In Fundamental Approaches to Soft-
ware Engineering (FASE 2000) (Maibaum, Ed.), Berlin, 2000, Lecture

9

Notes in Computer Science, Vol. 1783, Springer-Verlag, Berlin, 2000,
pp. 208{221.

3. Clyde Ruby and Gary T. Leavens. Safely Creating Correct Subclasses
without Seeing Superclass Code. In OOPSLA 2000 { Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
Minneapolis, Minnesota. SIGPLAN Vol. 35(10), pp. 208{228, 2000.

4. B. Liskov and J. Wing, A behavioral notion of subtyping, ACM
TOPLAS, 16:6, pp. 1811{1841, 1994.

5. C. Szyperski, Component software: Beyond object-oriented program-
ming, Addison-Wesley, 1998.

6. M. Mezini. Maintaining the consistency and behavior of class libraries
during their evolution. In Conference Proceedings of OOPSLA '97,
ACM SIGPLAN Notices, Vol. 32(10), pp. 1{21, Oct. 1997.

7. A. Poetzsch-He�ter and P. M�uller, Logical foundations for typed
object-oriented languages, in D. Gries and W.P. de Roever, Eds., Pro-
gramming Concepts and Methods (PROCOMET), 1998.

8. L. Mikhajlov and E. Sekerinski. A Study of the Fragile Base Class
Problem. In ECOOP'98 { Object-Oriented Programming 12th Euro-
pean Conference (E. Jul, Ed.), Brussels, July 1998, pp. 355{382, Lec-
ture Notes in Computer Science Vol. 1445, Springer-Verlag, 1998.

Java Separate Type Checking is not Safe

(Extended Abstract)

Davide Ancona, Giovanni Lagorio, and Elena Zucca?

DISI - Universit�a di Genova

Via Dodecaneso, 35, 16146 Genova (Italy)

email: fdavide,lagorio,zuccag@disi.unige.it

Abstract. Java supports separate type-checking in the sense that com-

pilation can be invoked on a single source fragment, and this may en-

force type-checking of other either source or binary fragments existing in

the environment. However, the Java speci�cation does not de�ne precise

rules on how this process should be performed, therefore the outcome

of compilation may strongly depend on the particular compiler imple-

mentation. Furthermore, rules adopted by standard Java compilers, as

SDK and Jikes, can produce binary fragments whose execution throws

linking related errors. We introduce a simple framework which allows

to formally express the process of separate compilation and the related

formal notion of type safety. Moreover, we de�ne, for a small subset of

Java, a type system for separate compilation which we conjecture to be

safe.

1 Introduction

Traditional type systems for programming languages de�ne the well-formedness

of self-contained programs, and are said to be safe if the (result of the compilation

of) a well-typed program is guaranteed to well-behave at run time (see [6, 4, 5]

for the Java case).

However, in languages supporting separate compilation and dynamic linking,

like Java, this simple framework is no longer adequate. Indeed, it is possible

to type-check a single source fragment in a context where other fragments are

present either in source or in binary form. Hence, there are two main new in-

gredients to be considered in typing rules: checks can be performed not only on

source, but also on binary fragments, and, for type-checking a fragment, it can

be necessary to type-check other (source or binary) fragments, following some

strategy.

Moreover, the output of the compilation phase is not a self-contained exe-

cutable program, but a collection of binary fragments which can be linked and

executed in many di�erent ways. Hence, the type safety notion must be expressed

in a more exible form.

? Partially supported by Murst - TOSCA Teoria della Concorrenza, Linguaggi di Or-

dine Superiore e Strutture di Tipi.

In this paper, we introduce a simple framework for separate compilation,

modeled as a function which, given a set of fragment names and a compilation

context consisting of both source and binary fragments, produces a collection of

binary fragments, and we de�ne a related notion of type safety.

Our aim is to face the following problems related to Java separate compila-

tion.

{ There is no speci�cation of separate compilation in [2], hence the outcome

of compilations may strongly depend on the particular compiler implemen-

tation.
{ Rules adopted by existing compilers can be quite complex and cannot be

easily explained informally.

{ As known by Java programmers, rules adopted by standard Java compilers,

as SDK and Jikes, can produce binary fragments whose execution throws

linking related errors. This seems in contradiction with the fact that type

safety results have been proved for the Java language [6, 4, 5]; the explana-

tion, as we will illustrate in more detail in the following, is that these type

systems, and the related type safety results, are only related to a special

case, which is the compilation of a self-contained set of source fragments.

Our framework is a formal basis for de�ning type systems for languages sup-

porting separate compilation, notably Java, and formally reasoning about them

by de�ning and proving good properties. For reasons of space, here we focus on

type safety, however there exist other kinds of good properties one could expect

from separate compilation (see end of Sect.3 and the Conclusion).

In order to illustrate our approach, we de�ne, for a small Java subset, a type

system for separate compilation which we conjecture to be safe (a formal proof

would require the de�nition of a simple execution model, not considered here for

lack of space).

The work presented in this paper is a �rst step towards the formal de�nition

and comparison of di�erent type systems for Java separate compilation, corre-

sponding, e.g., either to standard Java compilers, , or to extended compilers

which perform additional checks. The overall motivation of this research is the

following.

As illustrated in detail in the following, standard compilers perform very

few checks on binary fragments, relying on the fact that these checks can be in

practice delegated to the JVM1, which �nds linking related errors and throws

corresponding exceptions (see examples in Sect.2), thus guaranteeing that exe-

cution does not crash. However, we argue that this is not a good enough moti-

vation. Indeed, the fact that the JVM has a run-time veri�er (hence intercepts

error situations) cannot be used as a justi�cation for not trying to anticipate at

compile-time checks which actually can be performed earlier; otherwise, follow-

ing the same principle, one could also throw away checks on source fragments

since in any case the fact that the execution does not crash is guaranteed by the

bytecode veri�er, hence these checks are in a sense redundant. In our opinion,

1 Java Virtual Machine.

even though the run-time veri�cation cannot, of course, be eliminated in Java2,

it is worthwhile to investigate the possibility of anticipate at compile-time as

many checks as possible, as it is in the long tradition of type systems. The ob-

vious advantage is earlier error detection; then, in principle, the possibility that

execution in a context of \certi�ed" bytecode fragments obtained by a \smart"

compiler could be performed without some run-time checks (as it is already the

case for a context of binary fragments resulting from the compilation of all source

fragments).

The paper is organized as follows. In Sect.2 we present simple examples to

illustrate type-checking rules adopted by the SDK and Jikes compilers and to

show that these rules are not safe. In Sect.3 we introduce our framework and

formally express type safety. In Sect.4 we show, for a small subset of Java, a type

system for separate compilation which we conjecture to be safe. Finally, Sect.5

summarizes the contribution of the paper and outlines further work.

2 Some motivating examples

In this section we illustrate by means of some examples the type-checking rules

adopted by the two Java compilers SDK 1.3 and Jikes 1.11 (which apparently

seem to coincide3), and we show that these rules are not safe.

In the following, we will call compilation context all the source4 and binary

fragments which are available to the compiler (the notion will be formalized in

the next section). If both the source and the corresponding binary fragment are

present for a class, then standard compilers inspect the binary and ignore the

source, while the source is inspected if the binary is obsolete, that is, source has

been changed after last compilation.

The �rst example illustrates non-safe behaviour due to the fact that, when

checking a binary fragment, standard compilers do not enforce checking of all

used fragments.

class A{ static void main(String[] args){new B().m();} }

class B{ int m(){return new C().m();} }

class C{ int m(){return 1;} }

If, in a compilation context cc0 consisting of the three source fragments, we

invoke the compiler on A.java, then compilation of B.java and C.java is en-

forced, so that, after compilation, we obtain a new context cc1 where the binary

fragments of the three classes are available. However, if we re-compile A.java in

the context cc2 obtained by removing from cc1 the binary fragment of C, then

re-compilation of C.java is not enforced5, therefore we obtain again the context

cc2 (hence, no static error has been detected); however, if we try to execute class

A in this context, then error NoClassDefFoundError is thrown.

2 To deal with fragments which are not known to be the result of some compilation.
3 Except that Jikes supports compilation options that enforce more checks.
4 We assume for simplicity a unique �le for each class.
5 In Jikes re-compilation of C.java can be enforced with the option +F or +U.

Indeed, in standard compilers, when a fragment named N is checked, this

always enforces (transitively) checking the parent of N, regardless N is in source

or binary form6, whereas used fragments are (transitively) checked only when N

is in source form. This rule is not safe since it can lead to linking related errors,

as shown above. In the type system in Sect.4, instead, parent and used fragments

are always (transitively) checked.

Next examples illustrates cases in which the non-safe behaviour is not re-

lated to dependencies among checking fragments, but rather to the fact that

some checks which could be in principle performed on binary fragments are not

actually performed.

In the context cc1, as previously de�ned, assume to modify C.java in the

following way:

class C{ C m(){return new C();} }

Let cc0
2
denote the context obtained from cc1 by modifying the source fragment

of C as shown above. If we re-compile both A.java and C.java, then we obtain

a new context cc0
3
(hence, no static error has been detected). However, in this

new context, the execution of class A throws NoSuchMethodError. The problem

is that, when checking B.class, compilers do not check that class C should have

a method int m(), as would be checked if only the source of B were available.
A similar situation arises in the following example:

class A{ static void main(String[] args){new B().m()} }

class B{ D m(){return new C();} }

class C extends D {}

class D {}

Assume, analogously to the example above, to �rst compile all fragments, then

modify C.java as follows:

class C {}

If we re-compile A.java and C.java in this context, then we get no static error,

but the execution of class A throws VerifyError. The problem, again, is that,

when checking B.class, compilers do not check that class C should be a subtype

of D, as would be checked if only the source of B were available.

Finally, consider the following source fragments:

class A{ static void main(String[] args){new B().m()} }

class B{ int m(){return new C().m();} }

class C extends D {}

class D { int m(){return 1;} }

6 Hence in an analogous example where A extends B which extends C re-compilation

of C.java would be enforced even by checking B.class, thus causing no run-time

error.

and the situation in which we start from the context containing the source frag-

ments above, we compile all of them, and then we remove B.java7 and modify

C.java as follows:

class D {}

class C extends D{ int m() { return 1;} }

Again, re-compiling A.java, C.java and D.javawe get no static error and obtain

a context in which the execution of class A throws NoSuchMethodError. Here the

problem is that the call new C().m() in B.class is annotated with the class D

where method m was previously declared and the JVM veri�es that m is actually

declared either in D or in some superclass of D. Note that, as in the preceding

example, in presence of B.java the problem can be �xed by re-compiling it; in

this case, however, no static error is detected, but a new binary fragment for B

where the call is annotated with C is produced.

In summary, these three examples show that standard compilers do not per-

from on binary fragments some checks which could be possibly performed at

compile-time. These are either checks which are performed on source fragments,

or checks related to additional informations stored in the bytecode which make

it less \abstract" w.r.t. to source. In the type system we de�ne in the follow-

ing, on the contrary, these checks on binaries are performed, hence in the three

examples a static error would be raised.

As �nal remark, the examples above also show that rules for Java separate

compilation are not trivial to understand and express and that, therefore, the

behavior of the existing compilers cannot be always easily predicted; other exam-

ples, not related to violating type safety, where the compilers exhibit unexpected

behavior can be found in [1].

3 Framework

We introduce now a simple framework allowing to model separate compilation

and to express the property of type safety in a formal way.

Notations.We denote by [A *�n B] the set of the �nite partial functions from A into

B, that is, functions from A into B which are de�ned on a �nite subset of A. For each

f 2 [A *�n B], we set Def (f) = fa 2 Ajf(a) 2 Bg. 2

Let us denote by C the set of fragment names, ranged over by c, and by S and B

the set of source and binary fragments, respectively. We assume that S\ B = ;.

In the Java case, fragment names will be class/interface names, source fragments

will be .java �les containing (for simplicity) exactly one class/interface declara-

tion, and binary fragments will be .class �les. However, the model we present

is general and can be applied to fragments of di�erent nature.

7 In presence of B.java the counter-example works as well, but the error can be

detected by forcing its re-compilation.

A compilation context cc is a pair hccb; ccsi 2 CC = [C *�n B]� [C *�n S].

In general Def (ccb)\Def (ccs) 6= ;, since for some fragment both the source and

the binary can be available (intuitively, this means that the binary is obsolete).

The results of (successful) compilations are �nite partial functions from class

names into binary fragments. Hence, we can model the compilation process by

a (partial) function:

C : }(C) � CC * [C *�n B]

where C(C ; hccb; ccsi) = cc
0

b
intuitively means that the compilation, invoked

on fragments with names in C , in the compilation context consisting of binary

fragments ccb and source fragments ccs, produces binary fragments cc0
b
.

We introduce now the formal property of type safety for separate compilation.

For our purposes, we can abstract from all detailes of the linking and execution

model and just assume a very general judgment of the form ccb ` c;OK which

is valid if and only if execution of c in the context of binary fragments ccb does

not throw any linking related error. In the Java case, for instance, this judgment

corresponds to start execution from class8 c in a context where all binaries in

ccb are available to the JVM, hence some of them could be dynamically linked

during execution.

De�nition 1. A compilation function C is type safe i� for any compilation

context hccb; ccsi and set of fragment names C , if C(C ; hccb; ccsi) = cc
0

b
, then,

for any c 2 Def (cc0
b
), cc0

b
` c;OK.

Note that type safety requires that execution does not raise linking related errors

only when started from classes that were the product of the compilation. An

error raised by an execution started from a class c present in the original binary

context ccb can be either an error whic was already present (that is, ccb ` c;OK

does not hold), hence not due to compilation, or is due to the fact that some

binary used by c has been modi�ed. In this case we say that the compilation

function does not satisfy contextual binary compatibility [1].

4 A safe type system for separate compilation

In this section, we de�ne a type system (that we conjecture to be safe) which

models separate compilation for a small Java subset .

The language we consider is shown in Fig. 1; metavariables C, m,x and N range

over sets of class, method and parameter names, and integer literals, respectively.

Both source and binary fragments are speci�ed.

A source fragment S is a class declaration consisting of the class name, the

name of the superclass and a set of method declarations. A method declaration

consists of a method header and a method body (an expression). A method

header consists of a (return) type, a method name and a sequence of parameter

8 We also ignore for simplicity the fact that c should have a main method.

types and names. There are four kinds of expressions: instance creation, param-

eter name, integer literal and method invocation. A type is either a class name

or int.

A binary fragment B consists of the name of the superclass, a set of annotated

method headers and a set of type constraints KS. An annotated method header

is a method header pre�xed by an annotation indicating the class which contains

the method declaration. A type constraint K is either a subtype constraint C1 �

C2, or an implementation constraint C� AMHS, stating that class C must provide

annotated methods AMHS.

Note that here, for simplicity, binary fragments contain no code, but only

some type information which can, however, easily retrieved from a regular Java

.class �le.

S ::= class C extends C
0 f MDS g

MDS ::= MD1 : : : MDn (n � 0)

MD ::= MH f return E; g
MH ::= T0 m(T1 x1; : : : ; Tn xn) (n � 0)

E ::= new C j x j N
E0:m(E1; : : : ; En) (n � 0)

T ::= C j int

B ::= hC; AMHS; KSi
KS ::= K1 : : : Kn (n � 0)

K ::= C1 � C2 j C� AMHS

AMHS ::= C1 T1 m(�T1) : : : Cn Tn m(�Tn) (n � 0)
�T ::= T1 : : : Tn (n � 0)

Fig. 1. Syntax and types

The top-level rules of the type system are de�ned in Fig.2.

The main judgment cc ` CS; ccb is valid whenever the compilation invoked on

the class names in CS in compilation context cc successfully produces the binary

context ccb.

The compilation can be split in two distinct phases; �rst, all classes in CS

(and, implicitly, all classes which classes in CS depends on) are type-checked

(hypotheses), then binary fragments are produced for all the type-checked classes

which were not yet in binary form (conclusion).

The side condition CS � Def (ccs) ensures that all classes in CS have a source

fragment in cc; if not so, compilation fails, otherwise classes in CS are sequentially

type-checked (hypotheses).

Judgment cc;� ` C;� 0 is valid whenever class C is well-typed w.r.t. com-

pilation context cc and class environment � ; � 0 is the new class environment

produced during the type-checking of C. A class environment is a �nite map

associating with each class name C a pair hC0; AMHSi, where C0 denotes the super-

class of C, while AMHS is the set of all annotated method headers (either inherited

hccb; ccsi;�0 ` C1;�1
: : :

hccb; ccsi;�n�1 ` Cn;�n

hccb; ccsi ` CS; cc
0

b

CS = fC1; : : : ; Cng � Def (ccs)

Def (�0) = fObjectg; �0(Object) = h?; ;i
Def (cc0

b
) = Def (�n) n Def (ccb)

8 C 2 Def (cc0
b
) cc0

b
(C) = bin(ccs; �n; C)

cc;� ` int;� cc;� ` C;�
C 2 Def (�)

hccb; ccsi;� ` C1;�1
hccb; ccsi;�1[C 7! hC1; AMHSi] ` KS;�2

hccb; ccsi;� ` C;�2

C 62 Def (�)

ccb(C) = hC1; AMHS
0; KSi

�1(C1) = h ; AMHS1i
AMHS1[AMHS

0] = AMHS

hccb; ccsi;� ` C1;�1
hccb; ccsi;�1[C 7! hC1; AMHSi] ` MDS;�2

hccb; ccsi;� ` C;�2

C 62 Def (�) [Def (ccb)

ccs(C) = class C extends C1 f MDS g
AMHS

0 = Amhs(C; MDS)

�1(C1) = h ; AMHS1i
AMHS1[AMHS

0] = AMHS

Fig. 2. Top-level rules

or declared) of C. Class environments model the needed type information about

classes collected by the compiler while inspecting source and binary fragments

in the compilation context.

The initial class environment �0 (see the corresponding side condition) con-

tains only the prede�ned empty class (with no superclass) Object9. Class envi-

ronment �1, produced while type-checking C1, contains (besides �0) type infor-

mation about all classes needed for type-checking C1: all superclasses of C1 and

all classes used (both directly and indirectly) by C1.

The new class environment �1 is used for checking next class C2 and so on,

until producing an environment �n containing which have been type-checked;

from this set we can easily retrieve the set of all classes which need to be compiled

(see the side condition de�ning cc
0

b
).

The remaining rules specify type-checking of primitive types and classes.

Type-checking of primitive types and or classes already collected in the class

environment is trivial.

The other two rules concern classes which have not been inspected yet (the

former deals with binary fragments, whereas the latter with source fragments).

They are almost symmetric, except that when both binary and source fragment

are present, priority is given to the former. First, the direct parent class C1 is

type-checked; then, from the annotated method headers of C1 and those declared

in C, the annotated method headers of C are derived (and rules on overriding are

checked). Finally, either the set of type constraints (in the binary case) or the

set of method declarations (in the source case) of C is type-checked.

9 For simplicity, we ignore all the prede�ned methods of Object.

For lack of space, all other rules and auxiliary functions are de�ned in the

Appendix.

Finally we show how the second example discussed in Sect.2 can be modeled

in the framework de�ned above.

The compilation context cc0 = hcc0
b
; cc0

s
i is de�ned by cc

0

b
= ;, cc0

s
=

fA 7! SA; B 7! SB; C 7! SCg, where SA, SB, and SC are the source code of A, B, and

C as de�ned in the example10.

The compilation context cc1 = hcc1
b
; cc0

s
i (corresponding to the context after

invoking the compiler on A) is obtained by updating the previous binary context

cc
0

b
with the binary context ccb derived from the judgment cc0 ` fAg; ccb.

Since in this case cc
0

b
is empty, we have cc

1

b
= ccb = fA 7! BA; B 7! BB; C 7! BCg,

where

BA = hObject; fA int main()g; fB � B; B� fB int m1()ggi

BB = hObject; fB int m1()g; fC � C; C� fC int m1()ggi

BC = hObject; fC int m1()g; ;i

The subtype constraints B � B and C � C simply require the existence of class

B and C, respectively, otherwise no constructor could be correctly invoked on

them.

The context cc0
2
is obtained from cc1 by changing the source code of C (ac-

cording to the example), therefore cc
0

2
= hcc1

b
; cc2

s
i, where cc

2

s
= cc

0

s
[S0

C
=C] is

obtained from cc
0

s
by updating C with the new source S0

C
.

Finally, A cannot be successfully compiled in context cc2, since there is no

ccb s.t. the judgment cc2 ` fAg; ccb is valid.

5 Conclusion

We have shown that typing rules for Java separate compilation can be quite

complex and cannot easily explained informally. Moreover, they can be be unsafe,

as happens for SDK and Jikes compilers since they perform very few checks on

binary fragments delegating them to the JVM. We argue that a more robust

compiler implementation should perform as much checks as possible at compile

time, delegating to the JVM only those checks that can only be performed at

run time.

We have introduced a simple framework which allows to formally model

separate compilation and the related properties. Within this framework, we have

de�ned, for a small subset of Java, a type system for separate compilation which

we conjecture to be type safe.

In this paper, for lack of space, we have focused on the safety property; how-

ever, there are other interesting properties one can express for separate compi-

lation, like contextual binary compatibility (mentioned at the end of Sect.3) and

monotonicity, that is, the fact that when a subset of the source fragments com-

posing a program is changed, re-compiling only this set gives the same result as

10 Where, however, static has been removed and void replaced with int.

re-compiling the whole program (this property is mentioned as desirable in [3]

and formalized in [1]).

The work presented in this paper is a �rst step towards the formal de�nition

and comparison of di�erent type systems for Java separate compilation, corre-

sponding, e.g., either to standard Java compilers, or to extended compilers which

perform additional checks. A lot of work still has to be done. On the theoretical

side, we plan to de�ne a complete execution and linking model for the toy lan-

guage de�ned in this paper, including a toy bytecode, thus allowing to formally

prove type safety. We also want to study the formal relations between the type

safety property analyzed in this paper and other properties like monotonicity

and contextual binary compatibility [1]. On the practical side, we plan to extend

the safe type system de�ned here to more relevant Java subsets and to develop

extended compilers which satisfy good properties like type safety.

Acknowledgments: We warmly thank Sophia Drossopoulou for her precious con-

tribution to stimulate and enhance this work.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Monotone separate compilation in Java.

Technical Report, DISI. Submitted for publication, April 2001.

2. G. Bracha, J. Gosling, B. Joy, and G. Steele. The Java
TM

Language Speci�cation,

Second Edition. Addison-Wesley, 2000.

3. L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on

Principles of Programming Languages 1997, pages 266{277. ACM Press, January

1997.

4. S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving

type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,

number 1523 in Lecture Notes in Computer Science, pages 41{82. Springer Verlag,

Berlin, 1999.

5. D. Syme. Proving Java type sound. In Jim Alves-Foss, editor, Formal Syntax and

Semantics of Java, number 1523 in Lecture Notes in Computer Science, pages 83{

118. Springer Verlag, 1999.

6. D. von Oheimb and T. Nipkow. Machine-checking the Java speci�cation: Proving

type-safety. In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java, num-

ber 1523 in Lecture Notes in Computer Science, pages 119{156. Springer Verlag,

1999.

A Appendix

Class environments

� ::= C1:hC
?

1
; AMHS1i; : : : ; Cn:hC

?

n
; AMHSni (n � 0)

C? ::= ? j C

Binary class generation

bin(ccs; �; C) = hC1; AMHS; KSi if ccs(C) = class C extends C1 f MDS g

AMHS = Amhs(MDS)

� ` MDS;KS

Annotated methods update A set of method headers AMHS is well-formed if it

does not contain overloaded methods.

AMHS0[AMHS] =

�
AMHS! AMHS0 if AMHS! AMHS0 is well-formed

unde�ned otherwise

where AMHS! AMHS0 = AMHS [fC T m(�T) j6 9 C1 s:t: C1 T m(�T) 2 AMHSg

Annotation and extraction of method headers

Amhs(C; MDS) = annotate(C;Mhs(MDS))

annotate(C; MH1 : : : MHn) = C MH1 : : : C MHn

Mhs(MH1f return E1; g : : : MHnf return En; g) = MH1 : : :MHn

Method resolution

RetType(�; C; m; T1 : : : Tn) = T0 if

8<
:

� (C) = AMHS

C1 T0 m(T0
1
x1; : : : ; T

0

n
x0
n
) 2 AMHS

� ` Ti � T0
i
for i = 1::n

cc;�0 ` K1;�1 : : : cc;�n�1 ` Kn;�n

cc;�0 ` K1 : : : Kn;�n

cc;� ` C1;�1 cc;� ` C2;�2 �2 ` C1 � C2

cc;� ` C1 � C2;�2

cc;� ` C;�1 �1 ` AMHS1 � AMHS

cc;� ` C � AMHS;�1
�1(C) = AMHS1

Fig. 3. Type-checking sets of constraints

� ` MD1; KS1 : : : � ` MDn; KSn

� ` MD1 : : : MDn; KS1 : : : KSn

� ; fx1 7! T1; : : : ; xn 7! Tng ` E : T; KS

� ` T0 m(T1 x1; : : : ; Tn xn) f return E; g; KS T0 � T0 : : : Tn � Tn T � T0

� ;� ` new C : C; C � C � ;� ` N : int;� � ;� ` x : T;�
�(x) = T

� ;� ` E0 : C; KS0

� ;� ` E1 : T1; KS1

: : :

�n�1;� ` En : Tn; KSn

� ;� ` E0:m(E1; : : : ; En) : T; KS0 : : : KSn C� fC1 T m(T1 : : : Tn)g
� (C) = AMHS1 C1 T m(T1 : : : Tn) AMHS2

Fig. 4. Code generation

cc;�0 ` MD1;�1 : : : cc;�n�1 ` MDn;�n

cc;�0 ` MD1 : : : MDn;�n

cc;� ` T0;�0 : : : cc;� ` Tn;�n
cc;�n; fx1 7! T1; : : : ; xn 7! Tng ` E : T;� 0

� 0 ` T � T0

cc;� ` T0 m(T1 x1; : : : ; Tn xn) f return E; g;� 0

cc;� ` C;� 0

cc;� ;� ` new C : C;� 0 cc;� ;� ` N : int;�

cc;� ;� ` x : T;�
�(x) = T

cc;� ;� ` E0 : C;�0
cc;�0;� ` E1 : T1;�1
: : :

cc;�n�1;� ` En : Tn;�n

cc;� ;� ` E0:m(E1; : : : ; En) : T;�n
RetType(�; C; m; T1 : : : Tn) = T

Fig. 5. Type-checking of source class bodies

� ` C
0

1 � C1 : : : � ` C
0

n � Cn

� ` fC1 T1 m1(�T1); : : : ; Ck Tk mk(�Tk)g� fC0
1
T1 m1(�T1); : : : ; C0n Tn mn(�Tn)g

n � k

� ` int � int � ` C � C
C 2 Def (�)

� ` C � C0
� (C) = hC0; i

� ` C � C
0 � ` C

0 � C
00

� ` C � C0

Fig. 6. Implementation and widening

From FGJ to Java according to LM translator

Mirko Viroli
DEIS – Università di Bologna

via Rasi e Spinelli 176
47023 Cesena (FC), Italy

mviroli@deis.unibo.it

ABSTRACT
In this paper we present a formalization of LM translator [11], a
proposal for adding parametric polymorphism to Java by means of
a logical extension of Generic Java [6]. LM translator overcomes
the type-integration lacks of Generic Java thanks to several distinc-
tive features: run-time information on parametric types is carried
into type descriptors created at load-time, reflective features of Java
are exploited for dealing with legacy classes, hashtables are used to
tackle performance issues, and special method descriptors tables
support dynamic dispatching of method calls. Because of all these
tricks LM translator turns out to be a complex system, whose de-
scription and understanding are often quite complicated, whereas
translation approaches were typically used also because of their
simplicity.

So, the declared goal of the formalization is to help reasoning about
LM, reaching a good trade-off between compactness of its descrip-
tion and completeness in treating its features. Technically, this is
done by modeling LM translator as a compilation of FGJ [3], a core
calculus for Generic Java, into full Java. This choice for the source
and target languages allows to directly focus on the key issues re-
lated to parametric polymorphism, thanks to the minimality of FGJ,
and not to constrain in any way the power and features of LM trans-
lator, as the target language is full Java. The formalization obtained
is satisfactorily compact; the only significant issues left out are the
management of legacy classes and the internal details of the library
classes supporting the translation.

In this paper we also argue that this kind of formalization is the
most suitable support for the development of an actual prototype of
the translator. This is motivated by outlining our current work on
this direction, in which the formalization here introduced plays a
crucial role. The key property of our methodology is the separation
between the peculiar aspects of the translation and the details not
strictly related to parametric polymorphism. This is meant to speed
up the tuning of the translation towards an optimized implementa-
tion for the Java programming language.

1. INTRODUCTION AND MOTIVATION
In the context of the proposals for adding generics to the Java pro-
gramming language as a response to Sun’s call [1], Generic Java
(GJ) [6] is going to be the basis for the first actual release of Java
providing this extension [8]. Its basic idea is to fully rely on the so-
called erasure technique, that is translating a parametric class into
the Java class one would have written without having parametric
polymorphism and exploiting the homogeneous generic idiom [5].
All the information on the type parameters of a given parametric
class or method is completely lost in the translated code, as para-

metric classes and methods are translated into their monomorphic
version, e.g. List<String> is translated to List, and each type
variable is translated to its bound (Object by default). This tech-
nique allows GJ to enjoy full upward compatibility properties and
also avoids almost any translation overhead [6].

However, GJ has also a well recognized limitation. Due to type
erasure, those operations involving run-time inspection of the type
of an object, basically type-casts and instance tests (Java operator
instanceof), cannot be supported for parametric types. Being
unable to do this may be a serious constraint. On the one hand,
even though one adds parametric polymorphism to the language,
the need for using heterogeneous collections of elements remains,
therefore, the problem of accessing objects previously up-casted
still exists. Type-casts and instance tests are the only way to safely
recover the proper type of such objects. On the other hand, these
type-dependent operations are the basis for supporting successful
Java mechanisms related to persistence such as Java Serialization,
Java Remote Method Invocation and JavaBeans. Adding paramet-
ric polymorphism to the language but then disabling its integration
with these important mechanisms clearly leads to a somewhat in-
complete extension. As discussed in [8], however, there is some
lack of experience with constructs supporting generic types at run-
time, and it is unclear whether the current proposals supporting this
mechanism addresses performance and compatibility in the proper
way. So, the choice was to rely on GJ anyway, at least until fu-
ture studies may lead to solutions effectively supporting parametric
types at run-time.

Currently, the proposal that seems the most reasonable starting point
for this research is LM translator [11]. It extends the behaviour of
GJ translator so as to make the code produced carrying the nec-
essary information about the instantiation of the type parameters,
into Java objects called type descriptors and method descriptors.
These descriptors are created avoiding unnecessary space overhead
and run-time overhead, and are exploited to implement those oper-
ations requiring run-time information on the parametric type of an
object.

An implementation based on LM translator is likely to be a good
compromise between the performance overhead introduced and the
expressiveness power gained by the language. However, the de-
scription and the understanding of the effects of LM translator on
the code are not as simple as for GJ. In fact, LM translator puts
together a lot of heterogeneous ingredients. First of all, the type
and method descriptors supporting generics at run-time are entirely
created at load-time, and Java Reflection is used to integrate this
management with legacy classes. Then, special data structures ex-

ploiting hashtables are automatically built by the translator in order
to reduce the performance overhead of accessing descriptors. Fi-
nally, dynamic dispatching of method calls is supported through
the simulation of the management of Virtual Method Tables, ex-
ploiting structures of method descriptors called Virtual Parametric
Methods Tables [10].

In this situation, a formalization would be a necessary tool for har-
nessing this complexity. It may allow to focus on the relevant issues
abstracting away from unimportant ones, and to describe in a com-
prehensive way the important ideas so as to avoid risks of incom-
plete specifications. Among all these aspects, the formalization is
usually the key tool for leading to robust implementations.

In principle, we may follow the approach of [3], where the seman-
tics of GJ is given in terms of a translation from a source core
language, which is a subset of the language accepted by GJ, to a
target core language, which is a subset of Java. In particular, these
core languages are called, respectively, Featherweight Generic Java
(FGJ) and Featherweight Java (FJ), and they include only those few
language features directly involved in the translation of generics.
This approach has a number of flavors: (i) it keeps the specification
as compact as possible, (ii) it completely defines the features of in-
terest discarding secondary ones, (iii) it allows to capture the core
concepts of the translation, and (iv) it allows for proving important
correctness results, such as type-preservation. However, all these
properties hold together because the ideas behind the correspond-
ing system are few and relatively simple.

For LM translator this would not be possible. The basic problem
in fact is to isolate as target language a subset of Java having all
the features needed to describe the effects of LM translator on the
code. Such a language would not be as small as one would like
it to be. Suppose we want to proceed by using as target language
an extension of FJ. We should add to FJ (i) reflection, in order to
deal with legacy Java classes and to support the management of
descriptors, (ii) side-effects and class loading, to model the funda-
mental idea that descriptors are not created each time by need, but
once and for all at the application boot-strap, (iii) static fields of
client classes, containing the descriptors they use, and (iv) static
methods of parametric classes, storing important facilities for cre-
ating their descriptors. Then, it must be also considered that an
important role is played by some library class of Java, such as ar-
rays, vectors and hashtables. With such a complex target language
it would be basically impossible to prove properties in a paper of
reasonable space.

Clearly, one may think of dropping some of the features of LM
trying to focus on just few issues, so as to rely on a smaller tar-
get language. For instance, we may discard the idea of load-time
creation of descriptors, and dropping class-loading and side-effects
from the target language. However, doing this will made our de-
scription of LM lacking one of the main reasons that motivated its
introduction. In general, dropping relevant features simplifies the
proof of properties but leads to incomplete specifications.

So, in this paper our goal is to define a compact formalization al-
lowing for a complete description of the features of LM translation.
This is done by means of a translation from the source language
FGJ (with some minimal extension), which is a subset of the lan-
guage accepted by LM, to a large language, which is Java itself.
This choice will turn out to be the best one to our end, as the com-
plexity of LM translator is mostly harnessed in a couple of pages

of rules.

Then, we describe our development of an actual implementation of
LM translator, highlighting that the formalization here introduced
plays a crucial role in supporting it. Basically, it allows to directly
write a core prototype of the system containing all the relevant
features of LM translator. This prototype can be gradually turned
into the final implementation by just adding the programming con-
structs left out by FGJ, without the need of dealing with further
issues strictly related to parametric polymorphism. Our goal is not
to produce a fully-featured implementation for Java, but to have a
tool allowing fast prototyping and tuning of LM.

The remainder of the paper is as follows. Section 2 overviews LM
translator, and Section 3 depicts FGJ focusing on the notation and
on the functions introduced in [3] which will be helpful to our for-
malization. Section 4 provides the actual compilation of FGJ into
Java, and Section 5 a comprehensive example, which helps under-
standing the key concepts of the formalization. Section 6 discusses
how we meant to fill the gap between this formalization and the
actual implementation of the translator.

2. LM TRANSLATOR
In the code produced by LM translator [11], each class that needs
to perform some operation on parametric types, such as type-casts,
instance tests, and object allocations, will handle type descriptors
for these types, which are objects of the library class $TD. In par-
ticular, these type descriptors are stored into static fields created
by the translator, and are initialized at load-time. When allocating
an object from a parametric type (new expression), the correspond-
ing descriptor is passed as first argument in the constructor, and
will then be used to make that object keeping information on its
type. Then, these descriptors are exploited to implement type-casts
and instance tests, using the methods cast and isInstance of the
class of descriptors $TD. See the signature of class $TD in Figure 1.

Similar management is supported for parametric methods, with anal-
ogous method descriptors of class $MD which are passed at invocation-
time. However, here the problem is complicated due to the need of
dealing with dynamic dispatching. In [10] we proposed a solu-
tion exploiting a data structure called Virtual Parametric Method
Table (VPMT). Each descriptor carries its own VPMT, which anal-
ogously to a Virtual Methods Table (VMT) [4], allows the proper
method descriptor to be bound to the body at invocation-time. The
VPMT is an array with one entry for each virtual method (i.e., a
public or protected method of Java); each entry contains a vector of
method descriptors. The position of a given instantiation of a para-
metric method is invariant through VPMTs of different subclasses,
so by just using this position the actual receiver of the invocation
can access the right descriptor [10].

Another key aspect of LM translator is that descriptors are kept by
descriptors managers living at run-time, respectively in the class
$TDM (Type Descriptors Manager) and $MDM (Method Descriptors
Manager). Their basic goal is to prevent descriptors from being
created twice. This is obtained by registering descriptors in their
manager each time they are created. Finally, LM translator also re-
lies on a special technique for treating those parametric types that
exploit type variables of the scope within their parameters [11].
As the actual instantiation of these types is unknown until the type
variables get actually instantiated, we let each type descriptor and
method descriptor carrying those type/method descriptors using its
parameters, called friend types/methods. Then, when we register a

public class $TD {

public Class c;

public $TD[] params;

public $TD[] friendTs;

public int[] friendMs;

public $TD father;

public Vector[] VPMT;

public $TD(Class c, $TD[] p) { ... }

public boolean checkNew() { ... }

boolean isInstance(Object o){

return (o instanceof $Parametric)

?(($Parametric)o).getTD().isSubType(this)

:c.isInstance(o);

}

Object cast(Object o){

if (isInstance(o)) return o;

throw new ClassCastException(...);

}

}

public class $MD {

public int mID;

public int lPos;

public $TD tR;

public $TD[] params;

public $TD[] friendTs;

public int[] friendMs;

public $MD($TD t, int mID, $TD[] p) { ... }

public boolean checkNew() { ... }

}

public class $TDM{

public static $TD register(Class c) { ... }

public static $TD register(Class c,$TD[] p) { ... }

public static void initVPMT($TD t){ ... }

}

public class $MDM {

public static $MD register($TD tR,int mID,$TD[] p) { ... }

public static void propagate($TD tR,int mID,$TD[] p){ ... }

}

Figure 1: Some detail on the structure of the library classes

descriptor we are able to automatically register its friend descrip-
tors. This is the main task accomplished by the methods createTD
and createMD, built by the translator in each parametric class. See
some detail on the implementation of the library classes supporting
the translation in Figure 1.

In general, we will assume that the source language for LM trans-
lator is the same as that of GJ, even though at this point of our
research we haven’t faced yet the implementation of issues such as
inner parametric classes, parametric exceptions, and so on, which
are all managed by GJ. However, we are confident they can be im-
plemented in a satisfactory way in our framework.

Some of the core ideas of LM translator have been borrowed from
NextGen, a code-expansion technique for translating generics in
Java proposed in [2]. There, type-passing style is exploited for
implementing parametric methods, as objects called snippet envi-
ronments are passed at invocation-time in an analogous way of our
method descriptors. These environments are created at load-time as
well, leading to very small run-time overhead. However, the code-
expansion technique leads to high memory and code footprint, so
the approaches exploiting this technique will not be used for the
actual implementation of the Java programming language, as moti-
vated in [8].

The general idea of LM translator seems not to be strictly related
to Java, but of a somewhat general appealing. In fact, the proposal
for extending Microsoft’s .NET Common Language Runtime with
generics shown in [9] uses a similar technique. The main difference
is that in this proposal the necessary information on the parametric
types is not built eagerly, at load-time, but only once on a by-need
basis. This style can be used in LM as well. Basically it implies
that type descriptors are not created in the initialization code of the
client classes, but the first time they are accessed. We are currently
working on this variation of LM, which we believe may lead to a
better implementation.

3. FEATHERWEIGHT GENERIC JAVA
The source language for our formalization is Featherweight Generic
Java (FGJ) [3], a core-calculus for GJ focusing on parametric classes,
parametric methods and fields, and in which expressions can be
only type-casts, object allocations, field accessing and method in-
vocations. Language constructs remaining out from FGJ, and from
the formalization we are going to introduce as well, are interfaces,
inner classes and arrays.

To the end of introducing the syntax of FGJ, we let the metavari-
ables C and D range over class names; S, T, and U range over types;
X and Y range over type variables; N and P range over non-variable
types; CL ranges over class declarations, K over constructors, M over
method declarations, f over field names, m over method names, x
over variables, and e over expressions. We denote by a a list of
elements a1,a2,.., and the empty list by �. Then, we abuse the
notation of function application, as a function f(a) = b can be
used in f(a) = b to denote the application on all the elements of
the list a, returning the list of results b. Substituting the sub-term
a by b into the term c is denoted by [b=a]c, while [a 7! b]f is
the function mapping a to b and any other element c to f(c). The
grammar of FGJ is the following:

CL ::= class C<X / N> / N{T f; K M}

K ::= C(T f){super(f); this.f=f;}

M ::= <X / N> T m (T x){ " e;}

e ::= x | e.f | e.m<T>(e)

| new N(e) | (T)e

T ::= X | N

N ::= C<T>

The environments � and � are used to model the type system of
FGJ. � = X / N maps type variables into their bounds, which are
non-variable types. � = y : T maps variables into types, that is for-
mal parameters to their declared type. Then, we have the following
judgements (see [3] for their actual semantics):

� The subtyping judgement � ` T <: U, stating that the type
T is a subtype of U under the environment �.

� Expression typing judgement �;� ` e 2 T, that under a
� environment and a � environment, gives the type T to the
expression e.

� Class typing judgement CL OK, stating whether a class defi-
nition is well-formed and well-typed.

We suppose the existence of a class table CT, taking class names
and returning class definitions. Among other usual properties, we
suppose that the root type Object is in the dominion of CT, and
that all the class definitions are OK.

Our version of FGJ is actually slightly different from the one pre-
sented in [3]. In order to stress the fact that LM translator allows for
implementing type-operations without any limitation we changed
the syntax of type-casts, allowing to cast an object not only to a
non-variable type N as in [3], but to a parametric type T in general.
The corresponding change on the type system and on the relative
proofs should be minimal. In particular, now we don’t need any
rule for checking valid down-casts as in [3], as all type-casts are
compilable by LM translation. To the end of defining our transla-
tion we need the following look-up functions defined in [3]:

� mtypemax(m; C) = D 7! D, returning the erased argument
types D and return type D of the method m in C. In particular,
this is done by finding the method in the highest superclass
in which it is defined.

� fieldsmax(C) = D f, returning couples - erased type, field
name - of the class C, finding field types in the highest super-
class in which they are defined.

Looking for members in the highest class and comparing the result
with standard lookup functions permits to determine whether some
type variable has been instantiated due to an extend clause. In such
a case in fact, the so-called stupid casts should be automatically
inserted by the translator [3].

4. THE FORMALIZATION
This section presents the core of the paper, that is the compilation of
FGJ into Java according to the translation schema of LM introduced
in [11, 10]. As already mentioned our version of FGJ provides full
type-cast ability. [11] highlights that translating type-casts is much
the same than translating instance tests. So, the translation of type-
casts is a mean for the translation of type-dependent operations in
general.

This compilation abstracts away from the actual translation of non-
parametric classes and methods. For instance, in an actual imple-
mentation the classes that do not have type parameters will not keep
a local type descriptor, and methods without type parameters will
not need to receive the method descriptor as first argument, and so
on. In general the final translator should be able to translate pure
Java sources to themselves. Then, here we also abstract from the
details on the implementation of library classes $TD, $MD, $TDM and
$MDM. An interested reader can refer to [11, 10].

The whole translation resembles the one shown in [3], both on nota-
tion and on semantics. The two basic differences are that LM trans-

lator provides special translation for operations involving paramet-
ric types and/or instantiating type parameters, and that the proper
code to create descriptors and to keep track of them should be added
to each class.

4.1 Auxiliary functions
The basic idea behind LM translator is to handle Java objects called
type descriptors and methods descriptors, containing the neces-
sary information to translate casts, object allocations and method
invocations, included in the corresponding class or method, re-
spectively. While a type descriptor is completely identified by the
corresponding non variable type N, for method descriptors we use
method signatures L, where L ::= T.m<T>.

The information on what type descriptors and method descriptors
have to be created is statically gathered at translation-time, and are
modeled by means of the functions getT and getM. In particular,
getT is used to get the parametric types used in casts, allocations
and as receivers of method calls. This can be done either (i) from an
expression e in the environments � and � (getT�;�(e)), (ii) from
the body of a method M defined in class C (getT(C; M)) or (iii) from
all the expressions contained in class C (getT(C)). Analogously,
getM gets the signature of the parametric methods invoked (i) from
an expression e in the environments � and � (getM�;�(e)), (ii)
from the body of a method M defined in class C (getM(C; M)) and
(iii) from all the expressions contained in a class C (getM(C)). Their
semantics is shown in Figure 2. The operator � is meant to join two
lists or an element and a list, discarding duplicates and preserving
order. For instance we have a,b,c�a,d,c,f = a,b,c,d,f. Basi-
cally, the function getT gathers the types used in casts, allocations
and as receivers of method calls, while the function getM gathers
the signatures of the methods invoked.

We divide parametric types and method signatures into those hav-
ing fully-instantiated type parameters, called bound types and bound
methods, and those that instead contain some type variable, called
free types and free methods, respectively. In the former case their
descriptors are completely known, so they can be registered at the
load-time of the classes which use them. In the latter case, in-
stead, they are registered only when the descriptor of the enclos-
ing class/method is registered, as only at this time the instantia-
tion of the type parameters is known. We introduce the predicates
boundT�(N), freeT�(N), boundM�(L) and freeM�(L) to check
if under the environment �, specifying the type variables of the
scope, the type N and the signature L are, respectively, bound or
free. The notation for these predicates will be abused, so that when
applying them to a list the result is the sublist of the elements satis-
fying the predicate. We have:

freeT�(N) , 9X 2 dom(�); 9O : [O/X]N 6= N

freeM�(L) , 9X 2 dom(�); 9O : [O/X]L 6= L

boundT�(N) , not freeT�(L)
boundM�(L) , not freeM�(L)

We provide facilities for accessing the type descriptor of a given
type and the method descriptor of a given method signature. We
introduce two environments for types and signatures, denoted by
symbols � and �, respectively. � = T 7! eJ associates types to
Java expressions representing the corresponding descriptor, �� =
L 7! eJ binds method signatures to Java expressions representing
the corresponding descriptors, the latter possibly exploiting the �
environment to resolve some type descriptor. We access the de-

getT�;�(x) = �

getT�;�(e.f) = getT�;�(e)

�; � ` e 2 C<T>

getT�;�(e.m<T>(e)) = C<T> � getT�;�(e)

getT�;�(new C<T>(e)) = C<T> � getT�;�(e)

getT�;�((T)e) = T � getT�;�(e)

CT[C]=class C<X / N> / N{T f; K M}

M=<Y / P> T m(S x){ " e;}

� = X / N; Y / P � = x:S

getT(C; M) = getT�;�(e)

CT[C]=class C<X / N> / N{T f; K M}

getT(C) = getT(C; M)

getM�;�(x) = �

getM�;�(e.f) = getM�;�(e)

�; � ` e 2 C<T>

getM�;�(e.m<S>(e)) = C<T>.m<S> � getM�;�(e)

getM�;�(new C<T>(e)) = getM�;�(e)

getM�;�((T)e) = getM�;�(e)

CT[C]=class C<X / N> / N{T f; K M}

M=<Y / P> T m(S x){ " e;}

� = X / N; Y / P � = x:S

getM(C; M) = getM�;�(e)

CT[C]=class C<X / N> / N{T f; K M}

getM(C) = getM(C; M)

Figure 2: Gathering functions for type and method descriptors

scriptor for a type T by the notation jTj� and that of a method sig-
nature L by jLj�;�. Then, we introduce a standard � environment
denoted by �s, implementing the registration of bound types, de-
fined as:

�s = C<T> 7! C.createTD(new $TD[]{jTj�s
})

that is, exploiting the static method createTD of the class, which
accepts the array of type descriptors for the parameters. When a �
environment has to deal with free types as well, we should add the
specification on how to resolve type variables, and this can be done
exploiting the environment [X 7! eJ]�, according to our notation
for function substitution. Then, we also introduce a standard �
environment �s as follows:

CT[C]=class C<X / N> / N{T f; K M}

Mi=<Y / P> T m(S x){ " e;} pos(C; Mi) = j

�s� = C<T>.m<U> 7!

C.createMD(jC<T>j�; j; new $TD[]{jUj�})

The static method createMD is created by the translator, and ac-
cepts the type descriptor of the receiver, the position of m in C,
and an array containing the descriptors for the parameters. The
semantics of function pos(C; M) is described in Figure 3. It re-
turns the position of M in the VPMT of C. Basically, a method
adds a new element to the VPMT only if it does not override a
method in the super-class, otherwise its position is inherited from
that method. The content of the methods createTD and createMD

will be shown in the next sections.

4.2 Erasing types
The erasure of types is mostly the same as that of FGJ. We have the
function returning the bound of a type as:

bound�(X) := �(X) bound�(N) := N

and then the erasure function from FGJ types to Java classes:

jTj� := C if bound�(T) = C<T>; T 6= Object<>

jObject<>j� := LMObj

In this formalization Object is translated into a special library class
LMObj, as shown in top of Figure 3.

4.3 Translating Classes
For the rules defining translation of classes refer to Figure 3. FGJ
classes are erased to Java classes: (i) by providing the proper trans-
lation of fields (erasing their types), methods (jMjC) and constructor
(jKj), (ii) by adding the static methods createTD and createMD

handling the creation of free types and methods (obtained by jCjCTD
and jCjCMD , respectively), and (iii) by adding static fields meant to
contain bound descriptors, according to the functions buildSTD()
and buildSMD(). The translation of the root class Object is simi-
lar, but we don’t have methods, createMD and static fields.

4.4 Static Type and Method Descriptors
Bound type descriptors and method descriptors are completely known
at compile-time, so they can be created once and for all at the class
load-time, i.e., in the initialization code of newly-created static
fields, exploiting standard environments �s and �s. In particular,
when registering a parametric type the actual descriptor is yielded,
while registering a method returns the position of the method de-
scriptor in the VPMT (for details on this, see [10]). Then, be-
cause of the special management of VPMTs, instead of creating
the descriptors for the free method signature L, we create its version
topM�(L) in the highest super-class defining it. In fact, registering
a method descriptors will cause a down-propagation of registrations
on all the sub-types, so starting from the top version guarantees all
the VPMTs to be properly completed.1

4.5 Translating the Constructor
The translation of a constructor K provides for the extra-argument,
containing the type descriptor of the current instance. The field

1These are details of the library classes supporting the translation,
which are mostly unimportant here.

Translation for classes:

jclass Object<> extends Object<>{}j =2
6664

class LMObj extends Object {

$TD td; $TD getTD(){return td;}

LMObj($TD td){this.td=td;}

jCjCTD
}

� = X / N buildSTD(C) = fST eST
buildSMD(C) = fSM eSM C 6= Object

jclass C<X / N> / N{T f; K M}j =2
6664

class C extends jNj� {

static TD fST =eST ;

static int fSM=eSM;

jTj� f; jCjCTD jCjCMD jKj jMjC
}

Static descriptors initilization:

CT[C]=class C<X / N> / N{...}

� = X / N NB=boundT�(getT(C))

buildSTD(C) = fST jNBj�s

CT[C]=class C<X / N> / N {...}

� = X / N LB=topM�(boundM�(getM(C)))

buildSMD(C) = fSM jLB j�s;�s

Translating the constructor:

CT[C]=class C<X / N> / N{T f;K M}

� = X / N

jC(T0 f0,T f){...}j =2
6664

$TD td; $TD getTD(){return td;}

C($TD td,jT
0
j� f0, jTj� f){

super(td.father,f0);

this.td=td;this.f=f;

}

Implementing createTD:

CT[C]=class C<X / N> / N{T f; K M}

NF =freeT�(getT(C)) �p = [Xi 7! p[i]]�s

LF =topM�(freeM�(getM(C))) �=X / N

jCjCTD =2
666666666664

static $TD createTD($TD[] p){

$TD t=$TDM.register(C.class,p);

if (t.checkNew()){

t.father=jNj�p
;

t.friendTs=new $TD[]{jNF j�p
};

t.friendMs=new int[]{jLF j�s;�p
};

t.initVPMT(); }

return t;

}

Auxiliary functions:

meths(Object) = �

CT[C]=class C<X / N> / D<U>{T f; K M}

Mi=<Yi / Pi> Ti mi(Si xi){ " ei;}

meths(C) = meths(D) � m

meths(C) = m M = <Y / P> T mi(T x){ " e;}

pos(C; M) = i

CT[C] = class C<X / N> / N{T f; K M}

Mi=<Y / P> T m(U x){return e;} � = Y / P

pMeth(C; Mi) = topM�(freeM�(getM(C; m))) ;
freeT�(getT(C; m)) ; [Yj 7! p[j]][X

k
7! td.p[k]]�s

CT[C] = class C<X / N> / N {T f; K M} f : i 7! �; �;�

mEnv(C) = [pos(C; Mi) 7! pMeth(C; Mi)]f

Implementation of createMD:

CT[C]=class C<X / N> / N {T f; K M}

mEnv(C; Mi) = i 7! Li; Ni; �i

jCjCMD =2
666666666666666664

static int createMD($TD t,int pos,$TD[] p){

$MD m=$MDM.register(t,pos,p);

if (m.checkNew()){

t.VPMT[pos].addElement(m);

m.lPos=t.VPMT[pos].size()-1;

if (pos==i){

t.friendTs=new $TD[]{jNij�i
};

t.friendMs=new int[]{jLij�s;�i
};

}

$MDM.propagate(m); }

return m.lPos;

}

Environments for a method:

CT[C]=class C<X / N> / N{T f; K M} � = X / N

pMeth(C; Mj) = LM ; NM ; �M pos(C; Mj) = l

buildSTD(C) = fST jNB j�s
; freeT�(getT(C)) = NF

em = (($MD)(td.VPMT[l].elementAt(md)))

�C;Mj = [C<X> 7! td]NF i 7! td.friendTs[i];

NMk
7! em.friendTs[k]; NB 7! fST

CT[C]=class C<X / N> / N{T f; K M} � = X / N

pMeth(C; Mj) = LM ; NM ; �M pos(C; Mj) = l

Mj=<Y / P> T m(U x){return e;}

buildSMD(C) = fSM jLB j�s;�s
;

topM�(freeM�(getM(C))) = LF
em = (($MD)(td.VPMT[l].elementAt(md)))

�C;Mj = [C<X>.m<Y> 7! md]LF i 7! td.friendMs[i];

LMk
7! em.friendMs[k]; LB 7! fSM

Translation for methods:

CT[C]=class C<X / N> / N {T f;K M}

� = X / N � = x:T; this:C<X>

mtypemax(m; C) = D 7! D

ei =

(
x0

i if Di = jTij�

(jTij�)x
0

i otherwise

jM=T m(T x){return e0;}jC =2
4 D m(int md,D x0){

return [e/x]je0j�;�;�C;M
;�C;M

}

Figure 3: Main translation functions

jxj�;�;�;� = x

�;� ` e.f 2 T �;� ` e0 2 T0
fieldsmax(jT0j�)(f) = jTj�

je.fj�;�;�;� = je0j�;�;�;�.f

�;� ` e.f 2 T �;� ` e0 2 T0
fieldsmax(jT0j�)(f) 6= jTj�

je.fj�;�;�;� = (jTj�)je0j�;�;�;�.f

j(T)ej�;�;�;� = (jTj�)jTj�.cast(jej�;�;�;�)

jnew C<T>(e)j�;�;�;� = new C(jC<T>j�; jej�;�;�;�)

�; � ` e0.m<R>(e) 2 T �;� ` e0 2 T0
mtypemax(m; jT0j�) = C 7! D D = jTj�

je0.m<R>(e)j�;�;�;� =
je0j�;�;�;�.m(jtopM�(T0.m<R>)j�;�,jej�;�;�;�)

�; � ` e0.m<R>(e) 2 T �;� ` e0 2 T0
mtypemax(m; jT0j�) = C 7! D D 6= jTj�

je0.m<R>(e)j�;�;�;� =
(jTj�)je0j�;�;�;�.m(jtopM�(T0.m<R>)j�;�,jej�;�;�;�)

Figure 4: Translating expressions

$TD.father is used to pass to the super-class its descriptor. Then,
the descriptor is stored into an instance field td, inserted by the
translation in each class, and yielded by a method getTD 2.

4.6 Creating type and method descriptors
The method createTD accepts the descriptors of the type parame-
ters, and registers the descriptor of the type into $TDM. Then, if this
is the first time this was registered (controlled with checkNew), in
createTD we also fill the content of the fields (i) father, with the
descriptor of the direct super-type N, (ii) friendTs, with the de-
scriptor for the free types of the class, and (iii) friendMs with the
descriptor for the free methods of the class. This is supported by
the �p environment mapping the type variables to the arguments
of the method createTD.

For method descriptors, first of all we build an auxiliary function
pMeth(C; M) taking a class C and a method M, and returning a triplet
of elements L; N; � containing respectively: (i) the free method sig-
natures in M exploiting some of its type variables Y, (ii) the free
types in M exploiting some of its type variables Y, and (iii) a � en-
vironment binding C’s type variables X and M’s type variables Y to
the corresponding descriptors. In particular variables Y are associ-
ated to the arguments p of createMD, while variables X are associ-
ated to the field p of the descriptor t, representing the receiver for
the invocation. Then, the function mEnv(C) maps positions in the
VPMT to such triplets, leaving blanks (�; �;�) the triplets for those
methods which are not redefined in C, but are just inherited from
the super-class. In fact, the function f , which maps each position
to �, is filled only with the triplets for the methods actually defined
in C.

The method createMD accepts the receiver descriptor t, the unique
identifier pos of the method, and the descriptors of the parameters
p. It registers the method descriptors, and in the case this was the
first time, it proceeds by filling the rest of the object m. In particular,
it adds m in the VPMT of t, it registers its position in m.lPos and
then, depending on i, it stores the fields friendTs and friendMs,
by exploiting the result of the auxiliary function pMeth(C; Mi). The
presence of i in the if statement is meant to model a sequence of
if statements on all the values assumed by i.

4.7 Translating methods
First of all, we build the �C;M and �C;M environments that will be
used to translate the body of a method M in C. They associate (i)
2Such a method supports the inspection of the descriptor of an ob-
ject.

bound descriptors to the static fields of the class, (ii) descriptors
using only type variables of the class to friend types/methods of
the instance field td, and (iii) descriptors using type variables of
the method to friend types/methods of the method descriptor em of
the current VPMT. Then, the type of this is associated to the the
local type descriptor td, and the signature of the current descriptor
is associated to the formal argument md.

The translation for a method follows the pattern of FGJ. The only
difference here, is that we have to add an extra argument that will
contain the position of the method descriptor in the VPMT. The
environments �C;M and �C;M created in this way will then be used
to properly translate the expressions contained in the method M of
class C.

4.8 Translating expressions
The rules defining translation of expressions are shown in Figure
4. The translation for a variable x and for a field accessing e.f is
the same as in FGJ. A cast (T)e is translated so as to invoke the
method cast on the descriptor for T, passing the translation of e.
The allocation expression new N(e) is translated by passing as first
argument the descriptor for N. Analogously, in method invocation
we pass as first argument the position of the method descriptor in
its VPMT.

5. AN EXAMPLE
In order to allow a better understanding of our formalization, here
we provide a comprehensive example of translation. Our source
code is shown in Figure 5. It contains a FGJ class Pair with
two type parameters, two corresponding fields, and five methods
doing several things. The corresponding translation according to
our formalization is provided in Figure 6; The class Pair has the
bound type Pair<Object,Object> and no bound methods, so the
translated class will just have the static field fST 0. The trans-
lation of the constructor directly follows from the definition. The
class Pair<R,S> has the free type Pair<S,R> (used by the method
reverse) and the free method signature Pair<R,S>.reverse<>()
(used in the method chgSecond), from which follows the method
createTD in the translated code.

Then, each method has its own free types and free method signa-
tures. In particular, Pair<R,S>.chgFirst<T> has the friend type
Pair<T,S>, while Pair<R,S>.chgSecond<T> has the friend type
Pair<T,R> (receiver of the latter invocation of reverse), and the
friend methods Pair<S,R>.chgFirst<T> and Pair<T,R>.reverse().
Correspondingly, in the translated class we have the method createMD

class Pair<R extends Object,S extends Object> extends Object{

R r;

S s;

Pair(R r,S s){ super();this.r=r;this.s=s;}

<> Pair<S,R> reverse(){ return new Pair<S,R>(this.s,this.r);}

<> Pair<Object,Object> getOO(){return new Pair<Object,Object>(new Object(),new Object());}

<T> Pair<T,S> chgFirst(T t){ return new Pair<T,S>(t,this.s);}

<T> Pair<R,T> chgSecond(T t){ return this.reverse<>().chgFirst<T>(t).reverse<>();}

<> R castToFirst(Object o){ return (R)o;}

}

Figure 5: Example of source code

class Pair extends LMObj{

static TD fST_0=Pair.createTD(new $TD[]{LMObj.createTD[]{},LMObj.createTD[]{}});

Object r; Object s;

$TD td; $TD getTD(){ return td;}

Pair($TD td,Object r,Object s){ super(td.father);this.r=r;this.s=s;}

static $TD createTD($TD[] p){

$TD t=$TDM.register(Pair.class,p);

if (t.checkNew()){

t.father=LMObj.createTD(new $TD[]{});

t.friendTs=new $TD[]{ Pair.createTD(new $TD[]{p[1],p[0]}) };

t.friendMs=new int[]{ Pair.createMD(new $TD[]{p[0],p[1]},0,new $TD[]{})};

t.initVPMT();

}

return t;

}

static int createMD($TD t,int pos,$TD[] p){

$MD m=$MDM.register(t,pos,p);

if (m.checkNew()){

t.VPMT[pos].addElement(m);

m.lPos=t.VPMT[pos].size()-1;

if (pos==0) { t.friendTs=new $TD[]{};

t.friendMs=new int[]{}; }

if (pos==1) { t.friendTs=new $TD[]{};

t.friendMs=new int[]{}; }

if (pos==2) { t.friendTs=new $TD[]{ Pair.createTD(new $TD[]{p[0],td.friendTs[1]})};

t.friendMs=new int[]{}; }

if (pos==3) { t.friendTs=new $TD[]{ Pair.createTD(new $TD[]{p[0],td.param[0]})};

t.friendMs=new int[]{ Pair.createMD(td.friendTs[0],2,new $TD[]{p[0]}),

Pair.createMD(t.friendTs[0],0,new $TD[]{}) }; }

if (pos==4) { t.friendTs=new $TD[]{};

t.friendMs=new int[]{}; }

$MDM.propagate(m);

}

return m;

}

Pair reverse(int md){ return new Pair(td.friendTs[0],this.s,this.r);}

Pair getOO(int md){return new Pair(fST_0,new Object(),new Object());}

Pair chgFirst(int md,Object t){

return new Pair((($MD)(td.VPMT[2].elementAt(md))).friendTs[0],t,this.s);}

Pair chgSecond(int md,Object t){

return this.reverse(td.friendMs[0])

.chgFirst((($MD)(td.VPMT[2].elementAt(md))).friendMs[0],t)

.reverse((($MD)(td.VPMT[2].elementAt(md))).friendMs[1]);}

Object castToFirst(Object o){ return td.p[0].cast(o);}

}

Figure 6: Translation of the source code

as shown in Figure 6.

Finally, the translation of methods simply proceeds as follows. In
the signature, argument types and return type are erased, and one
argument of type int is added. Then, the translation of the re-
turning expression extends the one done for FGJ, but we pass the
type descriptor in the new expressions, the position of method de-
scriptor in method calls, and we exploit the method $TD.cast for
implementing casts. Bound type descriptors and method descrip-
tors are accessed through the static fields of the class, free types and
methods of the class through the friends of the local type descriptor
td, and free types and methods of the methods through friends of
the current method descriptor. The latter is obtained accessing the
VPMT of td and exploiting the formal parameter md, by the ex-
pression (($MD)(td.VPMT[l].elementAt(md))) where l is the
(static) position of the method in the VPMT, say 0 for reverse, 1
for getOO, 2 for chgFirst, and so on.

6. FROM FORMALIZATION TO
IMPLEMENTATION

We think it is interesting to discuss how we are going to develop
an implementation of LM out from the formalization here intro-
duced. First of all, we rely on a free tool that builds parsers and/or
tree generators from source specification files containing BNF-like
grammars, which is Sun’s JavaCC product [7]. The main features
of this tool is that it produces Java code, and permits to insert pieces
of Java code in the source specification, allowing to have a fine-
grained control on the parsing process and on the shape of the gen-
erated tree. Then, the JavaCC distribution also includes the source
for creating a parser for Java 1.2.

Our goal here is not to produce an actual implementation suitable
for a large-scale release. Instead, the objective is to obtain a pro-
totype of LM translator, which can be used as a tool supporting
the measurements of the performance of the translated code. In
fact, since relevant performance issues concerns memory footprint
and load-time overhead, we need to translate medium-large bench-
marks, so we can’t just rely on small applications translated by-
hand.

Also, we would like to obtain an implementation allowing for the
fast prototyping of new versions of the translation. In fact, we be-
lieve that the process of measuring performance will give feedbacks
motivating an appropriate tuning of the translation. Basically, we
intend to address this issue by clearly encapsulating the part of the
translator dealing with the key concepts related to parametric poly-
morphism, i.e., the part implementing the formalization provided
in this paper.

As our target is a prototype, we don’t need it to be fully-featured.
The language accepted is broadly similar to the one accepted by
GJ. The two basic differences are (i) that we won’t allow to omit
type parameters specification from method invocation3, and (ii) we
won’t deal with raw types (see [6] for details on these issues). Pro-
ducing a fast translation process is not a primary goal. Then, we
don’t need our translator to intercept all the kinds of error due to
an incorrect program. We accept that errors can be caught by either
the translator or by the successive actual compilation of the result-
ing Java file. As a result, we won’t issue any constraint on how the
errors intercepted by the translator are notified to the user.

3Type parameter inference is not possible, in general, in the imple-
mentations supporting parametric types at run-time

The need for carefully studying a methodology for building the
translator comes in from the fact that the complete syntax of Java
is huge, so the translator will be a very complex system. Two ar-
guments suffice in emphasizing this: the tree generator for Java, as
created by JavaCC, is about 9000 lines of Java code, and the num-
ber of different nodes of the tree, which is basically the number of
cases we have to consider during the translation, is bigger than 50.

It worth noting that the methodology we will discuss here is not
strongly tested, and it should basically considered a proposal for
addressing the specification here discussed. When the implementa-
tion will be finished we expect to have gathered feedbacks and ex-
perience for improving the methodology and describing its details.
The important thing here, is our claim that the way we formalized
the translation in this paper is the most suitable approach for sup-
porting the actual implementation of the prototype. Basically, it
plays a crucial role in encapsulating the core of the translation, al-
lowing changes to be limited to this part, and allowing to build the
actual translator on top of it in an incremental way.

1. The first step of the process is to obtain a trivial translator
for the source language, translating a source code written
in Java with parametric polymorphism in itself. Thanks to
the JavaCC tool and the JavaCC specification file of Java 1.2
provided with the distribution, this can be simply done as
follows:

� Creating a suitable tree generator from the JavaCC spec-
ification file of Java 1.2, by decorating it with the ap-
propriate insertion of Java code.

� Adding the syntax needed to support parametric poly-
morphism.

� Defining a simple visitor for the tree, re-producing the
source code given as input.

The basic goal of this step is to immediately produce the
JavaCC specification file of the full source language, which
helps in understanding the complexity of the domain and in
enumerating all the language constructs we will have to deal
with. Later, this will help in deciding what is the better or-
der for incrementally building the translator on the top of its
core.

2. The second step is to produce the formalization of the trans-
lation. In particular it is important that doing this we focus
on all the important issues of the translation, and abstract
away from details that are conceptually unnecessary. The
one given in the paper fulfills both the requirements, but left
out, mostly for space reasons, important aspects such as para-
metric interfaces and inner classes.

3. The third step is to implement a one-to-one translator tak-
ing a source file containing a closed set of FGJ classes and
producing a valid Java file. This turns out to be a mere pro-
gramming exercise, as the source language is very simple and
its translation behaviour has been precisely described in the
formalization. What we obtain from this step, is the core of
the translator.

At the current time, our development process reached this
point, that is, we already have a translator for FGJ to Java,
which for instance, can be used to translate our example of
Section 5. So, the next steps actually describe what we meant
to do for obtaining the full prototype.

4. The following step, is to adapt this translation so as to pro-
duce a somewhat fully-featured translator for FGJ into Java,
comprehending the management of multiple source files, and
dealing with packages and package-qualified class names.
The only difference between the result of this step and the
final prototype is on the “size” of the source language.

5. The translator produced so far has to be carried from accept-
ing FGJ files to full Java files providing parametric polymor-
phism, by adding one language constructs at a time. Doing
this we exploit the specification file obtained in Step 1, basi-
cally adding one BNF rule each time. The most appropriate
way of doing this is, orderly:

� adding the management of class members left-out by
FGJ, such as inner classes and constructors, as well as
the management of interfaces and static members;

� adding primitive types and arrays;

� adding the remaining constructs about expressions;

� adding the remaining constructs about statements;

� adding the management of other issues, such as field
shadowing and method overriding.

Where possible, each addition should be tested and debugged
alone.

6. Finally, remaining orthogonal issues can be addressed, such
as dealing with the inspection of external classes that are used
by the code we are translating, but whose source code is not
available. These can be either legacy Java classes or LM-
generated classes.

7. CONCLUSIONS
The contribution of this paper is twofold. On the one hand, it pro-
vides for a compact yet comprehensive formalization of LM trans-
lator, a proposal for extending Java with parametric polymorphism
by means of a translation. As the LM translator is a complex sys-
tem, whose informal description tends to be long and typically re-
quires to provide many low level details, the formalization here
introduced is an unavoidable tool for its complete and precise un-
derstanding. On the other hand, we described how such a formal-
ization can help in quickly building a core prototype which later can
be incrementally extended so as to lead to the final implementation.

Our current and future work is devoted on applying our method-
ology for implementing LM translator, and to go further with its
formalization. In fact, the one given in this paper cannot be applied
for directly proving properties such as type preservation. By reduc-
ing the scope of the target language we should be able to follow
the same approach taken in [3]. In particular, it should be possible
to define a translation covering a sufficiently large subset of LM
behaviour by means of a compilation of FGJ into an extension of
FJ with side-effects (field assignment) and a minimal support of
reflection.

8. REFERENCES
[1] G. Bracha. Adding Generic Types to the JavaTM

Programming Language. Java Specification Request,
JSR-000014, http://java.sun.com, 1998.

[2] C. Cartwright and G. Steele. Compatible genericity with
run-time types for the Java programming language. In
Conference on Object-Oriented Programming, Systems,

Languages and Applications, pages 201–215. ACM, October
1998.

[3] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java, a
minimal core calculus for Java and GJ. In Conference on
Object-Oriented Programming, Systems, Languages and
Applications, pages 132–146. ACM, October 1999.

[4] M.Ellis and B.Stroustroup. The Annotated C++.
Addison-Wesley, 1990.

[5] M. Odersky and P. Wadler. Pizza into Java: Translating
theory into practice. In Symposium on Principles of
Programming Languages, pages 146–159. ACM, 1997.

[6] M. Odersky, P. Wadler, G. Bracha, and D. Stoutamire.
Making the future safe for the past: Adding Genericity to the
Java programming language. In Conference on
Object-Oriented Programming, Systems, Languages and
Applications, pages 183–200. ACM, October 1998.

[7] Sun Microsystem. JavaCC 2.0. Distributed by Metamata,
http://www.webgain.com/products/metamata/java doc.html.

[8] Sun Microsystems. JSR-14 Public Draft. http://java.sun.com,
2001.

[9] D. Syme and A. Kennedy. Design and implementation of
generics for the .NET Common Language Runtime. In
proceedings of Programmin Languages Design and
Implementation (PLDI2001). ACM, June 2001.

[10] M. Viroli. Parametric polymorphism in Java: an efficient
implementation for parametric methods. In Symposium on
Applied Computing (SAC), pages 610–619. ACM, March
2001.

[11] M. Viroli and A. Natali. Parametric Polymorphism in Java:
an approach to translation based on reflective features. In
Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 146–165. ACM, Oct
2000.

A mode system for read-only references in Java

Mats Skoglund and Tobias Wrigstad
{matte,tobias}@dsv.su.se

Department of Computer and Systems Sciences (dsv),
Stockholm University/Royal Institute of Technology

1 Introduction

The use of references is typical in object-oriented programming. They are used for e.g. constructing
compound objects, i.e. objects that hold references to other objects, and to perform in-place
updates. Object sharing with references introduces problems since every object holding a reference
to another can use it to invoke methods that modify the referenced object’s state. This makes it
harder to control the origin of changes to a specific object and thus makes it harder to reason
about programs [8].

Since all references always give full access to their referenced objects’ protocol, it is generally
not possible to share an object by reference without risking that its mutator methods are used
to modify it. In C++, this problem can be partly addressed by the use of const objects, const
pointers and const methods although with some limitations. This is not possible in Java since
it lacks a similar construct. Instead, approaches such as the proxy-pattern or more Java-specific
constructs such as interfaces can be used to some extent but with some limitations, see e.g. [7]
and [8].

We propose a new Java construct for read-only references that protects the transitive state of its
referenced object. It is an improvement over C++’s const in that it is transitive and furthermore it
does not suffer from some of the limitations of e.g. protection through interfaces or the limitations
of the read-only constructs reviewed in related work.

2 Motivation

The local state of an object is made up of the values of its member variables and can be modified
by e.g. assigning to a member variable in the object. With compound objects it is sometimes
desirable to reason about the transitive state as opposed to the local state. The transitive state
is made up not only of the member variables of the object, but also of the member variables’
member variables and their member variables’ member variables and so on. The transitive state of
a compound object can be modified by either changing the local state of the object or by changing
the local state of an object contained in the compound object’s transitive state. We will use the
term state to denote the transitive state throughout this paper.

A problem with compound objects arises when references to the compound object’s sub-objects
are shared with others. If all changes to a compound object’s transitive state must be made via
the object’s protocol e.g. in order to keep the compound object consistent, sharing sub-objects
with others can lead to errors. Changes made to a sub-object directly via a reference and not via
the compound object’s protocol bypasses any controls in the compound object’s methods. Thus,
such changes might invalidate internal invariants of the compound object leading to errors.

2.1 An example of a problem situation with sharing via references

The event mechanism in Java can be used for propagating state change notifications from one
source object to multiple listener objects. When using events according to the JavaBeans API
specification [5], one or more objects are normally included in the event object to represent the

state change to be notified. This makes the event object a compound object with references to sub-
objects. An object contained in an event object is possibly shared with other compound objects
(such as the source object).

It is strongly recommended in the JavaBean API specification that public access to an event
object’s members is denied and that accessor methods are used for exposing an event object’s
transitive state. However, if an object is exported from the event object through an accessor
method by reference, the transitive state of the event object may still be changed underfoot if e.g.
a mutator is invoked on the exported object (for a more general discussion, see [7] and [9]).

In Java, objects are always exported in such an “uncontrolled way” since we cannot impose
“access rights” on the exported references – existing mutator methods may always be invoked. An
exporter has no control over the use of the exported references and a receiver has no knowledge
of whether it violates the exporter’s intentions if it modifies an object via an incoming reference.

2.2 Related work

Approaches addressing the problem of exporting objects via references that can be used only to
read the state of an object but not to modify it have been proposed in e.g. [7,11,6,9,8]. Most
of these approaches use different kinds of read-only constructs to enforce the property that a
reference cannot be used to modify the transitive state of its referenced object. The proposed
constructs use variable annotations to indicate their read-only properties in the program. The
read-only variable annotations are often accompanied by read-only annotations on methods to
indicate which methods are safe to invoke on read-only variables.

Boyland et.al. [1] points out that the proposed read-only constructs are similar in their defi-
nitions but differ in semantics since the proposed constructs were defined for different purposes.
Common properties of read-only references are that they cannot be used to modify the object that
they refer and that only read-only methods can be invoked on them.

A common property of read-only methods is that they should not modify its enclosing object.
Some of the read-only mechanisms require this last property to be transitive on compound objects
i.e. a read-only method should not modify its enclosing objects transitive state. The motivation
for transitive protection is that if the mechanism only protects the local state of an object it is
sometimes possible to obtain a reference to a sub-object of a compound object that is not protected
and use that reference to modify the compound object’s transitive state and thus perhaps violate
some invariant [6]. This is also the case if the mechanism would only protect a finite number
of levels of the transitive state. Then it would be possible to obtain protected references from
member variables’ member variables in a number of steps and perhaps finally obtain an unprotected
reference that can be used for modification.

Restrictions on ordinary programming We believe that the proposed constructs are too
limiting on ordinary programming in many respects. For example, in order to protect the transitive
state of a compound object, different read-only method constructs named functional methods and
clean messages are defined in [8] and [9] respectively. These constructions have, in our point of
view, some unnecessary limitations on ordinary programming. For example, neither a functional
method nor a clean message can be used to modify objects, not even objects that are not part
of the state of the protected object. This does not permit neither functional methods nor clean
messages to e.g. perform in-place updates, even if e.g. the types of the parameters exclude the
possibility that any argument is an alias to the enclosing object’s transitive state. In our point
of view, this is an unnecessary restriction since the read-onlyness should only concern the object
that encloses the method.

Furthermore, in [8] a functional method may not return writeable references to instances cre-
ated within the method which makes their construct unsuitable for e.g. the factory method pattern
as described in [3].

In our point of, a read-only method should only protect its enclosing object’s transitive state
when invoked on a read reference but not necessarily when invoked on a write reference. For

2

example, a getter method should be able to return a writable reference to a member variable if
invoked on a write reference since the object holding the write reference is already allowed to
modify sub-objects of the referenced object. This means that there is no need for e.g. defining
two different getter methods depending of the type of the reference, one that returns a read-only
reference to an object and another that returns a writeable reference to the same object.

In [7], every programmer-supplied type has an implicit readonly supertype. The type of every
variable declared as readonly will be changed to the corresponding readonly supertype consisting
only of those methods that have been annotated by the programmer not to be state changing. As
pointed out in [8] the use of implicit supertypes limits the use of protected member variables and
methods, and furthermore, it creates a dependency on inheritance and a type system.

Validation of annotations The read-only constructs presented in [9] requires that the annota-
tion of methods is done by the programmer and assumes that it is done correctly, i.e. methods that
are read-only should be annotated as such by the programmer. This means that a programmer
can, deliberately or undeliberately, annotate a method as read-only even if it modifies its enclos-
ing object’s state, making it possible to modify an object via read references with the problems
described above.

In [7], as in [9], the programmer decides which methods should be read-only by annotations
on the methods. However, no technique is presented that ensures that the annotations are correct
with respect to the code. This means that methods may exist that are clearly read-only but cannot
be used as such since they lack the readonly qualifier. Also, it is not clear whether methods that
are annotated as read-only are validated not to modify their enclosing objects’ state. If not, a
method that modifies its enclosing object’s state can possibly be invoked via read-only references.

C++’s const C++’s const can be used to some extent to achieve protection of objects. However,
const methods only protect the local state of the enclosing object. To make the protection offered
by const transitive, we need to include all objects in the transitive state in the local state. This can
be done by storing an object in a variable as opposed to storing a reference to it. Thus, transitive
protection with const precludes object sharing since all sub-objects need to be included in the
enclosing object. While it is possible to store a reference to an object included in another object
in a field, the referenced object will not achieve the transitive protection from changes from the
object storing the reference. Furthermore, objects may not be passed to another as arguments
to a method and stored in member fields without copying, precluding any intended sharing. The
protection offered by const can easily be circumvented since const can be cast away.

Java’s interfaces Interfaces in Java can be used to export parts of an object’s protocol hiding any
mutators and thus protecting an object from changes via a reference declared to be of the interface
type. There are, however, a number of problems with references. The programmer must decide
which methods that are mutating, which might be far from easy due to e.g. dynamic binding.
Moreover, there is nothing to verify that the method implementing the method declaration in
the interface does not modify its enclosing object’s state. Also, there is nothing to prevent a
subclass from overriding a supposedly non-mutating method with a mutator. Interfaces may also
be circumvented by casting given that the actual class (or any superclass to that class) of the
object is known by the programmer. Interfaces cannot be used for hiding private or protected
methods from this.

3 A read reference approach to safe object exporting

We propose a mode system that allows exportation of objects without the risk of modification via
read references similar to [7,11,6,8], but without some of their restrictions on ordinary program-
ming.

3

The mode system works by mode annotations on variables and methods which control the
flow of references in the system in some respects. Each variable, formal parameter, method etc. is
associated with a mode qualifier (a mode for short). The modes controls valid assignments, valid
method invocations etc.

The mode annotations on variables control what kind of references may be held by the variable.
We distinguish between two kinds of references, read references and write references. Simply put,
a write reference is a regular Java reference and a read reference is a reference that is never used
for modification of its referenced object (including retrieval of write references that may in turn
be used for modification).

The system should be statically checkable1. This means that a program can be statically
validated to behave correctly with respect to the modes of the references held by the variables and
the modes of the methods. Without the caseModeOf construct (see below, page 5), there is no
need for an actual run-time representation of modes.

A formalisation of the static mode-checking system is shown in Appendix A. We show the rules
for well-modedness in a modification of ClassicJava [2]. We do not show any operational semantics
since these should be pretty straight-forward.

3.1 The core annotations

The core annotations are read/write annotations which are used to annotate member variables,
local variables, formal parameters, method returns and methods. Basically a method declared as
read (a read method for short) may not modify its enclosing object’s state. Methods declared as
write more or less behave like ordinary Java methods. These loose definitions will be refined below.

A variable or formal parameter declared as read (read variables for short) may not be used to
invoke write methods and may thus not be used for modification of its referenced object2. Note
that read variables may be assigned to, in Java terms they are not final. Variables declared as
write may be used to invoke both read and write methods. The mode of the method return controls
the mode of the reference returned by the method. A write variable always holds write references
and a read variable always holds read references.

3.2 Approximate annotations

In addition to the core annotations, we have any/context annotations. These annotations do not
apply to methods and differ from the core annotations in that these are not really modes but
approximations of modes in compile-time (i.e. the content of an any or context variable may be
either a read reference or a write reference in run-time). A context annotation of a variable means
that the mode of the variable is the same as the mode of the context. For the moment, let the mode
of the context be the same as the mode of the method. Thus, a context variable will be treated as
read in a read method and as write in a write method. The last property requires that only write
variables be assigned to context variables. Otherwise a read reference stored in a context variable
could be wrongfully treated as write reference in a write context.

The any annotation is similar to the context annotation but does not depend on the mode
of the context in the same way. Any reference may be assigned to an any variable regardless of
its mode. For member variables in a write context, all references in any variables have the same
mode as when they were stored in the variable. For member variables in a read context, all any
variables will hold read references. For non-member variables, the mode of a reference held by an
any variable is always the same as when it was stored in the variable regardless of the mode of the
context.

Statically, an any variable must be treated as a read variable since it may contain a read refer-
ence whose ‘readness’ would be broken were it possible to invoke write method on it. Dynamically,

1 The caseModeOf (see below, page 5) construct enables static checkability by performing run-time
checks still ensuring that the program is well-behaved with respect to modes.

2 For simplicity, we disregard from public variables.

4

an any variable may be converted to a write variable (i.e. treated as if it held a write reference) if
the mode of the reference stored in the variable is really write, similar to a regular downcast.

3.3 Declarations

Member variables must be declared as either read, context or any. They may not be declared as wri-
te since write variables always hold write references which could be used to change the referenced
object in read methods3. The this variable is context.

Local variables and method returns must be declared as either read, write, context or any.
Variables declared as context must always refer to members of the enclosing object, i.e. may only
be assigned from members or other context variables.

Formal parameters must be declared as either read, write or any. They may not be declared as
context since the mode of the argument passed to the methods may not have the same mode as
the method’s context.

Context We say that all statements in a method body executes in the same context. The mode of
the context is the run-time mode of the reference used to invoke the method. For a write method,
this is always write since only write references may be used to invoke write methods. For a read
method, the context is either read or write since references of both modes may be used for invoking
read methods. Thus, in a read method the mode of a context variable may be either read or write.
In compile-time, we must assume that the mode of a context variable in a read method is read
by conservativness. However, we supply a dynamic construct that can be used to determine the
actual mode of the context in run-time, increasing the flexibility of read methods. This construct
is called caseModeOf (see below).

Note that this means that the definition of a read method above has been slightly altered.
The new definition of a read method states that the a read method does not modify its enclosing
object’s state when invoked via a read reference. When invoked via a write reference, a read method
may behave as a write method since the mode of the references held by any variables and context
variables may now be write. Thus, the annotations on methods state the possible modes of the
context analogous with the approximate annotations on variables and parameters. For example,
the caseModeOf construct may change a method’s behaviour according to the mode of the
context.

Adding optional dynamics The caseModeOf construct has two purposes. It can dynamically
check the mode of an any variable to allow it to be used as a write variable if it holds a write
reference, and it can dynamically check the mode of the context to allow context variables to be
used as write variables if the mode of the context is write.

The layout of the caseModeOf construct is similar to Java’s switch-statement. It consists of
a check on a variable and two blocks, the read block and the write block. The checked variable
will be assumed to be write in the write block and read in the read block. It will not proceed to
any other block. In run-time, the mode of the reference held by the variable will be checked and
the corresponding block executed.

The caseModeOf construct is optional in the sense that it can be removed along with the any
qualifier. This yields a system which is statically checkable without any need for dynamic checks
or run-time representation of modes but with the drawback that it becomes less flexible.

Methods A method must be declared as either read or write. For simplicity, we require that all
method overriding preserves the mode of all formal parameters and also the mode of the method.

A read method treats all member variables as final and statically assumes that all con-
text variables contain read references, i.e. must be treated as read variables. This ensures that
3 Other approaches are of course possible, such as to prevent names of write members to appear in bodies

of write methods.

5

the enclosing object’s state cannot be changed by the read method since any accessible member
variable is read. Inside the write block of a caseModeOf statement on a member variable in a read
method, the member may be modified since this block will only be executed in a write context, i.e.
when the method was invoked via a write reference and it thus may modify its enclosing object’s
state.

A write method treats all context member variables as write and may thus change or export
write references to the state of its enclosing object. Variables declared as read or any must still be
treated as read. An any variable may, however, be modified in the write block of a caseModeOf
statement testing the mode of its contained reference.

Parameters to methods and aliasing Note that a read method may modify the state of its
enclosing object even in a read context if a write reference to the state is passed in as an argument.
We allow this since the owner of that reference may use it for modification outside the method
meaning that any protection from this situation inside the method does not significantly reduce
the possibility of changes via the existing write reference. Moreover, it is arguable that the presence
of a write reference outside the object should indicate that the changes to the state of the object
should be allowed.

To avoid this, a possible solution is to require that all formal parameters to read methods
are annotated with read (too restrictive in our sense). Another approach is to require formal
parameters to be annotated with any and dynamically check all arguments for aliasing converting
any incoming aliases to read references. These techniques could be somewhat optimised by e.g.
checking if the possible types of possible arguments overlap with the possible state of this.

3.4 A brief example

1 public class SecNewThermometerEvent {
2 private read Object source;
3 private context Thermometer thermometer;
4 public void setSource(read Object s): write {
5 this.source = s;
6 }
7 public void setThermometer(write Thermometer th): write {
8 this.thermometer = th;
9 }

10 public read Object getSource(): read {
11 return this.source;
12 }
13 public context Thermometer getThermometer(): read {
14 return this.thermometer;
15 }
16 }
17 ...
18 write SecNewThermometerEvent event = new SecNewThermometerEvent();
19 event.setSource(read this);
20 event.setThemometer(thermometer);
21 radiators.notify(read event);
22 ...

Figure1. Example of event annotated with modes

The code above below, admittedly somewhat contrived for pedagogical reasons, uses the mode
system in the construction and use of an event class. The event is used to notify radiator objects

6

in a room object that a thermometer object has been inserted in the room. The example is written
in a Java language extended with the mode qualifiers on variables and methods.

A room object that holds a write reference to the newly inserted thermometer creates a
new SecNewThermometerEvent object and assigns it to the write variable event (18). Then the
room invokes setSource (19) that assigns the source variable in event (5). It then invokes the
setThermometer method passing the thermometer as a parameter (20) and a reference to the
thermometer will be stored in the thermometer variable in event (8). Finally, the radiators in the
room are notified about the newly inserted thermometer by invocation of notify (21), passing
event as read so it will be protected.

It is possible to assign th to thermometer (8) even though the parameter th is a write variable
and the member variable thermometer is declared context. This is since a variable declared as con-
text can be treated as a write variable in a write method and since the setThermometer method is
declared as write (7) the assignment is allowed. Since the event object is sent to its receivers only
as read (21) and since a context variable is always treated as read in a read context, the receivers
will only be able to obtain read references to the thermometer object.
The member variable source holds a reference to the creator of the event object so that the
receivers should be able to e.g. determine the origin of the event. This can be done by for example
comparing the identity of the object held by source with another object’s identity. Since source is
declared as read (2) it is safe to export it from the event via the getSource() method rest assured
that no receiver will be able to modify it via the exported reference. The formal parameter to
setSource, s, is declared as read (4) since it will be stored in the read variable source (5) that in
this example should never be allowed to be used to modify the creator.

The thermometer variable holds a reference to the thermometer inserted into the room. The
thermometer is declared context (3), which means that since the event is sent to its receivers only
via read references, the receivers may not obtain write references to the thermometer from the
event. Neither may the receivers invoke the setters on the event since they are both write methods
(4)(7).

4 Conclusions

We have presented a system for controlling references in Java. We distinguish between read ref-
erences and write references. Our formal mode system is statically checkable and ensures that
references exported as read will never be used to modify its referenced object. For increased flexi-
bility, we also introduced an optional dynamic check. We also distinguish between read methods
and write methods where read a method never modifies the state of its enclosing object when
invoked on a read references. The statically checkable rules ensure that all methods in a program
are annotated correctly.

The system is designed for class-based object-oriented programming languages and should be
realisable not only in Java. For Java however, it seems reasonable to implement the mode system
as an extension of the type system since all variables, method return declarations and formal
parameters are associated with modes and since modes also further define the range of values a
variable can assume. The presence of inheritance and method overriding in Java affects the criteria
of the write method. Here, for simplicity, we require method overriding to preserve the modes of
the overridden method. Thus, in addition to the original criteria, a method is a write method also
if it overrides a write method.

The mode system is formalised as a type system with judgments, mode rules etc. Our work in
progress is the completion of the system with operational semantics for the dynamic behaviour of
e.g. caseModeOf and completion of the proofs of the mode system.

We also plan to extend our Java subset to get closer to the Java Language Specification [4].

References

1. J. Boyland, J. Noble, and W. Retert. Capabilities for aliasing: A generalization of uniqueness and
read-only. Accepted to ECOOP 2001. Under revision.

7

2. M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics for classes and
mixins. Technical Report TR 97-293, Rice University, 1997, revised 6/99. Original in Formal Syntax
and Semantics of Java, LNCS volume 1523 (1999), Available from http://www.cs.rice.edu/CS/PLT/

Publications/tr97-293.pdf.
3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable Object-

Oriented Software. Addison-Wesley Publishing Company, 1995.
4. J. Gosling, B. Joy, G. L. Steele Jr., and G. Bracha. The Java Language Specification Second Edition.

Addison-Wesley Publishing Company, 2000. Available from http://java.sun.com/docs/books/jls/

second_edition/html/j.title.doc.html.
5. G. Hamilton, editor. JavaBeans. Sun Microsystems Inc, 1997. Available from http://java.sun.com/

products/javabeans/docs/spec.html.
6. J. Hogg. Islands: Aliasing protection in object-oriented languages. In A. Paepcke, editor, OOPSLA ’91

Conference Proceedings: Object-Oriented Programming Systems, Languages, and Applications, pages
271–285. ACM Press, 1991.

7. G. Kniesel and D. Theisen. Java with transitive access control. In IWAOOS’99 – Intercontinental
Workshop on Aliasing in Object-Oriented Systems. In association with the 13th European Conference
on Object-Oriented Programming (ECOOP’99), June 1999. Available from http://cui.unige.ch/

~ecoopws/iwaoos/papers/index.html.
8. P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency con-

trol. Technical Report 279, Fernuniversität Hagen, 2001. Available from http://www.informatik.

fernuni-hagen.de/pi5/publications.html.
9. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor, ECOOP ’98—Object-

Oriented Programming, volume 1445 of Lecture Notes in Computer Science, pages 158–185. Springer,
1998.

10. M. Skoglund and T. Wrigstad. A mode system for read references. Technical report, Department
of Computer and Systems Sciences, Stockholm University/Royal Institute of Technology, 2001. To
appear.

11. B. Stoustrup. The C++ Programming Language Third Edition. Addison-Wesley Publishing Company,
1997.

A Mode-checking rules

The rules are shown in Appendixes A.2-A.4 and briefly explained below. The system is a modifi-
cation of ClassicJava, [2]. Included here are the most integral parts, a complete description of
the mode-checking system is included in [10]. The most significant changes with respect to Clas-
sicJava are the integration of the mode system, the caseModeOf-statement and the treatment
of local variables.

For simplicity, we assume the following: All classes are declared only once, no inheritance chains
are cyclic, no method is declared in a class more than once, no field is declared in a class more
than once, every class is an extension of another declared class or Object, parameter names and
local variable names in the same method do not conflict, method and field overriding preserves all
modes and types. Note that we also assume that all methods bodies end with an expression. The
result of a method invocation is the result of the last expression in the method body.

We write P, F,mc ` 〈p〉 to denote that given the program text P , a mapping from local variable
names to modes and types F and the mode of the context mc, we may conclude 〈p〉. We write
e : (m, t) to denote that the expression e can be associated with a mode m and a type t. Note that
in rule amcmo, we add an additional premise on the lhs of the ` stating the existence of a field
fd with mode m and type t in the type t’ replacing an existing field in t’ with the same name.

All expressions return values. The expressions vn = e and this.fd = e both return the value of
the rhs allowing the expressions to be chained and used as arguments to methods.

We subscript ` as `d for validation of class declarations, as `m for validation of method
declarations, as `t for validation of mode/type pairs and as `s for type subsumption and mode
conversion. Plain ` denotes checks of expressions, statements or sequences of statements and
expressions.

In addition to the non-terminals of the abstract syntax, we use the m to denote any mode
(e.g. m ∈ {read, write, any, context}). We use standard ‘′’ (prime) notation and subscription to

8

distinguish between meta variables of the same kind, e.g. m and m′ are both modes, not necessarily
the same. The symbol mc always denotes the mode of the current context, read or write.

A.1 Explanation of the integral parts of the integral rules

Expressions Rule null states that null can be given any mode and thus be stored in every variable
or field. Rule new states that references to objects created by new have mode write. Rule rcast
states that any result of an expression may be cast to read. Rule lget states that the result of an
access of a local variable has the variable’s declared mode and type; var ∈ dom(F) states that var
is declared in F and F (var) retrieves the mode and type for a variable name. Rule lset states that
an assignment to a local variable requires that both sides have the same mode or that the rhs is
a member with mode write and the lhs has mode context. Rule fget states that the result of an
access to a field in this has the field’s declared mode if the mode of this is write, else it has the
mode read. Rule fset states that assignments to members requires that the mode of the context is
write and that the mode on the rhs can be converted to the declared mode of the field on the lhs.
Rule call states that write methods may only be invoked on write references, read methods may be
invoked on a reference regardless of its mode. It also states that the modes of the arguments must
be possible to convert to the same modes as the formal parameters.

Declarations Rule meth states that a method is well-moded if its body is well-moded with its
declared mode as the mode of the context. The rule also states that if the method overrides a
method with mode write, the method must be declared as write even if it is valid when the declared
mode is read. Note that this does not allow methods that would compile as read methods to be
declared as write methods and vice versa, except for the case of method overriding because of
the difference between the most specific method selected in compile-time and the actual method
bound to in run-time.

Statements Rule amcmo states that caseModeOf on a member variable declared as any is valid
if the expressions in the write-block are valid with the variable as write and vice versa for the read-
block. Rule alcmo states the same, but for local variables. Rule ccmo states that caseModeOf on
a variable declared as context is valid if the expressions in the write block are valid with in with
the mode of the context as write and vice versa for the read block.

Sequence Rule sseq states that a sequence of statements or expressions is well-moded if all
substatements or subexpressions are well-moded. Note the s here, meaning that statements may
be contained in sequences. Also note that an expression is also a statement.

Mode and type rules Rule mconv states that a mode m may be converted to m, any or, if m is
context, to the mode of the current context, mc. Rule mode/type states that mode and type pair
is valid if the mode is in the set {read, write, any, context} and the type is declared in P . The
rule sub states that the result of an expression with mode m and type t can be subsumed to be
of a supertype to t and another mode to which m may be converted. Note that conv/sub accepts
sequences of statements. While this might seem slightly unorthodox, it allows smooth treatment
of method bodies, which always end with an expression.

9

A.2 Abstract syntax

class := class t extends t { field∗ meth∗ }
field := mf t vn
meth := ml t md((ma t vn)∗):mm { body }
local := ml t vn
body := local∗ sseq

sseq := s; | s; sseq

e := null | new c | var | vn = e | this.fd
| this.fd = e | e.md(e∗) | read e

s := e | caseModeOf ((this.fd | var)) {w: sseq r: sseq}

t := a classname or Object
mf := read | any | context
ml := read | write | any | context
ma := read | write | any
mm := read | write
vn := a variable name
var := vn | this
fd := a field descriptor
md := a method descriptor

A.3 Explanation of symbols (denotes relations)

<: t <: t′ iff t′ is a superclass to t or t′.
∈c t ∈c P iff t is a class declared in program P .
∈f (m, t, fd) ∈f t′ iff field fd with mode m and

type t is declared in class t′.
Fa(e) Fa(e) iff e ≡ this or e ≡ this.fd

∈m (m′, t′, md, ((m, t) . . .), m′′) ∈m t′ iff
method md with return mode/type- pair
(m′, t′) and formal parameters vn . . . with
mode/type-pairs (m, t) . . . method mode
m′′ is declared in class t′′.

A.4 Mode/type elaboration

n
u
ll

P `t (m, t)

P, F, mc ` null : (m, t) n
ew

t ∈c P

P, F, mc ` new t : (write, t) rc
a
st

P, F, mc ` e : (m, t)

P, F, mc ` read e : (read, t)

lg
et

var ∈ dom(F)

P, F, mc ` var : F (var) ls
et

P, F, mc ` vn : (m′, t) P, F, mc `s e : (m, t)
m = m′ ∨ (Fa(e) ∧m = write ∧m′ = context)

P, F, mc ` vn = e : (m, t)

fg
et

P, F, mc `s this : (m′, t) (m′′, t′, fd) ∈f t
m′ = write ⇒ m = m′′ m′ 6= write ⇒ m = read

P, F, mc ` this.fd : (m, t) fs
et

P, F, mc `s this : (write, t)
(m′, t′, fd) ∈f t P, F, mc `s e : (m′, t′)

P, F, mc ` this.fd = e : (m′, t′)

ca
ll

m′ = write ∨m′′ = read P, F, mc `s e : (m′, t′)
P, F, mc `s ej : (mj , tj) for j = [1, n]

(m, t, md, ((m1, t1) . . . (mn, tn)), m′′) ∈m t′

P, F, mc ` e.md(e1 . . . en) : (m, t)

m
o
d
e/

ty
p
e

t ∈c P
m ∈ {read, write, any, context}

P `t (m, t)

m
co

n
v m = m′ ∨m′ = any ∨ (m = context ∧m′ = mc)

mc `m m ≤M m′

cl
a
ss

P `t (mj , tj) for j = [1, n]
P, c `m methk for k = [1, p]

P `d class c . . . {m1 t1 fd1 . . .
mn tn fdn meth1 . . .methp}

co
n
v/

su
b

P, F, mc ` sseq : (m′, t′)
mc `m m′ ≤M m t′ <: t

P, F, mc `s sseq : (m, t) m
et

h

t0 <: t1 P `t (m, t) m′′ ∈ {read, write}
P `t (mj , tj) for j = [1, n + p] P, κ, m′′ `s sseq : (m, t)
(m, t, md, ((m1, t1) . . . (mn, tn)), write) /∈m t1 ⇒ m′′ = m′

κ = [this : (context, t0), v1 : (m1, t1) . . . vn+p : (mn+p, tn+p)]

P, t0 `m m t md(m1 t1 v1 . . . mn tn vn) : m′

{mn+1 tn+1 vn+1 . . . mn+p tn+p vn+p sseq}

a
m

cm
o

P, F, mc ` this.fd : (any, t) P, F, mc ` this : (, t1)
(write, t, fd) ∈f t1, P, F, mc ` s′seq : (m′, t′)
(read, t, fd) ∈f t1, P, F, mc ` s′′seq : (m′′, t′′)

P, F, mc ` caseModeOf (this.fd)
{w: s′seq r: s′′seq} : (any, t)

a
lc

m
o

P, F, mc ` vn : (any, t)
P, F [vn : (write, t)], mc ` s′seq : (m′, t′)
P, F [vn : (read, t)], mc ` s′′seq : (m′′, t′′)

P, F, mc ` caseModeOf (vn)
{w: s′seq r: s′′seq} : (any, t)

cc
m

o

P, F, mc ` e : (context, t)
P, F, write ` s′seq : (m′, t′) P, F, read ` s′′seq : (m′′, t′′)

P, F, mc ` caseModeOf (e) {w: s′seq r: s′′seq} : (context, t) ss
eq

P, F, mc ` s : (m, t)
P, F, mc ` sseq : (m′, t′)

P, F, mc ` s; sseq : (m′, t′)

Static Analysis of Java Cryptographic Applets

Pierre Boury1 and Nabil Elkadhi2

1 GIE Dyade,

Domaine de Voluceau - Rocquencourt - B.P. 105

78158 Le Chesnay Cedex France,

e-mail: Pierre.Boury@dyade.fr,

home page: http://www.dyade.fr/fr/actions/VIP/pb homepage.html
2 EPITECH,

14-16 rue Voltaire,

94270 Le Kremlin Bicêtre France

e-mail: nelkadhi@club-internet.fr

home page: http://www.epita.fr/~el-kad n

Abstract. Secure Java applications such as JavaCard applets often rely

on cryptography for implementing security functions such as authentica-

tion, or the creation of con�dential channels. The question addressed by

this paper is to provide automated support for the veri�cation of such

applications. We describe here our experience in the design and imple-

mentation of StuPa, a prototype of a static analyzer performing veri�ca-

tion of Java cryptographic applets in order to prevent the disclosure of

speci�ed sensitive data. We give an overview of the formal models it is

based on, particularly those used for modeling cryptographic knowledge.

Finally, we review the scope and limitations of the current prototype,

and its interest for practical applications. 1

1 Introduction

JavaCard ([10]) is a simpli�ed subset of Java, which has been lightened and se-

cured to run on smartcards. JavaCard applets are typically used for authentica-

tion and electronic commerce applications and have high security requirements.

Our objective in this paper is to statically detect potential aws in an untrusted

applet. We are mainly interested in con�dentiality properties: while a trusted

program is interacting with an untrusted environment, we want to ensure that

secret data cannot be disclosed, inadvertently or mischievously. Several formal

models for the analysis of cryptographic protocols have been proposed, notably

[3] and [13]. These methods allow for the veri�cation of various cryptographic

properties such as freshness, authentication and con�dentiality. Moreover, some

other recent approaches such as [1], [9] and [7], are fully automated.

The point addressed by this paper is the adaptation of these methods to the

veri�cation of con�dentiality properties of JavaCard applets. Such a task raises

several problems. First, these methods generally require a complete speci�cation

1 This work was partially supported by the TASSC ITEA project

of protocols, including a description of the role of each participant, whereas in

the applications we consider, we only possess a Java program. Second, in contrast

with these approaches which only apply to dedicated speci�cation formalisms,

we need, for practical reasons, to be able to deal with real Java programs in a

highly automated way.

The focus of the following work is to derive suitable formal models that com-

ply with these requirements. This task has been done following the methodology

of abstract interpretation, as described by [6].

The points addressed in the following are twofold. First, we review in section

2 the formal approach we have designed for the static analysis of con�dentiality.

This approach has been derived from [3] and is applicable to general crypto-

graphic algorithms. Second, in section 3 we explain how we have adapted this

approach to the static analysis of Java. The necessity of dealing with real Java

program instead of algorithms speci�ed into a dedicated language raises several

concerns we consider below. We explain in sub-section 3.1 how we have dealt

with static analysis issues proper to Java such as managing statically unknown

values and references. In section 3.2 and 3.3, we consider the problem of iden-

tifying and modeling cryptographic actions of Java applets. Finally, our design

choices and solutions have been tested and experimented in StuPa, a prototype

static analyzer. We will briey summarize the �rst results of these investigations

in section 4.

2 Automated veri�cation of con�dentiality properties

To begin with, we designed a convenient formal framework for the static ana-

lysis of cryptographic programs. Our approach is an adaptation of Bolignano's

method [3], which is oriented toward automated veri�cation of con�dentiality.

We have modi�ed this method to make it automated and more easily applicable

to real programs. The techniques we use to achieve these goals are derived from

proof-theoretical results about the evolution cryptographic knowledge. We fol-

low the abstract interpretation methodology in order to translate these results

into an automated veri�cation method. The idea of using abstract interpretation

in the area of cryptographic protocol veri�cation to get automated procedures

has been applied independently in [4] and [9].

Instead of considering Java byte-code at �rst, we use a simple language of

cryptographic actions in order to set up the formal foundations of static crypto-

graphic veri�cation. This language is limited to what is essential and suÆcient

to describe cryptographic programs: its has simple testing and branching in-

structions in order to describe program control, and its elementary instructions

include cryptographic actions such as equality tests, cryptographic message con-

struction and decomposition, nonce and key generation, and message reception

and emission (see table 1 below). Known or public messages are those that

could be constructed by an intruder in an untrusted environment using only

initially known data and data having leaked from user program. As more and

more data get disclosed along program execution, the set of public messages is

a 2 A ::= � null action

j x = y equality test

j : x = y non-equality test

j x := y assignment

j x := op(x1,x2,...,xn) elementary operation

j y := [x1;x2;...,xn] tuple construction

j detuple(x, [x1;x2;...,xn]) tuple read

j x := ?y channel read

j x ! y channel write

j x := encrypt�y z encryption

j x := decrypt�y z decryption

j decryptfail�y z decryption failure

j x := fresh nonce generation

j x,y := keys� keys generation

Table 1. Cryptographic actions

growing. This set is somehow an approximation of the cryptographic knowledge

of a hostile intruder. Within this model, we have de�ned a deduction relation

describing when a message is constructible from a set of known messages. What

is needed for program veri�cation is an automated procedure to statically com-

pute the evolution of cryptographic knowledge during program execution. We

have investigated the formal properties of the deduction relation and derived

sound veri�cation procedures from it. A complete description of this approach

can be found in [8]. We will only mention that, in this approach, the concrete

meaning of cryptographic actions is de�ned as terms of transformations acting

on cryptographic environement made of an environment carrying information

about messages content, and of a set containing all disclosed messages describ-

ing the state of knowledge of an untrusted intruder. Over that concrete model

is de�ned a static abstract model in order to statically compute the evolution of

cryptographic knowledge. Variables are associated to message components, and

constraints on these variables express assertions about the structure of messages,

and about the set of public data. Sets of constraints approximate cryptographic

knowledge and are interpreted as sets of admissible cryptographic environments.

Cryptographic actions are interpreted as particular transformers of constraints

sets.

We can see how this approach works by considering the following piece of

cryptographic protocol (de�ned in table 2): a message x is read, decrypted into

a message z using a secret key k1, then encrypted into a message w using a

secret key k2, and �nally sent. In that example, after stage 1, the constraint

:known(x; k2) means that key k2 is con�dential assuming message x is public,

and before stage 3, the constraint w � fzg
a

k2
means that message x is equal to

message z encrypted using key u, which is the inverse key of k1. Table 2 below

action cryptographic constraints

0. (initial assumptions) �0 = fis simple(k1), :known(;k1), is simple(k2),

:known(;k2) g

1. x := ?ic �1 = �0 [fis simple(k1), :known(x; k1), is simple(k2),

:known(x; k2) g

2. z := decryptak1x �2 = �1 [fis simple(u), Inva(u; k1); x � fzg
a

u g

3. w := encryptak2z �3 = �2 [fw � fzg
a

k2
g

4. w !oc �4 = fis simple(k1), :known(x; k1), is simple(k2),

:known(x; k2), is simple(u), Inva(u; k1), x � fzg
a

u,

w � fzg
a

k2
g

Table 2. A part of a cryptographic protocol

shows the evolution of cryptographic constraints resulting from the execution of

the protocol.

More generally, this approach has been implemented and tested on programs

implementing parts of well-known cryptographic protocols, and it gave sensible

results. We use this formal approach in section 3.3 below in order to model

cryptographic information in Java programs.

3 Formal models for Java programs

The formal approach of section 2 is ignoring Java-speci�c problems such as the

matching of Java instructions to cryptographic actions, which we consider in

sub-sections 3.2 and 3.3 below. In order to set up convenient formal models for

Java, we have adapted its former approach to the particular structures of Java

Virtual Machine runtime data and values.

On one hand, we have to deal with general issues of Java static analysis

such as how to handle unknown values. On the other hand, we have to inte-

grate our general model of cryptographic knowledge in a seamless way into our

Java-oriented framework of static analysis. Formal models encoding Java Virtual

Machine con�gurations have to be augmented with cryptographic information,

and cryptographic actions have to be identi�ed inside Java programs.

In the following, we explain how we deal with these issues in StuPa. As an

illustration, we will use a Java implementation of the piece of protocol presented

in table 2 above. StuPa takes as input a set of Java class-�les, and additionnal

cryptographic information, and returns as output static information about the

cryptographic knowledge at di�erent control points of the program. Table 3 be-

low shows the source code and the byte-code of the main method of our example.

As additionnal information, we have set the assumptions that the static �elds

k1 and k2 hold con�dential keys at their initialization. We also have declared

the cryptographic methods put, get, encrypt and decrypt so that they are

submitted to a particular processing during static analysis. We give some details

about this point below.

3.1 Static approximations

The Java Virtual Machine, or JVM, is described in [12], and more formally in

[2]. As usual in static analysis, we have to approximate the JVM values which

are unknown at compile-time. We make the following choices: unknown JVM

numerical values (int, long, double, oat) are approximated by their type, and

unknown references are approximated by their set of possible sites of creation,

or locations , which are the program control points where they may have been

created. The main consequences of these modeling decisions are that actual

classes of instances can be resolved accurately, but di�erent instances created at

a same control point are modeled as a single abstract instance (corresponding

instances �elds must be merged).

We also have to make decisions about the modeling of control information.

For the sake of simplicity, methods calls are in-lined, which is suÆcient in the

public static void main() f

int x size = 5; // read incomming message

// 0 iconst 5

// 1 istore 0

int[] x = Env.get(x size);

// 2 iload 0

// 3 invokestatic #8 hMethod int get(int)[]i

// 6 astore 1

int[] z = decrypt(x, k1); // decipher incomming message

// 7 aload 1

// 8 getstatic #9 hField int k1i

// 11 invokestatic #5 hMethod int decrypt(int[], int)[]i

// 14 astore 2

int[] w = encrypt(z, k2); // compose outgoing message

// 15 aload 2

// 16 getstatic #10 hField int k2i

// 19 invokestatic #6 hMethod int encrypt(int[], int)[]i

// 22 astore 3

Env.put(w); // send outgoing message

// 23 aload 3

// 24 invokestatic #11 hMethod void put(int[])i

return;

// 27 return

g

Table 3. main method of the Java applet

absence of recursion, as it is the case in most JavaCard applets. Otherwise,

method calls require further standard treatment we don't wish to describe here.

As one can expect, this way we can faithfully model statically-de�ned in-

structions: static method call and static �elds access and local access on the

JVM stack are interpreted without loss of information. Computations on static

data are also translated accurately. On the contrary, the abstract interpretation

of dynamic instructions induces non-determinism, which arises from branches

and method invocation.

3.2 Models of data leakage

In order to be able to state and check con�dentiality properties, we must be

able to distinguish, inside the program to be analyzed, which part is trusted and

allowed to hold secret data, and which part belongs to the untrusted external

environment, and toward which no secret information should leak. Note that

this requirement di�ers from our previous cryptographic framework [8], in which

such de�nitions are de�ned as primitive notions.

Our approach to that point consists in de�ning a frontier between the user

program and its untrusted environment, following an approach inspired from

[11]. This is done by declaring a set of trusted classes and by observing the

JVM stack. Potential leaks of information are detected as follows. Numerical

values are typed and partionned into three sets: surely public messages, possibly

con�dential messages, and values without cryptographic content (which are not

messages). A leak is detected when a trusted method writes a con�dential data

on a �eld belonging to an untrusted class, or returns a con�dential value to a

calling method of an untrusted class, and when a method of an untrusted class

gets con�dential values as parameters, or reads a con�dential data from some

�eld.

For instance, in the example of table 3 above, the de�nition class of methods

encrypt and decrypt is trusted, whereas the de�nition class of methods put and

get is not. When an int array is passed as argument to the untrusted putmethod,

the values contained in the array are checked, and a leak of data is detected for

the values which are typed as con�dential (values without cryptographic content

would produce a type error). This means that this method call will be interpreted

as a sequence of channel write action on these values, as we will see in sub-section

3.3 below. Similar checks are applied to �eld access intructions.

In so doing, we de�ne a single con�dentiality domain, the limits of which are

set at the level of classes (by the distinction made between trusted and non-

trusted classes). This approach has appeared to be convenient in practice. One

should also note that in order to perform the static analysis of a program, we

not only have to supply a set of class-�les (to be loaded and launched), but

also additional information that specify trusted classes and initially secret data

(designated as particular con�dential static �elds).

This model of data leakage has some similarities to the approach of [11]

which considers the dual problem of access to sensitive references. This latter

method consists in using a dedicated type system which assigns a particular typ-

ing to references in order to detect access to sensitive references. This approach

is applied to a ML-like language with references and functional closures. The

type soundness properties of this language are formally investigated in [11] and

they allow to use type inference algorithms in order to make the detection. Our

approach to data leakage detection is similar in that it also assigns particular

typing to sensitive values. But it di�ers from it in that it uses data ow analysis,

rather than type inference, in order to propagate typing information. We have

chosen a di�erent approach because, in the case of JavaCard applets, which are

somehow more restricted than ML programs, this choice leads to simpler static

analysis algorithms.

3.3 Models of cryptographic knowledge evolution

In section 2, we referred to a general model of cryptographic knowledge we have

designed for automated veri�cation. We have now to incorporate this formal into

a Java-oriented framework of static analysis.

First, we need to de�ne a meaning for cryptographic notions such as messages

or cryptographic knowledge within the concrete JVM model of execution. This

task raises no particular diÆculty. This is done by augmenting the JVM run-

time structures with additional cryptographic information. To the JVM global

con�guration is associated a cryptographic environment in the same way as

environments are associated to cryptographic programs in [8]. JVM numerical

values are associated with messages showing their cryptographic content.

Second, we have to de�ne what is the cryptographic counterpart of the in-

structions of this augmented JVM, that is to say how is propagated and modi�ed

cryptographic information along execution. This point is less easy, because in the

JVM model of execution, there is no simple counterpart to the elementary cryp-

tographic actions de�ned in our cryptographic model. We proceed as follows:

message emission is modeled following the method described in sub-section 3.2

for detecting data leakage; other cryptographic actions such as encryption, de-

cryption, nonce or key creation, and message construction or decomposition are

associated to calls to particular library methods. The cryptographic meaning of

these methods is hard-coded inside our analyzer as a set of speci�cations that

must be supplied once and for all with each cryptographic API.

Finally, we have to abstract this augmented JVM model of execution into

a static abstract model, well-adapted to automated analysis. Following the ap-

proach initiated in [8] and presented in section 2, this stage of abstraction poses

not particular problem.

We achieve this in our abstract model by associating variables to numerical

values having a crytographic content, and by augmenting the JVM con�gu-

ration state with a set of cryptographic constraints. Admissible cryptographic

environments are statically modeled as a set of cryptographic contraints as in the

example of table 2 above. During the static analysis of execution, a fresh vari-

able is associated to each new value. Cryptographic constraints on that variable

are generated and transformed along the execution of each instruction which

happens to be interpreted as a cryptographic action.

We can get some insights into this approach by looking at the example of table 3.

initial assumptions

�0 = fis simple(k1), :known(; k1), is simple(k2), :known(; k2)g

read incomming message

0 iconst 5

1 istore 0

2 iload 0

3 invokestatic #8 hMethod int get(int)[]i

6 astore 1

�1 = �0 [fis simple(k1), :known(x; k1), is simple(k2),

:known(x; k2), :known(x; k2), x � [x1;x2;x3]g

decipher incomming message

7 aload 1

8 getstatic #9 hField int k1i

11 invokestatic #5 hMethod int decrypt(int[], int)[]i

14 astore 2

�2 = �1 [fis simple(u), Inva(u; k1), x
0
� [x1; x2;x3],

x
0
� fzg

a

u, z � [z1; z2; z3]g

compose outgoing message

15 aload 2

16 getstatic #10 hField int k2i

19 invokestatic #6 hMethod int encrypt(int[], int)[]i

22 astore 3

�3 = �2 [f z
0
� [z1; z2; z3], w � fz

0
g
a

k2
, w0

� [w1;w2;w3] g

send outgoing message

23 aload 3

24 invokestatic #11 hMethod void put(int[])i

27 return

�4 = fis simple(k1), :known(x; k1), is simple(k2), :known(x; k2),

is simple(u), Inva(u; k1), x � [x1;x2;x3], x
0
� [x1;x2;x3],

x
0
� fzg

a

u, z � [z1; z2; z3], z
0
� [z1; z2; z3], w � fz

0
g
a

k2
,

w � [w1;w2;w3] g

Table 4. knowledge evolution

For instance, in table 3, at method call Env.put(w) near byte-code 23, the int

array argument w is scanned for leakage detection, and for each leaking value (here,

for each value), the associated variables are extracted and cryptographic write chan-

nel actions are generated. Another illustration is given by method call encrypt(z,

k2) near bytecode 19: in that case, the values contained in the array argument z are

fetched, the sets of their associated variables z1, z2 and z3 are read, and the follow-

ing cryptographic actions are generated: �rst, a tuple construction of the message to

be encrypted: z0 := [z1; z2; z3]; second, an encryption of that message (using a fresh

variable w as result): w:= encryptak2z
0; and third, a tuple reading of the resulting mes-

sage (using fresh variables w1, w2 and w3 for the contained values): w := [w1;w2;w3].

(The tupling and detupling actions are necessary in order to set the lengths of the

arrays taken as argument and returned as result.) Table 4 shows the kind of cryp-

tographic information that StuPa can deduce from the static analysis of the

applet. In particular, we can check data con�dentiality by tracking constraints

:known(:::; :::) and :old(:::; :::). The example above shows that the keys k1 and

k2 remain con�dential up to the end of the execution of the protocol.

4 First implementation results

We have reviewed above the underlying formal models used as basis for the

design of StuPa, an automated tool for the static veri�cation of con�dentiality

of Java cryptographic applets.

At the current stage of development, a prototype is working, and is under

experimentation. Up to now, it has been tested on small cryptographic applets

such as one implementing the user's role in the Yalahom protocol described in

[5]. On these examples, our tool yields good results in terms of leak detection

and veri�cation of con�dentiality. Experiments on larger applets are on the way.

The main task required for carrying them is to incorporate cryptographic spec-

i�cations of the JavaCard API into the analyzer.

After some usage, the main limitations that appear are related to loss of

information in the process of static analysis. Some limitations result from design

decisions. As it is oriented toward the veri�cation of JavaCard applets, our formal

model doesn't support features of the Java language which are un-used in this

Java subset, such as threads and reection. Other sources of information loss are

related to the existing trade-o� between accuracy of analysis and its cost. For

instance, we could get more information by unfolding iterations more. For those

cases, it is possible to �ne-tune the analyzer.

5 Conclusions

An innovative aspect of StuPa is undoubtedly the way it handles cryptographic

knowledge: this tool rests on a formal framework that provides both an accurate

description of cryptography, and a well-�tted model for automated analysis. It

enables us to formally relate Java implementations of cryptographic mechanisms

to their design requirements, and to verify their conformance in an automated

way.

Much care has been taken in achieving a sound design, in accordance with

the methodological principles of the abstract interpretation framework. In par-

ticular, formal foundations of the model of cryptographic knowledge have been

extensively investigated ([8]).

StuPa sets the focus of static analysis on JavaCard-compliant applets, for

which �rst experiments gave conclusive results. The small size of these applets

and the restricted subset Java they are implemented on mostly account for this

success. For more general Java programs, more look is needed to deal with re-

cursion (which poses no theoretical diÆculties), thread and reection (which are

harder to deal with).

Nevertheless, even as limited to JavaCard, this approach seems promising,

because there are today are high needs of formal veri�cation on JavaCard ap-

plets, which have high security requirements.

References

1. Monniaux, D. Abstracting cryptographic protocols with tree automata. In Static

Analysis (1999), A. Cortesi and G. Fil�e, Eds., vol. 1694 of Lecture Notes in Com-

puter Science, Springer, pp. 149{163.
2. Bertelsen, P. Dynamic semantics of Java bytecode. In Workshop on Principles

of Abstract Machines (Pisa, Italy, Sept. 1998).
3. Bolignano, D. An approach to the formal veri�cation of cryptographic protocols.

In 3rd ACM Conference on Computer and Communications Security (New Delhi,

India, Mar. 1996), C. Neuman, Ed., ACM Press, pp. 106{118.
4. Bolignano, D. Using abstract interpretation for the safe veri�cation of security

protocols. In Electronic Notes in Theoretical Computer Science (2000), M. M.

Stephen Brookes, Achim Jung and A. Scedrov, Eds., vol. 20, Elsevier Science Pub-

lishers.), pp. 77{87.
5. Burrows, M., Abadi, M., and Needham, R. A logic of authentication. ACM

Transactions on Computer Systems 8, 1 (Feb. 1990), 18{36.
6. Cousot, P., and Cousot, R. Abstract interpretation: A uni�ed lattice model

for static analysis of programs by construction of approximation of �xed points. In

Proceedings of the 4th ACM Symposium on Principles of Programming Languages,

Los Angeles (New York, NY, 1977), ACM, pp. 238{252.
7. Lowe, G. Casper: A compiler for the analysis of security protocols. In 10th IEEE

Computer Security Foundations Workshop (CSFW '97) (Washington - Brussels -

Tokyo, June 1997), IEEE, pp. 18{30.
8. Elkadhi, N. Automatic veri�cation of con�dentiality properties of cryptographic

programs. Networking and Information Systems (2001), pp. 4{15, Available at

url: http://www.epita.fr:8000/~el-kad n/Hermes.ps

9. Goubault-Larrecq. A method for automatic cryptographic protocol veri�ca-

tion. In SPDP: IEEE Symposium on Parallel and Distributed Processing (2000),

ACM Special Interest Group on Computer Architecture (SIGARCH), and IEEE

Computer Society.
10. Sun Microsystems, Inc. The JavaCard 2.2.1 Platform Speci�cation. Palo

Alto/CA, USA, May 2000.
11. Leroy, X., and Rouaix, F. Security properties of typed applets. In Conference

Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, San Diego, California (New York, NY, Jan.

1998), ACM, pp. 391{403.
12. Lindholm, T., and Yellin, F. The Java Virtual Machine Speci�cation. The

Java Series. Addison-Wesley, Reading, MA, USA, Jan. 1997.
13. Meadows, C. Applying formal methods to the analysis of a key management

protocol. Journal of Computer Security 1, 1 (1992), 5{36.

6 Authors background and expectations

Nabil EL KADHI is professor of computer science at Paris EPITA/EPITECH.

Among his research interests are the security of cryptographic protocol and the

static analysis of program con�dentiality.

He is the author of a Phd thesis on the \automatic veri�cation of con�den-

tiality properties of cryptographic programs".

Pierre BOURY is research engineer at GIE Dyade, a common BULL-INRIA

subsidiary. His main research interests are formal methods applied to software

engineering. He has recently been involved in a project of cryptographic protocols

veri�cation using the Coq proof assistant, and is today developing static analysis

tools for the automated veri�cation of Java cryptographic applets.

Our expectations toward the Workshop on Formal Techniques for Java Pro-

grams are to share ideas about formal veri�cation of security properties in the

domain of Java, and particularly to bring our contribution to the �eld of auto-

mated veri�cation of cryptographic security.

Modular Speci�cation of Frame Properties

in JML

Peter M�uller1, Arnd Poetzsch-He�ter1, and Gary T. Leavens2

1 FernUniversit�at Hagen, 58084 Hagen, Germany

fPeter.Mueller, Arnd.Poetzsch-Heffterg@Fernuni-Hagen.de
2 Iowa State University, Ames, Iowa, 50011-1040, USA

leavens@cs.iastate.edu

Abstract. We present a modular speci�cation technique for frame prop-

erties. The technique uses modi�es clauses and abstract �elds with de-

clared dependencies. Modularity is guaranteed by a programming model

that restricts aliasing, and by modularity requirements for dependen-

cies. For concreteness, we adapt this technique to the Java Modeling

Language, JML.

1 Introduction

In an interface speci�cation language, a frame property describes what loca-

tions a method may modify, and, implicitly, what locations it may not modify

[BMR95]. This is often speci�ed using a modi�es clause [GHG+93,Win87].

We address three problems for speci�cation and veri�cation of frame proper-

ties: (1) Information hiding|The concrete (e.g., private) �elds of a class should

be hidden from its clients, even in speci�cations; yet the frame properties of

(public) speci�cations must somehow permit those locations to be modi�ed.

(2) Extended state|When a subclass overrides a method, it may need to mod-

ify additional �elds it declared; yet the demands of behavioral subtyping (e.g.,

[LW94,DL96]) would seem to prohibit modi�cation of these additional �elds

[Lei98]. (3) Modularity|A modular solution to the frame problem must allow

one to precisely specify the frame properties of methods and to verify their im-

plementations, without knowing the context in which the methods will be used.

However, in general one cannot know what locations might be found in a pro-

gram that extends or uses a given class or interface.

Leino's work [Lei95] solves problems (1) and (2) by introducing abstract �elds

with explicitly declared dependencies and a re�ned semantics of modi�es clauses

(see below). This paper explains part of M�uller's thesis [M�ul01], which builds on

Leino's work and provides a modular sound solution to problem (3).

1.1 Related Work

When modeling objects as records containing possibly abstract locations, one

needs a way to specify the correspondence between abstract and concrete loca-

tions. To do this, Leino introduced depends and represents clauses [Lei95,Lei98].

2

A represents clause says how an abstract location's value is determined from

various concrete locations. To a �rst approximation, a depends clause says what

concrete locations are used to determine the abstract location's value. More pre-

cisely, a dependency declaration allows dependees to be modi�ed whenever the

abstract location is named in a modi�es clause. Thus, in JML, \depends absloc

<- concloc" says that concloc can be modi�ed whenever absloc is modi�able.

To support the speci�cation of extended state, a subtype may declare that

an inherited abstract �eld depends on the �elds it declares. Such dependencies

allow overriding methods in subclasses to modify their extended state.

Leino and Nelson distinguish static dependencies, of the form \depends f

<- g", and dynamic dependencies, of the form \depends f <- p.g", in which

abstract �eld f depends on �eld g of the pivot object p. Leino and Nelson handle

static and dynamic dependencies in di�erent ways, that is, by di�erent desugar-

ing of modi�es clauses, and di�erent modularity rules. Although M�uller's thesis

[M�ul01] treats both cases uniformly, in this paper, to avoid introducing addi-

tional concepts, we also distinguish them.

Leino and Nelson use scope-dependent depends relations [Lei95], which lead

to a scope-dependent meaning of modi�es clauses. Soundness is not immedi-

ate, because proofs for smaller scopes do not necessarily carry over to larger

scopes; indeed, Leino and Nelson have not yet proved modular soundness of

their technique for dynamic dependencies. See [M�ul01, Section 5.5.1] for a de-

tailed comparison between our approach and Leino's and Nelson's work.

1.2 Approach

To solve the �rst two problems described above, we follow Leino and Nelson

[Lei95,LN00], using abstract �elds and explicitly declared dependencies. We

explain the ideas by applying them to the Java Modeling Language (JML)

[LBR01,LBR99], which allows the speci�er to declare abstract �elds by using

the modi�er \model". JML also allows one to declare dependencies, although it

does not yet incorporate the restrictions we propose here.

Our solution to the modularity problem entails three steps: (1) We de�ne a

programming model that hierarchically structures the object store into so-called

contexts and restricts references between contexts [MPH00,MPH01,M�ul01].

(2) Dependency declarations generate a theory for dependencies declared in

a given set of modules. This depends relation does not specify dependencies for

extensions to the given set of modules. Because of this underspeci�cation one

can only prove properties about a module that hold in well-formed extensions.

Thus modular soundness is much simpler to prove than with a scope-dependent

semantics of the modi�es clause. The restricted programming model guarantees

that this weaker semantics is still strong enough to verify method invocations.

(3) We impose three modularity requirements to restrict the permissible de-

pendencies of abstract locations. These restrictions allow us to prove a modu-

larity theorem that makes modular veri�cation of frame properties possible.

A detailed presentation of these ideas, including all formalizations and proofs,

but not their application to JML, is found in [M�ul01].

3

List

first

last

val

prev

next

Node

val

prev

next

Node

val

prev

next

Node

val

prev

next

Node

myList

Fig. 1. Nodes in a context (the oval). The owner object sits atop the context it owns.

2 The Programming Model

To achievemodularity, dependencies must be controlled. There are two problems,

both of which involve aliasing: (1) Representation exposure occurs when objects

inside the representation of an object X may be referenced by objects outside of

X 's representation. (2) Dependencies on argument objects occur when an object

X 's abstract value is determined by the abstract values of objects, called argu-

ment objects, outsideX 's representation. Both problems allow modi�cation of an

object's abstract value in ways that cannot be controlled by its implementation.

To prevent representation exposure, the object store is structured into a

hierarchy of contexts. Contexts are disjoint groups of objects. There is a root

context. All other contexts have an owner object in their parent context. Aliasing

is controlled by the following invariant: Every reference chain from objects in the

root context to an object in a context C passes through C's owner. Thus, an

owner object can control access to objects in its context. This structure of the

object store is called the ownership model [CPN98].

The ownership model is not suÆcient to prevent dependencies on argument

objects because it allows objects inside a context to reference argument objects in

ancestor contexts. We re�ned the ownership model in two ways [MPH01,M�ul01]:

(a) references to argument objects are made explicit by marking them readonly,

and (b) readonly references can point to any object, not only to objects in ances-

tor contexts. Access via readonly references is restricted to reading operations

without side-e�ects. This re�ned ownership model is more general than the orig-

inal one. In this re�ned model, we prevent dependencies on argument objects by

forbidding dependencies via readonly references.

Figure 1 illustrates our re�ned ownership model. The nodes of a linked list are

contained in a context owned by the list header. The objects stored in the list are

outside the context and are referenced readonly (dashed arrows). Consequently,

abstract �elds of the list must not depend on �elds of these objects.

To enforce the re�ned ownership model's invariant, we use the universe type

system [MPH01,M�ul01]. Besides tagging types as readonly, this type system also

4

distinguishes between references that remain inside a context and references

to objects that belong to the descendant context owned by the this-object.

References of the latter kind are tagged with the keyword rep [CPN98].

3 Speci�cation of frame properties in JML

3.1 Data abstraction in JML

Data abstractions in JML are speci�ed using abstract locations, i.e., model �elds.

For example, consider the speci�cations of List in Figure 2 and Node in Figure 3.

//@ model import edu.iastate.cs.jml.models.*;

public abstract class List {

//@ public model non_null JMLObjectSequence listValue;

protected /*% rep %*/ Node first, last;

//@ protected depends listValue <- first, first.values, last;

/*@ protected represents listValue <-

@ (first == null ? new JMLObjectSequence() : first.values); @*/

/*@ public normal_behavior

@ requires o != null;

@ modifies listValue;

@ ensures listValue.equals(\old(listValue.insertBack(o))); @*/

public void append(/*% readonly %*/ Object o) {

if (last==null) {

last = new /*% rep %*/ Node(null, null, o);

first = last;

} else {

last.next = new /*% rep %*/ Node(null, last, o);

last = last.next;

}

}

/* ... */

}

Fig. 2. A JML speci�cation of the Java class List, of doubly-linked lists.

The class List declares a public model �eld listValue, which describes the

abstract value of a List object. In the class Node, the model �eld values forms

part of the abstract value of Node objects. In JML, method speci�cations precede

the method header, preconditions are introduced by the keyword requires and

postconditions by the keyword ensures. For example, in the speci�cation of

List's method append, the postcondition describes the abstract e�ect of append

on the model �eld listValue.

5

//@ model import edu.iastate.cs.jml.models.*;

public class Node {

//@ public model non_null JMLObjectSequence values;

public Node next, prev;

public /*% readonly %*/ Object val;

//@ public depends values <- next, next.values, prev, val;

/*@ public represents values <-

@ (next == null ? new JMLObjectSequence(val)

@ : next.values.insertFront(val)); @*/

Node(Node nextp, Node prevp, /*% readonly %*/ Object valp) {

next = nextp; prev = prevp; val = valp;

}

}

Fig. 3. The JML speci�cation of the Java class Node.

3.2 Explicit dependencies in JML

Although M�uller's thesis [M�ul01] uses a quite general form of dependencies,

we use a syntax for depends clauses like that in Leino's thesis [Lei95]. Besides

simplicity, this syntax also permits the restrictions discussed in Section 4 to be

statically checked easily. We leave extensions to this syntax as future work.

For example, in the class List, the model �eld listValue is represented by

a sequence determined by first and first.values. Hence listValue is also

declared to depend on these �elds. Although the represents clause for List does

not use the �eld last, that �eld is listed in the depends clause, to permit it to be

modi�ed whenever listValue is modi�able. Similarly, in class Node, the model

�eld values depends on next, next.values, prev, and val.

3.3 Modi�es Clauses in JML

An example of a modi�es clause in JML appears in the speci�cation of List's

append method. It says that the method may modify listValue.

The semantics of the modi�es clause is that all relevant locations that either

are named in the clause or on which such locations depend may be modi�ed. A

location is relevant to the execution of a non-static method m if it is either in

the context that contains m's receiver or a descendant context of the one that

contains m's receiver. For example, if myList is an object of type List, then for

the call myList.append(o), the relevant locations are those in the context that

contains myList, and locations in descendant contexts. Since the �eld first in

List is declared using the keyword rep, the object myList.first points to is in

the context owned by myList (see Figure 1), which is thus a descendant context

of the context that contains myList. Since the next �elds of Node objects are not

6

//@ model import edu.iastate.cs.jml.models.*;

public abstract class Set {

//@ public model non_null JMLObjectSet setValue;

protected /*% rep %*/ /*@ non_null @*/ List theList;

//@ protected depends setValue <- theList, theList.listValue;

/*@ protected represents setValue \such_that

@ (\forall Object o; o != null;

@ theList.listValue.has(o) <==> setValue.has(o)); @*/

/*@ public normal_behavior

@ requires o != null;

@ modifies setValue;

@ ensures setValue.has(o); @*/

public void insert(/*% readonly %*/ Object o) {

if (!theList.contains(o)) { theList.append(o); }

}

}

Fig. 4. The JML speci�cation of the Java class Set.

declared using rep, the objects reachable via next are all in the same context.

It follows that all the nodes are in the context owned by myList, and hence that

the �elds of these nodes are also relevant locations. That is, the call may modify

myList.first, myList.first.values, myList.last, and all the �elds of the

nodes reachable from myList.first via the next �eld.

To explore the modularity consequences of this semantics, consider an ex-

tended program, in which the type List is used to implement the type Set, speci-

�ed in Figure 4. Set's model �eld setValue depends on its concrete �eld theList

and theList.listValue. Since the speci�cation of Set's insert method lists

setValue in its modi�es clause, a call such as mySet.insert(o) may modify

mySet.setValue and all the other relevant locations on which it depends. Since

theList is declared using rep, it is in the context owned by mySet, and so

is in a descendant context of the one containing mySet (see Figure 5). There-

fore mySet.theList is a relevant location, and since it is also a dependee, it can

be modi�ed. Similarly, mySet.theList.listValue, mySet.theList.first, and

the �elds of the nodes are relevant, and so these dependees can be modi�ed.

The modularity of the semantics is shown by the call theList.append(o)

in Set's insert method. How does the semantics allow List's append method

to modify the set's model �eld setValue, which it does when it modi�es the

abstract value of theList? The semantics allows this because it underspeci�es

the locations that append can modify, since it only describes the modi�cation of

relevant locations, and setValue is not relevant for the call theList.append(o).

The reason for this is that a context's owner is not contained in the context it

owns, and theList is in the context owned by the receiver in Set's insert

7

Node Node Node Node

List

Set

theListmySet

Fig. 5. Object Structure for a Set object.

method (see Figure 5). Hence in Set's insert method, this.setValue is not a

relevant location for the call to theList.append(o).

Responsibility for verifying frame properties is divided. A method's imple-

mentor is responsible for the locations relevant to its executions, as speci�ed in

its modi�es clause, and the method's caller is responsible for other locations.

For example, append's implementor is responsible for verifying the frame prop-

erties in its modi�es clause. When verifying the call to append in Set's insert

method, one uses append's modi�es clause and Set's depends clauses to reason

about modi�cation of Set's �elds theList and setValue.

4 Modularity and Dependencies

To achieve modularity, we impose three requirements on dependencies:

Locality Requirement: Abstractions of an object X can only depend on lo-

cations in the context that contains X or its descendants. That is, they may

depend on locations in X 's representation, but not on argument objects.
Authenticity Requirement: The declaration of an abstract location L in a

context C must be visible in every scope that contains a method m that

could|if invoked on a target object in C|modify L. Thus the veri�er of m

can determine all relevant locations that m might modify.

Visibility Requirement: Whenever two locations are declared in a scope S,

the dependencies in S must allow one to determine whether these locations

depend on each other or not.

We enforce these requirements by statically checking the following rules for

single depends clauses of the form \depends f <- g" or \depends f <- p.g".

Locality Rule: For dynamic dependencies, the pivot �eld must not hold a read-

only reference; that is, p must not be of a readonly type.

8

Authenticity Rule: For static dependencies and for dynamic dependencies

where the pivot �eld is not of a rep type, f must be declared in the scope of

g. For dynamic dependencies where the pivot �eld is of a rep type, f must

be declared in the scope of the owner type of p. In most implementations

such as in our examples, the owner type of a �eld is its declaration type (see

[M�ul01] for a precise de�nition).
Visibility Rule: Static and dynamic dependencies where the pivot �eld is not

of a rep type must be declared in the scope of g. Dynamic dependencies

where the pivot �eld is of a rep type must be declared in the scope of p's

owner type.

To verify frame properties of a method m, one has to prove that m leaves all

relevant locations that are not covered by m's modi�es clause unchanged. This

proof obligation can be shown for those locations that are declared in the scope

ofm by referring to their representations and dependencies. For all other relevant

locations, the locality and authenticity requirements guarantee that they are not

modi�ed by m, as stated by the following modularity theorem:

A method m can only modify relevant locations that are declared in m's scope.

A sketch of this theorem's proof is contained in the appendix. A formalization of

the theorem and the full proof can be found in [M�ul01]. The modularity theorem's

proof shows that the modularity requirements in combination with the universe

programming model are strong enough to enable modular veri�cation of frame

properties. Similar requirements are used in [LN00].

5 Conclusions

We extended the Java Modeling Language by constructs to specify frame prop-

erties in a modular way. The extension is based on a re�ned ownership model:

The programmer can hierarchically structure the object store into contexts to

which only designated owner objects have direct access. All other references

crossing context boundaries have to be declared readonly. The ownership model

is enforced by the universe type system. It provides the basis to re�ne the se-

mantics of the modi�es clause and to de�ne context conditions that guarantee

the modularity of speci�cation and veri�cation of frame properties.

The JML extensions are based on a more general framework that was de-

veloped for modular veri�cation of Java programs [M�ul01]. In that work, these

ideas are also applied to the modular treatment of class invariants, by consider-

ing invariants to be boolean-valued abstract �elds. Thus these ideas also lead to

modular speci�cation and veri�cation of invariants.

Although our technique can express common implementation patterns such

as containers with iterators and mutually recursive types [M�ul01], some exten-

sions might be useful in practice. For instance, unique variables would allow

objects to migrate from one context to another, and less restrictive modular-

ity rules would provide better support for inheritance [M�ul01]. We leave such

extensions for future work.

9

Acknowledgments

The work of Leavens was supported in part by the US NSF under grant CCR-

9803843, and was done while Leavens was visiting the University of Iowa.

References

[BMR95] Alex Borgida, John Mylopoulos, and Rayomnd Reiter. On the frame prob-

lem in procedure speci�cations. IEEE Transactions on Software Engineer-

ing, 21(10):785{798, October 1995.
[CNP01] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for

containment. In European Conference on Object-Oriented Programming,

ECOOP 2001, Lecture Notes in Computer Science. Springer-Verlag, 2001.

(to appear).
[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for exible

alias protection. In Proceedings of Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN

Notices, October 1998.
[DEJ+00] Sophia Drossopoulou, Susan Eisenbach, Bart Jacobs, Gary T. Leavens, Pe-

ter M�uller, and Arnd Poetzsch-He�ter. Formal techniques for Java pro-

grams. In Jacques Malenfant, Sabine Moisan, and Ana Moreira, editors,

Object-Oriented Technology. ECOOP 2000 Workshop Reader, volume 1964

of Lecture Notes in Computer Science, pages 41{54. Springer-Verlag, 2000.
[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyp-

ing through speci�cation inheritance. In Proceedings of the 18th Interna-

tional Conference on Software Engineering, Berlin, Germany, pages 258{

267. IEEE Computer Society Press, March 1996. A corrected version is

Iowa State University, Dept. of Computer Science TR #95-20c.
[GHG+93] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet,

and J.M. Wing. Larch: Languages and Tools for Formal Speci�cation.

Springer-Verlag, New York, NY, 1993.
[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation

for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,

editors, Behavioral Speci�cations of Businesses and Systems, pages 175{188.

Kluwer Academic Publishers, Boston, 1999.
[LBR01] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design

of JML: A behavioral interface speci�cation language for Java. Technical

Report 98-06m, Iowa State University, Department of Computer Science,

February 2001. See www.cs.iastate.edu/~leavens/JML.html.
[Lei95] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis,

California Institute of Technology, 1995. Available as Technical Report

Caltech-CS-TR-95-03.
[Lei98] K. Rustan M. Leino. Data groups: Specifying the modi�cation of extended

state. In OOPSLA '98 Conference Proceedings, volume 33(10) of ACM

SIGPLAN Notices, pages 144{153. ACM, October 1998.
[LH94] K. Lano and H. Haughton, editors. Object-Oriented Speci�cation Case Stud-

ies. The Object-Oriented Series. Prentice Hall, New York, NY, 1994.
[LN00] K. Rustan M. Leino and Greg Nelson. Data abstraction and information

hiding. Technical Report 160, Compaq Systems Research Center, 130 Lytton

Avenue Palo Alto, CA 94301, 2000.

10

[LW94] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping.

ACM Transactions on Programming Languages and Systems, 16(6):1811{

1841, November 1994.

[MPH00] Peter M�uller and Arnd Poetzsch-He�ter. A type system for controlling

representation exposure in Java. Published in [DEJ+00]., 2000.

[MPH01] P. M�uller and A. Poetzsch-He�ter. Universes: A type system for alias and

dependency control. Technical Report 279, FernUniversit�at Hagen, 2001.

[M�ul01] Peter M�uller. Modular Speci�cation and Veri�cation of Object-Oriented

programs. PhD thesis, FernUniversit�at Hagen, Germany, March 2001.

[SBC92] Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Ori-

entation in Z. Workshops in Computing. Springer-Verlag, Cambridge CB2

1LQ, UK, 1992.

[Win87] Jeannette M. Wing. Writing Larch interface language speci�cations. ACM

Transactions on Programming Languages and Systems, 9(1):1{24, January

1987.

A Sketch of the Modularity Theorem's Proof

In the following, we sketch the �eld update case of the proof of the modularity

theorem from Section 4. The proof for method invocations is similar.

Proof Sketch. Let m be executed in context C (i.e., the receiver is in C). If m

updates Y:g, the universe type system guarantees that Y is in C or in one of

C's immediate descendants. Consider an abstract location X:f that is relevant

for m. If X:f does not depend on Y:g, X:f is not a�ected by updates of Y:g.

Otherwise, we show that f is declared in m's scope:

Case 1: Y is in C. If X:f is relevant for m, then by the locality rule X is

in C. Thus, X and Y are in the same context, and the authenticity rule ensures

that f is declared in g's scope. Since g is accessible in m, f is in m's scope.

Case 2: Y is in an immediately-descendant context D of C. Due to

locality, X is in D or in C. The former case is analogous to Case 1. In the latter

case: a dynamic dependency must be involved with a pivot �eld p of a rep type,

the owner type of p is in the scope of m (by the universe type system), and f

is declared in the scope of p's owner type (by the authenticity rule). Thus, f is

declared in m's scope.

Compositional speci�cation and veri�cation of

control �ow based security properties of

multi-application programs

Gilles Barthe1, Dilian Gurov2, Marieke Huisman1

1 INRIA Sophia-Antipolis, France

{Gilles.Barthe,Marieke.Huisman}@sophia.inria.fr
2 SICS, Sweden dilian@sics.se

Abstract. Jensen et al. present a simple and elegant program model,

within a speci�cation and veri�cation framework for checking control

�ow based security properties by model checking techniques. We gener-

alise this model and framework to allow for compositional speci�cation

and veri�cation of security properties of multi-application programs. The

framework contains a program model for multi-application programs,

and a temporal logic to specify security properties about such programs.

1 Introduction

Formal veri�cation of security properties becomes more and more important.
An important and interesting class of security properties are control �ow based
security properties. Jensen et al. [7] present a simple and elegant program model
which is used to check these kind of properties (using �nite-state model check-
ing). This program model is language independent, but it can easily be instanti-
ated for Java or JavaCard. With the program model, also a language to specify
security properties is presented. A drawback of this approach is that to check
�real world� programs, the state space can become very large.

Veri�cation of security properties is in particular important for the new gen-
eration multi-application smart cards. Typical for such multi-application smart
cards is that applets can be loaded post-issuance, i.e. after initialisation of the
card. Therefore, one would like to do the veri�cations in a compositional way,
stating which properties should be satis�ed by the components of the system, to
ensure the global correctness of the system. When issuing a new applet on the
card, one has to check that this new applet satis�es these required properties,
in order to know that other applets can safely cooperate with it.

In this paper, we present a framework for compositional veri�cation of multi-
application programs, which is a generalisation of the model presented by Jensen
et al. The framework, which consists of a program model and a speci�cation lan-
guage, is language-independent, but can easily be instantiated for JavaCard (as
in [7]). The framework enables speci�cation and reasoning in a compositional
style, and is thus more suited to verify security properties for multi-application
smart cards. The program model is designed to be as abstract as possible, while

it still accurately describes the method call behaviour. Further we propose a set
of temporal logic patterns which can be used to specify properties over these
programs. The temporal logic patterns can be translated into di�erent logics,
including the modal �-calculus [8]. For this logic, a proof system is under de-
velopment which will allow one to decompose system properties into properties
over the individual applets. This veri�cation method �ts in well with the nature
of smart cards, where applets can be loaded post-issuance, and it makes ver-
i�cation more manageable by reducing the state space. This paper focuses on
appropriate speci�cations of multi-application programs, and on how to specify
properties over such programs in such a way that compositional veri�cation can
be achieved.

The model and the logic enable us to reason about smart cards at a behav-
ioural level, i.e. at the level of method calls. We feel that this is the right level
to talk about applet interaction: for the global correctness of the system it is
important to know that the components have a certain interface behaviour, and
it does not matter how this behaviour is achieved. Only when showing that an
applet satis�es the required properties, one has to look at its implementation.

Example: electronic purse To illustrate our approach we discuss an example
from [1], which presents a typical veri�cation problem for smart cards. An elec-
tronic purse is presented, which contains three applets: a Purse applet P, and two
loyalty applets: AirFrance AF, and RentACar RaC. The owner of an electronic
purse smart card can decide to join a loyalty program of some company, and
load the appropriate applet on his card. The loyalty applets need to be informed
about the purchases done with the card, in order to compute the loyalty points.

For e�ciency reasons, the electronic purse keeps a log table of bounded size
of all credit and debit transactions, and the loyalty applets can request the
information stored in this table. For example, if the user wishes to know how
many loyalty points he/she has, the loyalty applet will update its local balance
�rst, before returning an answer. Updating the local balance of a loyalty applet
consists of two phases: asking the entries of the log table of the purse, and asking

the balances of loyalty partners (to compute an extended balance).

In order to ensure that loyalties do not miss any of the logged transactions
(if the log table is full, entries will be replaced by new transactions), they can
subscribe to the so-called logFull service. This service signals all subscribed
applets that the log will be emptied soon, and that they should thus update
their local balance. In the example, the AirFrance applet is subscribed to this
service, but the RentACar applet is not. However, RentACar might be able to
implicitly deduce that the log is full, from the fact that AirFrance asks RentACar
for its balance information, every time AirFrance gets the logFull message. A
malicious implementation of the RentACar loyalty applet might therefore request
the information stored in the log table, before returning the value of its local
balance to AirFrance. This is unwanted, because it might be the case that applets
pay for the logFull service, and the owner of the purse applet would not want
other applets to get this information for free.

2

Thus, one would like to specify and verify that only applets that are sub-
scribed to the logFull service update their balance, until the log is emptied; in
particular one would like to specify that the bad scenario, depicted as a message
sequence chart in Fig. 1 (where the solid lines indicate method invocations and
the dashed lines indicate method returns) can not happen.

The property depicted in Fig 1 can be formulated
RentACar

logFull

getTrs

getTrs

getTrs

getTrs

logFull

getBalance

getBalance

Purse AirFrance

Fig. 1. Electronic
purse: bad scenario

as: an invocation of AF.logFull in the AirFrance ap-

plet should not trigger an invocation of P.getTrs in

the Purse applet by the RentACar applet RaC. Below,

in Section 2, we will specify this property formally,
and we will also show that to establish that this prop-
erty holds for the system, it is su�cient to show that
AF.logFull only calls P.getTrs and RaC.getBalance,
while these methods do not call other methods (hence
RaC never calls P.getTrs when AF.logFull is called).

The remainder of this paper is organised as fol-
lows. Section 2 introduces the temporal logic patterns
and show how these are used to specify properties. It
also discusses the decomposition theorem. Section 3

discusses the compositional program model, which ex-
tends the model of Jensen et al. Finally, Section 4 con-
cludes and discusses future work. Throughout the paper, the case study described
above will serve as a motivating example.

2 Specifying properties for multi-application programs

Typical properties that are of interest for multi-application programs can often
be expressed as temporal logic formulae, stating e.g. that a particular event only
occurs after some other event has happened. We take the following approach to
speci�cation. First we specify the global property (as a temporal logic formula)
that should be satis�ed by the program. Then we specify which properties should
hold for the individual applets (or components) of the program, and we prove
formally that if the components satisfy these properties, the global program
satis�es the global speci�cation.

The speci�cations of the global system and the applets are described using
temporal speci�cations patterns, following the approach taken for the Bandera
speci�cation language [3]. These patterns have proven useful to specify prop-
erties, and can easily be translated into formulae in a particular logic. Typical
example patterns that we use are ALWAYS �,WITHIN m �, wherem is a method,
and A CALLS M, where A is an applet, and M a set of methods. The temporal
logic framework is rich enough to express security properties like the absence of
bad scenarios as illustrated above, and it allows a wide range of other important
behavioural correctness properties of multi-application programs to be speci�ed.

Using these temporal logic patterns we can specify correctness properties
for the electronic purse. As mentioned above we want that an invocation of

3

AF.logFull in the purse does not trigger a call from RaC to P.getTrs. Formally,
we can specify this as SPECEP(P; AF; RaC), where:

SPECEP(X;Y; Z)
def
=

ALWAYS .

WITHIN Y:logFull :

NOT(Z CALLS fX:getTrsg)

where X , Y , Z are variables ranging over applets. This speci�cation states that
for any (reachable) state in which the method Y:logFull has been invoked, but
not been �nished, there should be no call from the Z applet to X:getTrs.

Based on this speci�cation, we give speci�cations per applet in such a way
that it is su�cient to prove for each applet that it satis�es its local speci�ca-
tion, in order to deduce that the global system satis�es the global speci�cation.
Finding the local speci�cation requires insight into the system. We specify the
purse applet as SPECP(P), the AirFrance applet as SPECAF(AF; P; RaC), and the
RentACar applet as SPECRaC(RaC), where SPECP, SPECAF, and SPECRaC are de-
�ned as follows.

SPECP(X)
def
=

ALWAYS .

WITHIN (X:getTrs) :
X CALLS fg

SPECAF(Y;X;Z)
def
=

ALWAYS .

WITHIN (Y:logFull) :
Y CALLS fX:getTrs; Z:getBalanceg

SPECRaC(Z)
def
=

ALWAYS .

WITHIN (Z:getBalance) :
Z CALLS fg

The speci�cation for the purse applet states that the method X:getTrs does
not invoke any other method. The speci�cation for AirFrance speci�es which
methods are invoked by Y:logFull. The speci�cation for RentACar speci�es
that Z:getBalance should not invoke any other method. Notice that these spec-
i�cations do not fully specify the behaviour of the applets, they only describe
the necessary behaviour in order to satisfy the global property.

Given the global speci�cation SPECEP for the electronic purse, and given
the speci�cations for the individual applets P, AF and RaC, we establish the
following theorem, presented as a Gentzen-style sequent, where free variables
are (implicitly) universally quanti�ed (where X : � is an assertion meaning that
applet X satis�es property �).

X : SPECP(X); Y : SPECAF(Y;X; Z); Z : SPECRaC(Z) ` X j Y j Z : SPECEP(X;Y; Z)

4

P.debit.Med

AF.logFull.Med1

AF.buyTicket AF.logFull

AF.buyTicket.Ret AF.logFull.Ret

P.getTrs

P.getTrs.Ret

RentACar

RaC.rentCar

User.RaC

RaC.getBalance.Med

RaC.rentCar.Ret RaC.getBalance.Ret

RaC.getBalance

P.debit.Ret

P.debit

Purse

User.P User.AF

AirFrance

Fig. 2. Compositional model for the purse

Using this theorem one can reduce the proof of the global correctness asser-
tion P j AF j RaC : SPECEP(P; AF; RaC) to proving the local correctness assertions

P : SPECP(P; AF), AF : SPECAF(AF; P; RaC) and RaC : SPECRaC(RaC) of the individ-
ual applets. Notice that we thus have two di�erent kind of veri�cation tasks
in our framework, namely model-checking the local properties of the individ-
ual applets, and proving property decompositions correct. The use of general
temporal logic patterns allows us to use di�erent veri�cation techniques. For
example, we can model check the �local� applet properties, by translating the
speci�cations into CTL (e.g. as input for NuSMV [2]) or LTL (e.g. as input for
SPIN [6]), while we can use the modal �-calculus [8] to prove the correctness of
the property decomposition.

3 A program model for multi-application programs

To verify the properties as described above, we need a formal model, representing
multi-application programs, with a formal (operational) semantics. This model
is designed in such a way that it is suited for compositional veri�cation. Based on
the approach taken by Jensen et al. [7], we model a program as a transfer graph,
modelling intra-procedural control �ow, and a call graph, modelling method
calls. A special set of vertices is identi�ed, which are the return vertices, where
a method hands back control to the caller. A function � : V * A exists, which
attributes vertices to applets. This is a partial function, as we allow vertices
that do not belong to applets; these are the external vertices that model the
environment. To illustrate the model, Fig. 2 shows the electronic purse formalised
in this way. A suggestive naming and notation is used, to attribute vertices to
applets (the function �), and to suggest the control �ow in the methods. For
clarity of presentation, in the picture we did not name all the intermediate

5

vertices. The dashed arrows are edges in the transfer graph, the solid arrows are
edges in the call graph.

Every applet has a local state, which is a list of pairs of vertices, representing
the control stack in the current program point. For example, given an applet
a with local vertices v2 and v5, its local state (v1; v2) � (v2; v3) � (v4; v5) can be
interpreted as: vertex v1 (which is external to a) invoked a vertex in a, during
whose execution v2 is reached. Next, v2 invoked the vertex v3 in some other
applet. Execution continued in this other applet, but eventually somewhere in
some applet a vertex v4 is reached, which invoked a vertex in a again, and during
the execution of this vertex, the vertex v5 is reached.

The operational semantics of individual applets as well as of sets of applets
is given compositionally, in terms of labelled transition systems induced by a set
of transition rules. The latter are grouped in two parts: transition rules de�ning
the behaviour of individual applets (that is, singleton applet sets), and transition
rules for combining behaviours of applet sets.

The transition labels are denoting method invocations and returns. We dis-
tinguish between perfect and imperfect actions, the former being either intra-
procedural control �ow actions (left unlabelled) or method invocations/returns
internal to a given applet set (labelled with call and ret, respectively), and the lat-
ter being method invocations/returns involving vertices external to the applet set
(labelled with call?/ret? for input and call!/ret! for output action, respectively).
Imperfect actions can form the corresponding perfect actions by synchronisation
in the global trace of the system (thus leaving only the labels call and ret).

Applet transition rules Figure 3 gives the transition rules per applet. In this

�gure the applet name a is �xed, and � denotes the local state of applet a. We
use v1 !

T
v2 to denote edges in the transfer graph, modelling intra-procedural

control �ow, and v1 !
C
v2 to denote edges in the call graph, respectively.

We use an applet-state predicate activea and vertex predicates locala and
returna, which are de�ned as follows.

activea(�)
def
= 9�0; v; v0: (� = �

0 � (v; v0)) ^ locala(v
0)

locala(v)
def
= �(v) 2 dom(�) ^ �(v) = a

returna(v)
def
= v 2 V

R ^ locala(v)

Thus, an applet is active if the second vertex in the last pair of � is local to this
applet.

The �rst three rules describe transitions local to the applet. The rules send
call and receive call describe the state transitions when a call to a di�erent applet
is made (either from an external vertex, or from applet to applet). Similarly, the
rules send return and receive return describe the state transitions if a call over
method borders is completed. The receive return transition is enabled if the return
is sent by the same applet as the one the corresponding call was send to, there
are no requirements on the local state of this applet. This is in accordance with
the restrictions on compositional reasoning.

6

[local call]
v1 !

C
v2 locala(v1) locala(v2)

� � (v; v1)
v1 call v2�����! � � (v; v1) � (v1; v2)

[local return]
v1 !

T

a v2 returna(v3)

� � (v; v1) � (v1; v3)
v3 ret v1
�����! � � (v; v2)

[local transfer]
v1 !

T

a v2 v1 6!C

� � (v; v1) �! � � (v; v2)

[send call]
v1 !

C
v2 locala(v1) :locala(v2)

� � (v; v1)
v1 call! v2������! � � (v; v1) � (v1; v2)

[receive call]
v1 !

C
v2 :locala(v1) locala(v2) :activea(�)

�
v1 call? v2
������! � � (v1; v2)

[send return]
returna(v2) :locala(v1)

� � (v1; v2)
v2 ret! v1
�����! �

[receive return]
v1 !

T

a v2 :locala(v3) �(v3) = �(v4)

� � (v; v1) � (v1; v3)
v4 ret? v1������! � � (v; v2)

Fig. 3. Applet transition rules

In all rules except receive call it is implicit whether applet a is active or not.
The two receive rules are the only two rules that can apply when applet a is
not active. Notice how the active applet changes when methods are called and
returned: the applet that sends a call has to be active to be able to make the call,
and as a result becomes inactive, while the applet that receives the call becomes
active. A similar thing applies to the return transitions.

Using these transition rules, one can derive for example the trace fragment
in Fig. 4 for the AirFrance applet.

Composing applets Applets can be composed into larger system components.
Composite states are sets of local states, with the following restrictions:

� at most one applet is active,

� at most one external vertex is mentioned in the trace, and in this case this
vertex occurs as the �rst component of the �rst pair of the trace.

The last condition ensures that we can only get single execution threads (which
is for the time being appropriate for JavaCard). Computations are always started
by the environment, they do not begin spontaneously. External vertices can only
invoke methods, and wait for their return. By requiring that external vertices
only occur at the beginning of the trace, we enforce that the environment only
invokes a method in an applet, if there is no active applet. If necessary this

7

AirFrance:

�
P.debit.Med call? AF.logFull
����������������!

(P.debit.Med; AF.logFull) �������!

(P.debit.Med; AF.logFull.Med1)
AF.logFull.Med1 call! P.getTrs
�����������������!

(P.debit.Med; AF.logFull.Med1) �

(AF.logFull.Med1; P.getTrs)

P.getTrs.Ret ret? AF.logFull.Med1
�������������������!

(P.debit.Med; AF.logFull.Med2)
AF.logFull.Med2 call! RaC.getBalance
���������������������!

: : :

Fig. 4. Local trace AirFrance applet

[synchro]
A1

v1 `? v2
�����! A

0

1 A2

v1 `! v2
����! A

0

2

` 2 call; ret
A1 j A2

v1 ` v2
����! A

0

1 j A
0

2

[propagation]
A1

`
�! A

0

1

perfect(`) or :involvedA2
(`)

A1 j A2

`
�! A

0

1 j A2

Fig. 5. Transition rules for composite states

restriction can be relaxed to allow multi-threading. For the global state, i.e. the
set of all applets, we strengthen the last restriction and require that the �rst
component in the �rst pair of the trace is an external vertex. In this way, we
ensure that it is always an external vertex that triggers the global execution.

The way the labelled transitions of composite states are induced by the la-
belled transitions of its subsets is de�ned through the rules given in Fig. 5. In
these rules A1 and A2 denote disjoint sets of applet states. Symmetric counter-
parts exist for both rules. The transition rule synchro applies when both sets of
applets can do a transition, labelled with an imperfect action, and when these
imperfect actions can synchronise into one perfect action (a perfect action is
labelled with call or ret only, it does not contain tags ? or !). This results in a
single transition in the composite system, labelled with the corresponding per-
fect action. The propagation transition rule applies when one set of applets can
do a transition, labelled with `, such that ` is a perfect action, or ` does not
involve vertices from applets in the other set. The notion of being involved is
de�ned as follows (where A is a set of applets).

involvedA(�)
def
= 9v1; v2 2 V:9` 2 fcall; retg: (� = v1 `? v2 _ � = v1 `! v2) ^

(�(v1) 2 A _ �(v2) 2 A)

Using these transition rules, one can �nd e.g. the global trace fragment for the
electronic purse, depicted in Fig. 6.

8

P:� j AF:� j RaC:�
User.P call? P.debit
�����������!

P:(User.P; P.debit) j AF:� j RaC:� �������!

P:(User.P; P.debit.Med) j AF:� j RaC:�
P.debit.Med call AF.logFull
���������������!

P:(User.P; P.debit.Med) � (P.debit.Med; AF.logFull) j

AF:(P.debit.Med; AF.logFull) j

RaC:�

�������!

: : :
P.debit.Ret ret! User.P
�������������!

P:� j AF:� j RaC:�

Fig. 6. Fragment of the global trace

4 Conclusions & future work

We have outlined a compositional program model, which will help us to verify
security properties over multi-application smart cards. Further we have shown
how typical properties of multi-application programs can be speci�ed, and de-
composed into speci�cations over the applets. The program model and logic are
language-independent, but can easily be instantiated for JavaCard applications,
as is illustrated by the purse example.

Future work The work presented here is only a �rst step towards a speci�cation
and veri�cation framework for (security) properties of multi-application smart
cards. Future work will concentrate on the following topics.

� Based on [4, 5] a proof system will be developed (and proven sound and
complete) which will allow one to prove the correctness of the decomposition.

� At the moment the program model only deals with the control �ow structure
of the program. To be able to express integrity properties as the balance of

the purse is not changed by any action in the loyalty applet one also needs
to be able to talk about data. To this end, the program model has to be
extended with data. Every applet will contain several variables (or �elds),
and for each program step it has to be described how these variables might
be a�ected.

� After decomposing the global property, it remains to be shown that the
individual applets satisfy the required properties. When dealing with control
�ow based security properties only, we can fall back on the model checking
techniques developed by Jensen et al. [7], but after extending the model with
data, more sophisticated techniques will be required. Abstraction techniques
will be used to simplify the applets and the properties in such a way that
they can be checked by model checking.

9

References

1. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Electronic

purse applet certi�cation: extended abstract. In S. Schneider and P. Ryan, editors,

Proceedings of the workshop on secure architectures and information �ow, volume 32

of Elect. Notes in Theor. Comp. Sci. Elsevier Publishing, 2000.

2. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic model

checker. Software Tools for Technology Transfer (STTT), 2/4:410�425, 2000.

3. J. Corbett, M. Dwyer, J. Hatcli�, and Robby. A language framework for expressing

checkable properties of dynamic software. In K. Havelund, J. Penix, and W. Visser,

editors, SPIN Model Checking and Software Veri�cation, number 1885 in LNCS.

Springer, 2000.

4. M. Dam and D. Gurov. Compositional veri�cation of CCS processes. In D. Bjorner,

M. Broy, and A.V. Zamulin, editors, Perspectives of System Informatics '99, number

1755 in LNCS, pages 247�256. Springer, 1999.

5. M. Dam and D. Gurov. �-calculus with explicit points and approximations. In

FICS 2000, 2000.

6. G. Holzmann. The model checker SPIN. Transactions on Software Engineering,

23(5):279�295, 1997.

7. T. Jensen, D. Le Métayer, and T. Thorn. Veri�cation of control �ow based secu-

rity policies. In Proceedings of the IEEE Symposium on Research in Security and

Privacy, pages 89�103. IEEE Computer Society Press, 1999.

8. D. Kozen. Results on the propositional �-calculus. Theor. Comp. Sci., 27:333�354,

1983.

10

Formal Models of Java at the JVM Level

A Survey from the ACL2 Perspective

J Strother Moore

Robert Krug

Hanbing Liu

George Porter

Department of Computer Sciences, University of Texas at Austin

moore@cs.utexas.edu

http://www.cs.utexas.edu/users/moore

Abstract. We argue that a practical way to apply formal methods to

Java is to apply formal methods to the Java Virtual Machine (JVM)

instead. A Java system can be proved correct by analyzing the bytecode

produced for it. We believe that this clari�es the semantic issues without

introducing inappropriate complexity. We say \inappropriate" because

we believe the complexity present in the JVM view of a Java class is

inherent in the Java, when accurately modeled. If it is desired to model

a subset of Java or to model \Java" with a slightly simpler semantics,

that can be done by formalizing a suitable abstraction of the JVM. In this

paper we support these contentions by surveying recent applications of

the ACL2 theorem proving system to the JVM. In particular, we describe

how ACL2 is used to formalize operational semantics, we describe several

models of the JVM, and we describe proofs of theorems involving these

models. We are using these models to explore a variety of Java issues

from a formal perspective, including Java's bounded arithmetic, object

manipulation via the heap, class inheritance, method resolution, single-

and multi-threaded programming, synchronization via monitors in the

heap, and properties of the bytecode veri�er.

1 ACL2 Background

ACL2 [11] is a functional programming language based on Common Lisp, a

�rst-order mathematical logic with induction and recursive de�nition, and a me-

chanical theorem prover in the style of the Boyer-Moore theorem prover NQTHM

[2, 4]. Among other successful industrial uses of ACL2 is the veri�cation of the

hardware designs for the elementary oating-point arithmetic operations on the

AMD Athlon microprocessor [21] and the formalization of the �rst silicon version

of the JVM [8, 9]. See [10] for other case studies.

In this paper we advocate the use of formal models of the JVM [13] to verify

Java programs. Some readers may think this is an impractical suggestion. But

work by Yu [5] with NQTHM (the predecessor of ACL2) supports our sugges-

tion. Yu developed an operational formal model of the Motorola 68020 and then

2

veri�ed C programs from the Berkeley C String Library by verifying the machine

code produced by gcc. Since the conceptual gap between C and 68020 machine

code is much greater than the gap between Java and JVM bytecode, we believe

it is reasonable to follow an analogous strategy to deal with Java programs.

2 Our Basic Approach

Our models of the JVM are operational ones. The state of the machine is rep-

resented by a list containing, say, a thread table, a heap, and a class table. The

thread table is a list containing an entry for each thread. The entry includes

the thread's call stack, scheduled status and other information. A call stack is

a stack (list) of frames, each of which contains a program counter, the method

body, a map from local variable names to values, an operand stack, and a ag

indicating whether the method is synchronized. The heap is a �nite mapping

from reference \addresses" to instance objects. The class table is a list describ-

ing the superclasses, �elds and methods and other attributes of each class. We

then de�ne in ACL2 the function that \steps" such a state, producing the next

state. We �nally de�ne a function, run, that \runs" a state, by stepping it re-

peatedly. Such an ACL2 model of the JVM may be thought of as a system of

Lisp programs that simulates the JVM.

We have produced several such models of the JVM, so that we can explore

ways to prove various kinds of properties. Before discussing the variety of for-

mal models we have, we will use one of them to illustrate the foregoing sketch.

The model we use is a multi-threaded JVM with unbounded arithmetic. It sup-

port classes, instances, instance methods, monitors and synchronization, but not

arrays, oats and certain other data types. It also completely ignores class load-

ing, constructor methods, exceptions, the JVM's provisions for type safety, and

a variety of other issues.

For each JVM opcode supported in the model we de�ne an ACL2 function

that produces the corresponding state change. Here, for example, is that part of

the formal model for an instruction called LOAD, which is analogous to the JVM's

family of typed load instructions ILOAD, ALOAD, DLOAD, etc. In this function, inst

is a symbolic form of the particular load instruction to be executed; its value will

be a list of the form (LOAD var), where var is a variable name. The variable th

identi�es which thread is to be stepped and s is the JVM state.

(defun execute-LOAD (inst th s)

(make-state

(modify-tt th

(push (make-frame (+ 1 (pc (top-frame s th)))

(locals (top-frame s th))

(push (binding (arg1 inst)

(locals (top-frame s th)))

(stack (top-frame s th)))

(program (top-frame s th))

(sync-flg (top-frame s th)))

3

(pop (call-stack s th)))

'SCHEDULED

(thread-table s))

(heap s)

(class-table s)))

Informally, this function returns a new state obtained by changing the thread

table of s at thread th. The topmost item on the call stack of that entry is

popped o� and replaced by a new frame in which the program counter has been

advanced and the value of var has been pushed onto the operand stack of that

frame.

Here is our bytecode for the instance method

public int fact(int n)f
if (n<=0) return 1;

else return n*fact(n-1);g

except in our model arithmetic is not bounded.

("fact" (N) NIL ; Method int fact(int)

(LOAD N) ; 0 iload 1

(IFGT 3) ; 1 ifgt 6

(PUSH 1) ; 4 iconst 1

(XRETURN) ; 5 ireturn

(LOAD N) ; 6 iload 1

(LOAD THIS) ; 7 aload 0

(LOAD N) ; 8 iload 1

(PUSH 1) ; 9 iconst 1

(SUB) ; 10 isub

(INVOKEVIRTUAL "Alpha" "fact" 1) ; 11 invokevirtual ...fact...

(MUL) ; 14 imul

(XRETURN)) ; 15 ireturn

Because our model is an ACL2 program, it can be executed on concrete data

to produce concrete results. Because ACL2 is a mathematical logic, it is possible

to prove the following theorem:

(implies (poised-to-invoke-fact th s n)

(equal (top

(stack

(top-frame

th

(run (fact-sched n th) s))))

(factorial n)))

which says that, given any state poised, in thread th, to execute the fact byte-

code the natural number n, the execution of a certain number of instructions in

thread th will leave n! on top of the operand stack in thread th. The number

of instructions required is given by the function fact-sched, which returns a

4

schedule adequate to compute the method on input n. We have proved similar

theorems about other arithmetic methods, methods manipulating the heap in

destructive ways [15], and insertion sort implemented in a list processing class

[12]. Insertion sort is discussed briey below.

3 A Survey of Our Models

We have several JVM models and are in the process of building others. All

of our current models ignore oats, class loading and initialization, exceptions,

and interfaces. We do not consider oats a problem; there is so much work in

modeling oating-point arithmetic in ACL2 (see for example [21]) that we have

extensive oating-point models and libraries about them. Aspects of class loading

and initialization, exceptions and interfaces have been modeled by others [19, 1].

Garbage collection is invisible on the JVM and so need not be modeled.

3.1 Single-Threaded/Non-Safe/Unbounded

Our basic model is a single-threaded JVM in which we ignore typing issues and

support unbounded integer arithmetic only. Using this model we have proved a

variety of theorems about bytecode programs, including a single-threaded version

of the factorial theorem above and theorems involving the overriding of methods

and the destructive modi�cation of instance objects in the heap [15]. Using this

model we can explore basic issues of code speci�cation and veri�cation, including

control ow and data operations, instance object creation and manipulation,

class inheritance, and method resolution and invocation.

For example, we have used the model to prove the correctness of a bytecoded

insertion sort method that copies a linked list of numbers in the heap, producing

a permutation of it in which the elements appear in ascending order. To state

the theorem we had to de�ne the sense in which a reference (into a given \non-

circular" heap) denotes some structure. The theorem we proved says that if the

isort method (not shown here) is invoked on a reference, ref0 and allowed to

run for a certain number of instructions, returning a reference ref1, then the list

denoted by ref1 in the �nal heap is an ordered permutation of the list denoted

by ref0 in the original heap. The preconditions imposed certain constraints on

the non-circularity of the initial reference [12]. Here is the theorem proved.

(implies (poised-to-invoke-isort s0)

(let* ((x0 (top (stack (top-frame s0))))

(heap0 (heap s0))

(n0 (isort-clock x0 heap0))

(s1 (run n0 s0))

(x1 (top (stack (top-frame s1))))

(heap1 (heap s1)))

(let ((list0 (deref* x0 heap0))

(list1 (deref* x1 heap1)))

(and (ordered list1)

5

(perm list1 list0)))))

One can prove theorems about non-terminating computations in ACL2. If

one adds to the model an instruction for explicitly indicating the normal termi-

nation of a program (e.g., add a halt ag to the state and arrange for a bytecode

instruction, e.g., halt, to set it and for the machine not to proceed afterwards),

one can prove theorems about the conditions under which a program halts nor-

mally, including that halting never occurs. One can also eliminate the use of

\clocks" [14].

3.2 Single-Threaded/Non-Safe/Bounded

We have produced a version of the simple machine that supports Java's int and

long (bounded) arithmetic. It also supports arrays. Using this model we have

a proved the analogous theorem about the bounded factorial method. The code

for this method is like that shown for fact above, except that the arithmetic op-

erations are those for 32-bit twos complement. The theorem states that the �nal

answer is equal to the result of converting to an int the factorial of the input.

This theorem correctly characterizes the actual behavior of the Java program

for fact shown above.

The user input required to prove the bounded factorial is exactly analogous

to that required to prove the unbound factorial, justifying our belief that the

unbounded model is a simpler (though technically inaccurate) test bed. The

\new" reasoning, about modular arithmetic, is handled automatically by an

ACL2 library of lemmas. We are continuing the development of ACL2's already

extensive collection of arithmetic theorems.

3.3 Multi-Threaded/Non-Safe/Unbounded

An orthogonal variation of the basic model introduces multiple threads [17].

Each entry in the thread table lists a unique thread number, a call stack, a

status ag (e.g., indicating whether the thread has been started), and a reference

to the instance object representing the thread object in the heap. We do not

model the scheduler, which is unspeci�ed in [13], but provide an \oracle" to the

operational semantics.

With this model we have proved an interesting theorem about the Java classes

shown in Figure 1. Inspection of the code shows that the main method in class

Apprentice starts an unbounded number of Jobs, each of which is contending

for a shared object called the Container. Each Job is in an in�nite loop incre-

menting the counter �eld of the Container. Each such increment is done within

a synchronized block. (The model supports unbounded arithmetic.)

One might think that it is obvious that the value of the counter �eld of

the Container increases monotonically. However, this is a nontrivial observation

that requires showing that each Job has mutually exclusive access to the counter.

Again, the naive Java user may think this mutual exclusion property is obvious.

6

class Container f
public int counter; g

class Job extends Thread f
Container objref;

Object x;

public Job incr () f
synchronized(objref) f

objref.counter = objref.counter + 1; g
return this; g

public void setref(Container o) f
objref = o; g

public void run() f
for (;;) f

incr(); g g g
class Apprentice f

public static void main(String[] args)f
Container container = new Container();

for (;;) f
Job job = new Job();

job.setref(container);

job.start(); g g g

Fig. 1. The Apprentice Class: Unbounded Parallelism

We have had several programmers dismiss our theorem as trivial and claim that

it may be observed merely by looking at the text

synchronized(objref) f

objref.counter = objref.counter + 1; g

in the code for class Job. This claim is false.

A few changes to the main method of the Apprentice class can cause mutual

exclusion to be violated and can permit the counter value to decrease under

some scheduling regimes. These changes do not involve writing to the counter

�eld of the Container or changing the Job class at all. The pathological behav-

ior (of the counter decreasing) is ultimately manifested by the very assignment

statement shown above. The changes we have in mind can cause that \synchro-

nized" assignment statement to clobber the counter without owning the monitor

for it.

Since many readers insist that it is \obvious" that the Apprentice class

causes the counter to increase monotonically, we will not explain here how to

cause the bad behavior. Ask someone who thinks it is obvious. Or try to prove

it from a detailed formal model of multi-threaded Java. Our discussion of the

problem and our proof is reported in [16].

Our multi-threaded model includes all of the functionality of our basic ma-

chine (e.g., classes, heap-allocated instance objects, virtual method invocation,

etc.) plus support for the Thread class (including the signi�cance of the run

7

method for an extension of the Thread class, the native methods start and

stop, monitors on all Objects, the opcodes MONITORENTER and MONITOREXIT,

and support for synchronous methods.

4 Relations Between Models

So far we have only discussed theorems about particular bytecoded methods

under the semantics formalized in particular models. Because our models are

formal, we can reason about the models themselves and even relate them. Lack

of space precludes much discussion.

4.1 Single- versus Multi-Threaded Models

We have proved [18] a theorem relating the single-threaded model to the multi-

threaded one. If the multi-threaded machine is being used to do what is essen-

tially a single-threaded computation, the single-threaded machine may be used

instead. We formalize the hypothesis so that we are concerned with states in

which only one thread is scheduled (meaning the start method has been called

on only one thread) and the bytecode running in that thread does not create or

interfere with other threads. The conclusion is a \commuting diagram" stating

that the \same" computation could be done on the single-threaded model by

transforming the states appropriately. The theorem allows us to \lift" certain

veri�ed programs from the single-threaded model to the multi-threaded model.

Ultimately we hope to be able to reason formally about \independent" con-

current threads by reasoning about each on the single-threaded model. The

biggest problem will be combining the \independent" e�ects of the two threads

on the shared heap. This involves reasoning not unlike that already done in

analyzing the denotation of the object references in the heap produced by the

insertion sort method.

4.2 Single-Threaded/Type Safe/Unbounded

We have developed a \type safe" version of the basic machine. Before each

instruction is executed, this machine checks that the state is suitable for the

execution of the instruction. For example, if an ADD instruction is to be executed,

then the machine dynamically checks that the operand stack has at least two

items on it and that the top two items are numbers. The machine sets a ag in

the state and halts if the next instruction is to be executed in an unacceptable

situation.

We are developing a formal version of the Java bytecode veri�er described by

[13] that crawls over a class declaration and does a certain syntactic check of the

code therein. Our goal is to prove a theorem relating the type safe machine to the

unsafe machine, namely, the two are \equivalent" on code that has been accepted

by the bytecode veri�er. This work can be thought of as leading towards the

formal statement of the correctness of the bytecode veri�er and the mechanized

veri�cation that for a particular veri�cation algorithm.

8

5 Related Work

The earliest formal mechanized JVM model we know of was Cohen' \defensive

JVM" [6], formalized in ACL2. Our series of models evolved from his: Moore

and Cohen simpli�ed Cohen's model and developed the series of successive elab-

orations to make it easier to teach at the undergraduate level.

Projects formalizing the JVM are ongoing in other mechanized logics with

considerable success. The soundness of a bytecode veri�cation algorithm is ad-

dressed in Isabelle/HOL in [20, 19]. The approach follows closely the class �le

format of [13] and model aspects of interfaces, signatures and exceptions, all of

which we ignore. As in [6] and (some of) our work, type information is stored

with data and instructions are modeled as state transforming functions. The Is-

abelle/HOL work is the �rst published mechanically checked proof of the sound-

ness of a bytecode veri�er.

Somewhat closer to our work is that done with Coq and described in [1].

In this work, an operational model of the entire JavaCard VM is presented.

They provide a tool for converting class �les into their formal format. They also

verify a bytecode veri�er mechanically. The authors of [1] stress the importance

of executability { an emphasis with which we agree. They do not discuss the

eÆciency with which their model can be implemented.

ACL2 was used to model the Rockwell JEM1 microprocessor, the world's �rst

silicon JVM, now marketed by Ajile Systems, Inc. The formal ACL2 model was

actually used in the standard test bench on which Rockwell engineers tested the

chip design against the requirements by executing compiled Java programs. The

ACL2 model executed at approximately 90% of the speed of the previously used

C model [8, 9]. In [7], Wilding and Greve describe how microprocessor models

in ACL2 are made to execute fast. The model there executes at approximately

3 million simulated instructions per second on a 733 MHZ Pentium III host

running Allegro Common Lisp.

As far as we know, ours is the �rst formal thread model for the JVM. In

addition, the emphasis of our work is on the veri�cation of bytecode programs

with respect to the operational semantics. This is surely within the reach of

the related work above, but has not, apparently, been a focus of their work.

Because of the way previously proved lemmas in the ACL2 library can be used

to con�gure ACL2 to do proofs automatically in a given domain, we anticipate

that the continued development of correctness proofs for individual bytecoded

methods will increase the ease with which new methods can be veri�ed.

6 Conclusion

We have described a variety of formal models of the JVM and discussed Java

and JVM programs that we have veri�ed with respect to these models. We have

also discussed formally veri�ed relationships between some of our models.

These examples support the contention that with formal operational seman-

tics of the JVM one can

9

{ specify and verify Java code with respect to a detailed and accurate seman-

tics,

{ reuse much previously developed formal work,

{ explore the speci�cations of code under various re�nements of the semantics

of Java,

{ establish properties of the semantic models,

{ formally relate di�erent semantic models, and

{ specify and verify the bytecode veri�er.

Our models are inadequate for practical Java: among other omissions are

oating point, exceptions, and class loading. But there is ample evidence [10]

that ACL2 is rugged enough to permit the models to be suÆciently elaborated.

Among the compelling reasons to base a formal semantics of Java on an op-

erational semantics of the JVM are the following. First, the Java compiler takes

care of many subtle static semantics issues. Second, the operational semantics

of the JVM can be executed, meaning it is possible to test the semantics against

accepted implementations of the JVM. Third, the operational semantics is easily

unwound by standard symbolic evaluation and induction techniques [3]. Fourth,

and most important, the semantics is rendered formally, so it can be inspected

by language experts and used directly by the veri�er.

7 Acknowledgments

Our JVM models owe much to Rich Cohen who used ACL2 to formalize a single-

threaded version of the \defensive JVM" [6]. We are grateful to Rich for his

pioneering e�ort into the JVM formalization, as well as to the entire ACL2

and NQTHM communities for their development of techniques to formalize and

reason about such machines. We are also grateful to David Hardin and Pete

Manolios, who have each made many valuable suggestions in the course of this

work.

References

[1] G. Barthe, G. Dufay, L. Jakubiec, B. Serpette, and S. Melo de Sousa. A formal

executable semantics of the JavaCard platform. In D. Sands, editor, ESOP 2001,

volume LNCS 2028, pages 302{319. Springer-Verlag, 2001.

[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York,

1979.

[3] R. S. Boyer and J S. Moore. Mechanized formal reasoning about programs and

computing machines. In R. Vero�, editor, Automated Reasoning and Its Applica-

tions: Essays in Honor of Larry Wos, pages 147{176. MIT Press, 1996.

[4] R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition.

Academic Press, New York, 1997.

[5] Robert S. Boyer and Yuan Yu. Automated proofs of object code for a widely used

microprocessor. Journal of the ACM, 43(1):166{192, January 1996.

10

[6] R. M. Cohen. The defensive Java Virtual Machine speci�cation, version 0.53.

Technical report, Electronic Data Systems Corp, Austin Technical Services Cen-

ter, 98 San Jacinto Blvd, Suite 500, Austin, TX 78701, 1997.

[7] D. Greve, M. Wilding, and D. Hardin. High-speed, analyzable simulators. In

Kaufmann et al. [10], pages 113{136.

[8] D. A. Greve and M. M. Wilding. Stack-based Java a back-to-future step. Elec-

tronic Engineering Times, page 92, Jan. 12, 1998.

[9] David A. Greve. Symbolic simulation of the JEM1 microprocessor. In Formal

Methods in Computer-Aided Design { FMCAD, Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1998.

[10] M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Press, 2000.

[11] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Press, 2000.

[12] M. Kaufmann and J S. Moore. A ying demo of ACL2. Techni-

cal Report http://www.cs.utexas.edu/users/moore/publications/flying-%

-demo/script.html, Computer Sciences, University of Texas at Austin, 2000.

[13] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation (Second Edi-

tion). Addison-Wesley, 1999.

[14] P. Manolios and J S. Moore. Partial functions in acl2. Technical Report http://-

www.cs.utexas.edu/users/moore/publications/defpun/% -index.html, Com-

puter Sciences, University of Texas at Austin, 2001.

[15] J S. Moore. Proving theorems about Java-like byte code. In E.-R. Olderog and

B. Ste�en, editors, Correct System Design { Recent Insights and Advances, pages

139{162. LNCS 1710, 1999.

[16] J S. Moore and G. Porter. Mechanized reasoning about Java

threads via a JVM thread model. (submitted for publication), 2000.

http://www.cs.utexas.edu/users/moore/publications/m4/proofs.ps.gz.

[17] J S. Moore and G. Porter. An executable formal JVM thread model. In Java Vir-

tual Machine Research and Technology Symposium (JVM '01), 2001 (to appear).

http://www.cs.utexas.edu/users/moore/publications/m4/model.ps.gz.

[18] G. Porter. A commuting diagram relating threaded and non-threaded jvm models.

Technical report, Honors Thesis, Department of Computer Sciences, University

of Texas at Austin, 2001.

[19] Cornelia Pusch. Formalizing the Java virtual machine in Isabelle/HOL. Techni-

cal Report TUM-I9816, Institut f�ur Informatik, Technische Universi�at M�unchen,

1998. See URL http://www.in.tum.de/�pusch/.
[20] Cornelia Pusch. Proving the soundness of a Java bytecode veri�er in Is-

abelle/HOL. Technical report, Institut f�ur Informatik, Technische Universi�at

M�unchen, 1998. See URL http://www.in.tum.de/�pusch/.
[21] D. Russino�. A mechanically checked proof of IEEE compliance of a register-

transfer-level speci�cation of the AMD-K7 oating-point multiplication, division,

and square root instructions. London Mathematical Society Journal of Computa-

tion and Mathematics, 1:148{200, December 1998.

A Type System for Checking Applet Isolation in

Java Card

Peter M�uller and Arnd Poetzsch-He�ter

FernUniversit�at Hagen, 58084 Hagen, Germany,

fPeter.Mueller, Arnd.Poetzsch-Heffterg@Fernuni-Hagen.de

Abstract. A Java Card applet is, in general, not allowed to access �elds

and methods of other applets on the same smart card. This applet iso-

lation property is enforced by dynamic checks in the Java Card Virtual

Machine. This paper describes a re�ned type system for Java Card that

enables mostly static checking of applet isolation. With this type system,

most �rewall violations are detected at compile time.

1 Introduction

The Java Card technology allows applications written in a subset of Java|so-

called Java Card applets|to run on smart cards [Che00]. Several applets can

run on a single card and share a common object store. Since the applets on

a card may come from di�erent, possibly untrusted sources, a security policy

ensures that an applet, in general, cannot inspect or manipulate data of other

applets. To enforce this applet isolation property, the Java Card Virtual Machine

establishes an applet �rewall, that is, it performs dynamic checks whenever an

object is accessed, for example, by �eld accesses, method invocations, or casts.

If an access would violate applet isolation, a SecurityException is thrown.

Dynamically checking applet isolation is unsatisfactory for two reasons: (1) It

leads to signi�cant runtime overhead. (2) Accidental attempts to violate the

�rewall are detected at runtime, that is, after the card with the defective applet

has been issued, which could lead to enormous costs. In this paper, we sketch a

re�ned type system for the Java Card language that allows one to detect most

�rewall violations statically by checks on the source code level. This type system

serves three important purposes:

1. It reduces the runtime overhead caused by dynamic checks signi�cantly.
2. Most �rewall violations are detected at compile time. At runtime, only cer-

tain casts can lead to SecurityExceptions. These casts point programmers

and veri�ers at the potentially critical spots of a program.
3. The re�ned type information provides formal documentation of the kinds of

objects handled in a program such as entry point objects, global arrays, etc.,

and complements informal documentation, especially, of the Java Card API.

Overview. In the remainder of this introduction, we describe the applet �rewall

and explain our approach. Section 2 presents the re�ned type system. The con-

text conditions that replace dynamic checking of applet isolation are explained

in Section 3. We o�er some conclusions in Section 4.

1.1 Applet Firewall

The applet �rewall essentially partitions the object store of a smart card into

separate protected object spaces called contexts [Sun00, Sec. 6]. The �rewall is

the boundary between one context and another. It allows object access across

contexts only in certain cases. In this subsection, we describe contexts, object

access across contexts, and the dynamic checks that enforce the �rewall.

Contexts. There is one context for each applet installed on a smart card (we

neglect group contexts for brevity). The context for an applet A contains all A

objects and all objects created by methods executed on objects in that context.

The operating system of the card is contained in the Java Card Runtime Envi-

ronment (JCRE) context. At any execution point, there is exactly one currently

active context (in instance methods, this context contains this). When an object

of context C invokes a method m on an object in context D, a context switch

occurs, that is, D becomes the new currently active context. Upon termination

of m, C is restored as the currently active context

Class objects do not belong to any context. There is no context switch when a

static method is invoked. Objects referenced by static �elds are ordinary objects,

that is, they belong to an applet or to the JCRE context.

Firewall Protection. We say that an object is accessed if it serves as target for a

�eld access or method invocation, or if its reference is used to evaluate a cast or

instanceof expression (we do not treat exceptions and arrays here). In general,

an object can only be accessed if it is in the currently active context (see below

for exceptions to this rule). To enforce this rule, the Java Card Virtual Machine

performs dynamic checks. If an object is accessed that is not in the currently

active context, a SecurityException is thrown.

Object Access Across Contexts. The Java Card applet �rewall allows certain

forms of object access across contexts: (1) Applets need access to services pro-

vided by the JCRE. These services are provided by JCRE entry point objects.

These objects belong to the JCRE context, but can be accessed by any object.

In this paper, we only consider permanent entry point objects (PEPs for short).

An extension to temporary entry point objects and global arrays is straight-

forward. (2) To support cooperating applets, applets can interact via shareable

interface objects (SIOs for short). An object is an SIO if its class implements the

Shareable interface. An applet can get a reference to an SIO of another applet

by invoking a static method of the JCRE. It can then invoke methods on this

SIO [Sun00, Sec. 6]. (3) The JCRE has access to objects in any context.

Example. In the following, we explain the dynamic checks for an invocation

e.m(...) of a dynamically-bound method. We assume that T is the compile

time type of e and that the evaluation of e yields an object X . Before the

invocation is executed, it is checked whether at least one of the following cases

applies1. If no case applies, a SecurityException is thrown.

D1: X is in the currently active context;

D2: X is an entry point object and T is a class;

D3: T is an interface that extends Shareable;

D4: The JCRE context is the currently active context.

We illustrate these checks by a faulty implementation of two cooperating applets.

Fig. 1 shows the implementation of a client applet. We assume that the client

and a server applet are installed on the same card. The following interaction is

initiated by method Client.process: The client requests an SIO from the server

by invoking JCSystem.getAppletShareableInterfaceObject, which yields an

SIO that is cast to the shareable interface Service. The client then invokes

doService on the SIO. This invocation yields a new Status object that is used

to check whether the service was rendered successfully.

In our implementation, this interaction leads to a SecurityException: The

client and server applets reside in di�erent contexts. The Service SIO and

the Status object belong to the context of the server. Since Status does not

implement Shareable, the Status object is not an SIO. When the invocation

sta.isSuccess() is checked as explained above, cases D1{D4 do not apply.

Thus, the access is denied and the exception is thrown. To correct this error,

one would have to use an interface that extends Shareable instead of class

Status; then case D3 would apply.

1.2 Approach

To detect �rewall violations at compile time, we adapt type systems for alias

control such as ownership types and universes [CPN98,MPH01,M�ul01]. Whereas

these type systems focus on restricting references between di�erent contexts, we

permit references between arbitrary contexts, but restrict the operations that

can be performed on a reference across context boundaries.

Our type system augments every reference type of Java with context infor-

mation that indicates (1) whether the referenced object is in the currently active

context, (2) whether it is a PEP, or (3) whether it can belong to any context.

Type rules guarantee that every execution state is well-typed, which means es-

pecially that the context information is correct.

We use downcasts to turn references of kind (3) into references of more spe-

ci�c types. For such casts, dynamic checks guarantee that the more speci�c type

is legal. Otherwise, a SecurityException is thrown.

To check an applet with our type system, its implementation as well as the

interfaces of applets it interacts with and of the Java Card API must be enriched

1 The checks correspond to the rules explained in the above paragraphs. We have

adopted them from [Sun00, Sec. 6.2.8] although D2's requirement that T be a class

seems overly restrictive. Please refer to [Sun00] for a more detailed explanation of

the checks.

public class Status {

private boolean success;

public Status(boolean b) { success = b; }

public boolean isSuccess() { return success; }

}

public interface Service extends Shareable {

Status doService();

}

public class Client extends Applet {

private Client() { register(); }

public static void install(byte[] a, short o, byte l) { new Client(); }

public void process(APDU apdu) {

AID svr = ...; // server's AID

Shareable s = JCSystem.getAppletShareableInterfaceObject(svr,(byte)0);

Service ser = (Service)s; // cast is legal

Status sta = ser.doService(); // invocation is legal

if (sta.isSuccess()) // leads to SecurityException

...

}

}

Fig. 1. Implementation of a client applet. All classes are implemented in the same

package. package and import clauses are omitted for brevity. We assume that a server

applet is implemented in a di�erent package.

by re�ned type information. This information is used to impose additional con-

text conditions for �eld accesses, method invocations, casts, and instanceof

expressions that guarantee that the �rewall is respected.

In the execution of a program that is type correct according to our type

system, only the evaluation of downcast expressions requires dynamic �rewall

checks and might lead to SecurityExceptions. Thus, casts point programmers

at the critical spots in a program, which simpli�es code reviews and testing.

Moreover, they allow standard reasoning techniques to be applied to show that

no SecurityException occurs.

In theory, our type system can replace almost all dynamic �rewall checks.

However, if only some applets on a card are checked by our type system, the

dynamic checks have to stay in place to prevent applets from untrusted sources

from violating the �rewall. Still, our type system is useful to detect possibly fatal

program errors at compile time, which simpli�es reasoning and reduces costs.

In the following sections, we present the re�ned type system and some of the

additional context conditions. For brevity, we focus on a subset of Java Card and

omit exceptions and arrays. Moreover, we do not treat temporary entry points

and global arrays. An extension of our work to these features is straightforward.

2 The Type System

A type system expresses properties of the values and variables of a programming

language that enable static checking of well-de�nedness of operations and their

application conditions, in this case, Java Card's �rewall constraints.

Tagged Types. In order to know whether an operation is legal in Java Card,

we need information about the context in which the operation is executed. The

basic idea of our approach is to augment reference types by context information.

In this paper, we are only interested in checking applet code and do not

consider the JCRE implementation. Thus, statements and expressions are either

executed in an applet context (in case of instance methods) or outside all contexts

(in case of static methods). From the point of view of an applet context C, we

can distinguish (a) internal references to objects in C, (b) PEP references, and

(c) external references to objects in applet contexts di�erent from C or to non-

PEP objects in the JCRE.

In the type system, we reect this distinction by the context tags i for inter-

nal, p for PEP, and a for any. The a-tag expresses the fact that it is not known

whether a reference is internal, PEP, or external. A special tag for external is

dispensable, because all operations that are allowed on external references are

allowed on \any" reference. Since static class members do not belong to any

context, the i-tag must not be used for types of static �elds or in static meth-

ods. Let TypeId denote the set of declared type identi�ers of a given Java Card

program; then the tagged type system comprises the following types:

TaggedType = fbooleanT; intT; :::; nullTg [(fi; p; ag � TypeId)

Except for the null-type that is used to type the null literal, all reference types

in the tagged type system are denoted as a pair of a tag and a Java type. The

subtype relation � on tagged types is the smallest reexive, transitive relation

satisfying the following axioms, where G is a tag, S; T 2 TypeId, and �J denotes
the subtype relation on TypeId:

(G;S) � (G; T), S �J T (G; T) � (a; T) nullT � (G; T)

Tagged Type Rules. We illustrate our approach by presenting the most inter-

esting rules for the tagged type system. Since the type rules for statements are

trivial, we focus on expressions. A type judgment of the form E ` e :: TT means

that expression e has tagged type TT in the declaration environment E of the

method enclosing e.

The type judgment for instance creation expressions without parameters is

E ` new T() :: (i;T). The i-tag indicates that the created object belongs to the

currently active context.

The tagged type of a cast expression is the type (H;T) appearing in the cast

operator (see below). For simplicity, we only consider downcasts, that is, (H;T)

has to be a subtype of the expression type. Note that we allow a reference tagged

\any" to be cast into an internal or PEP reference. Recall that dynamic checks

guarantee that the more speci�c tag is appropriate (see Subsec. 1.2)

E ` e :: (G;S) ; (H;T) � (G; S)

E ` ((H;T)) e :: (H;T)

The most interesting and complex rule is the one for invocation expressions. For

simplicity, we assume that methods have exactly one parameter of tagged type

(FP ; TP) and a (tagged) return type (FR; TR):

E ` e1 :: (H;T) ; E ` e2 :: (G;S) ; (H;T) � (G;S) � (FP ; TP)

E ` e1:m(e2) :: (H;T) � (FR; TR)

The operator � : TaggedType�TaggedType! TaggedType is de�ned as follows:

(H;T)�(G;S) = (a; S), if H 6= i and G = i; (H;T)�(G;S) = (G;S) in all other

cases. The �-operator tags the parameter or result as \any" when the invocation

could lead to a context switch (H 6= i) and an internal reference is passed to or

returned by the method (G = i). This is necessary since an internal reference

is external to the new currently active context, as illustrated by the following

example.

Fig. 2 shows the Service interface and the Client class with tagged type

information. The return type of Service.doService is internal since the method

creates a new Status object in the context in which it is executed (the context

of the server applet). When doService is invoked from the client context (see

method Client.process, Fig. 2), the returned Status object is external to the

client context and must, thus, be tagged \any". This adaption of the tag is

described by the �-operator.

Type Safety. We proved that the tagged type system is type safe in the following

sense: If the evaluation of an expression e starts in a type correct state, it yields

a type correct state upon termination and the resulting value belongs to the

tagged type of e. Informally, this property states that all references are correctly

tagged, which is a prerequisite for statically checking applet isolation (see Sec. 3).

The type safety proof is based on an operational semantics the states of which,

in particular, contain a variable that keeps track of the currently active context.

The type safety proof runs by rule induction. An interesting aspect is the

treatment of context information and their relation to tagged types. Each class

instance \knows" the context it belongs to and whether it is a PEP. Based on

this information, we can assign a tagged type to an object X in a context C

(ctyp(X) denotes the TypeId of X 's class):

ttyp : Object � Context ! TaggedType

ttyp(X;C) =

(
(p; ctyp(X)); if X is a PEP

(i; ctyp(X)); if the context of X is C and X is not a PEP

(a; ctyp(X)); otherwise

3 Checking Applet Isolation

Tagged types provide a conservative approximation of runtime context informa-

tion. This information can be used to impose static checks that guarantee that

an applet respects the applet �rewall at runtime. In the following, we present

these checks for method invocations and argue why they enforce applet isolation.

Static Checks. We perform the following static checks for each invocation state-

ment of the form e.m(...), where (H;T) is the static tagged type of e. class(T)

yields whether T denotes a class.

S1: H = p) class(T)

S2: H = a) :class(T) ^ T �J Shareable

To show that these static checks prevent SecurityExceptions, we explain for

each possible tag of e's type that one of the cases D1{D3 of the dynamic checks

presented in Sec. 1 applies. (D4 is not relevant here since we only consider applet

code, not the implementation of the JCRE.) We assume that e evaluates to an

object X :

H = i: Well-typedness guarantees thatX is in the currently active context; that

is, case D1 applies.

H = p: Well-typedness guarantees that X is a PEP, and static check S1 guar-

antees that T is a class; thus, case D2 applies.

H = a: Static check S2 guarantees that T is an interface that extends Shareable;

thus, case D3 applies.

In summary, well-typedness and the above static checks guarantee that execution

of a method invocation does not violate the �rewall at runtime. Therefore, the

checks can be used to enforce applet isolation statically. The static checks for

other expressions are analogous.

We proved the following �rewall lemma: Each Java Card programwith tagged

types that passes the static checks behaves like the corresponding Java Card

program with dynamic checks. That is, every Java Card program that can be

correctly tagged does not throw SecurityExceptions (except for the checks for

casts). The proof of the �rewall lemma is based on two operational semantics:

one semantics with dynamic checks, the other without them. It runs by rule

induction and exploits type safety of the tagged type system and the static

�rewall checks.

Example. Fig. 2 shows Client's process method with tagged type information.

Since getAppletShareableInterfaceObject is a static method that does, in

general, not return a PEP, its return type is any Shareable. The any-tag carries

over to sta (the status is extern). Therefore, the invocation sta.isSuccess()

does not pass static check S2 since Status is a class that does not implement

Shareable. That is, the �rewall violation caused by this invocation would be

detected at compile time.

public interface Service extends Shareable {

intern Status doService();

}

public class Client extends Applet {

...

public void process(any APDU apdu) {

intern AID svr = ...; // server's applet id is intern

any Shareable s =

JCSystem.getAppletShareableInterfaceObject(svr,(byte)0);

any Service ser = (any Service)s; // ser is in general extern

any Status sta = ser.doService(); // sta is also extern

if (sta.isSuccess()) // static check fails

... }

...

}

Fig. 2. Service interface and Client class with tagged type information. In the con-

crete syntax, we use the keywords intern, pep, and any as tags.

4 Conclusions

We presented a re�ned type system for Java Card that allows one to check applet

isolation statically. The type system is based on the more general approach of

universe types that was developed for the modular veri�cation of Java programs.

Our future goal is to formally verify interesting properties of Java Card applets

such as the absence of SecurityExceptions. To show this property, we would

check the applet by the tagged type system and prove benevolence of the casts.

Since we are interested in source code veri�cation, we designed our checking

technique for the source level, whereas other approaches focus on the byte code

level [BCG+00,CHS01]. It could be adapted to the byte code level as well.

References

[BCG+00] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, and G. Zanon. Check-

ing secure interactions of smart card applets. In ESORICS, 2000.

[Che00] Z. Chen. Java Card Technology for Smart Cards: Architecture and Program-

mer's Guide. Addison-Wesley, 2000.

[CHS01] D. Caromel, L. Henrio, and B. Serpette. Context infer-

ence for static analysis of Java Card sharing. Available

from www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/

JavaCardSharingAnalysis.ps.gz, 2001.

[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for exible

alias protection. In Proceedings of Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN

Notices, October 1998.

[MPH01] P. M�uller and A. Poetzsch-He�ter. Universes: A type system for alias and

dependency control. Technical Report 279, Fernuniversit�at Hagen, 2001.

[M�ul01] P. M�uller. Modular Speci�cation and Veri�cation of Object-Oriented Pro-

grams. PhD thesis, FernUniversit�at Hagen, 2001.

[Sun00] Sun Microsystems, Inc. The Java Card 2.1.1 Runtime Environment (JCRE)

Speci�cation, May 2000.

Biographies

Peter M�uller is a member of the Veri�Card project that is concerned with

the formal veri�cation of Java Card applets. He recently received a Doctorate in

Computer Science from FernUniversit�at Hagen with a thesis on Modular Speci-

�cation and Veri�cation of Object-Oriented Programs.

Arnd Poetzsch-He�ter is associate professor at FernUniversit�at Hagen. He

received a Doctor in Computer Science from the Technical University of Mu-

nich in 1991 with a thesis about programming language speci�cation. During

his postdoc year at Cornell University, he began research on the integration of

program speci�cation and veri�cation techniques for OO-programs. In his Ha-

bilitation thesis, he developed the formal foundations for such an integration.

Currently, he is especially engaged in the development of speci�cation and veri-

�cation techniques and tools for OO-programs.

The Interdependence of E�ects and Uniqueness?

John Boyland

Department of EE & CS, University of Wisconsin-Milwaukee

boyland@cs.uwm.edu

Abstract. A good object-oriented e�ects system gives the ability to

de�ne abstract regions (or \data groups") of state within objects that can

be extended in subclasses. Then one can specify (for instance) read and

write e�ects on these abstract regions. Additionally, e�ects on \wholly

owned subsidiary" objects should be seen as e�ects on regions of the

owning object. For instance, an assignment within a bucket of a hash

table should be seen as an e�ect on the hash table alone. Correctness

of this transfer of e�ects depends on the bucket being accessible only

through the hash table; it must be unique.

Uniqueness can be guaranteed using destructive reads (in which a unique

variable can be used at most once). Destructive reads are inconvenient,

so most uniqueness systems permit borrowing reads as well, in which

a temporary alias of a unique variable is permitted. But if the unique

variable is read during the lifetime of this alias, the uniqueness invariant

fails. So we wish to ensure that this read e�ect does not happen. For

modularity reasons, we use e�ects annotations on methods to check for

such read e�ects.

Thus we see that e�ects and uniqueness depend on each other. Our

position is that the use of annotations breaks the cyclic dependence as

long as the annotations are given semantics independent of the analyses.

As a semantics of uniqueness annotations is already available, we then

sketch a semantics of e�ects annotations independent of uniqueness. Thus

decoupled, one can prove the correctness of a uniqueness analysis and an

e�ects analysis without regard for the other.

1 Interdependence

Properties of code e�ects and alias con�nement are important when analyzing

the meaning of complex programs. Putting checked annotations on methods

aids sound modular reasoning, because a component of a system can then be

independently veri�ed.

? Work supported in part by the National Science Foundation (CCR-9984681) and

the Defense Advanced Research Projects Agency and Rome Laboratory, Air Force

Materiel Command, USAF under contract F30602-99-2-0522. The views and con-

clusions contained herein are those of the authors and should not be interpreted

as necessarily representing the oÆcial policies or endorsements, either expressed or

implied, of the National Science Foundation, Defense Advanced Research Projects

Agency, Rome Laboratory, or the U.S. Government.

class Point {

public region Position;

private int x in Position;

private int y in Position;

public scale(int sc)

writes Position

{

x *= sc;

y *= sc;

}

}

class ColorPoint extends Point {

public region Appearance;

private int color in Appearance;

}

class Point3D extends Point {

private int z in Position;

public void scale(int sc)

writes Position

{

super.scale(sc);

z *= sc;

}

}

(a) (b)

Fig. 1. The de�nitions of (a) classes Point and ColorPoint, and (b) class Point3D

"
""

J
J

b
bb

Position

x y

Appearance

Instance

color

Fig. 2. Hierarchy of regions for class ColorPoint

In this section we motivate e�ects and uniqueness systems and show how each

may depend on the other in the context of a hash table example. In Section 2, we

discuss how the interdependence can be resolved by giving independent semantics

to uniqueness and e�ects annotations. Since a semantics of uniqueness already

exists, we propose the rough outline of a semantics of e�ects annotations.

1.1 E�ects

In an object-oriented e�ects system (such as of Greenhouse and Boyland [8] or

Leino [11]) the mutable �elds of the object are abstracted as \regions" of state

(the term used in this paper) or \data groups" [11]. This abstraction permits

the e�ects of public methods to be declared using public abstractions that hide

the names of actual �elds. Regions are inherited along with �elds and can be

extended to include new regions and �elds. Thus a subclass can extend the

behavior of the superclass's methods to read or write additional �elds. Figure 1

gives an example of a Point class with two subclasses illustrating extension

possibilities. The non-executable annotations are in slanted style. Figure 2

shows the hierarchy of regions within the ColorPoint class.

Often, not all the notional state of an object is actually contained directly

within it. Part of the state of the object is contained in \wholly owned subsidiary"

objects, private objects known only to the implementation of the class. Consider

for example, Java's Vector class; the contents of the vector are stored in an

array, which may need to be changed if the vector outgrows the array. The code

for addElement is basically as follows:

public void addElement(Object elem) {

ensureCapacity(size+1);

contents[size] = elem;

++size;

}

where size and contents are private �elds. Ignoring the e�ects of the call

to ensureCapacity, this code has two side-e�ects: the array in contents is

updated, and the private �eld size is changed. In this case, the size �eld is in

a region Size. Thus the second change can be given as a (read and a) write to

the Size region of the receiver (this) of the method call. The class has a second

region Elements which contains the array �eld, but the array assignment does

not actually change the array �eld itself, it changes the elements of the array

that is stored in the �eld. The indirection causes a problem; it is not useful to

the caller to say that \some array somewhere is changed" or even \some array

which is referred to by a �eld in the region this.Elements is changed."

Instead of treating the array as a separate object, it is preferable to consider

the array to be part of the vector, which is reasonable since the implementation

arranges that every vector has its own array. So we use a transfer of e�ect from

the array to the vector and declare the e�ects of the method as \state in this

vector is changed." The transfer is declared in the Vector class using some

syntax such as the following:

private Object[] list in Elements with [] in Elements;

Here the �eld is placed in the Elements region and the individual array elements

(in a region [] of the array) are placed in the Elements region of the vector.

Figure 3 gives a fragment of a hash table class using e�ects transfer. The e�ects

on �elds of the buckets are transitively transfered to the hash table object itself.

The soundness of this transfer of e�ect depends on several conditions. For our

vector example, it is not enough that the array �eld be private; rather, the client

must not have access to the array object through some other means. Otherwise,

it could observe the e�ect on the array. For instance, two vectors must not use

the same array, otherwise a change in one vector could be observed through the

other vector. The invariant that we need is called a \uniqueness invariant." If

an object is unique, e�ects on its regions can be safely mapped to e�ects on

the object which refers to it. The e�ects analysis checks an e�ects transfer using

uniqueness annotations.

class Bucket {

public region Key, Value, Structure;

Object key in Key, value in Value;

Bucket next in Structure with Key in Key,

Value in Value,

Structure in Structure;

Bucket(Object k, Object v, Bucket n) { ... }

Object get(Object k)

reads this.Key, this.Value, this.Structure, any(Object).Equal

{

if (key.equals(k)) return value;

else if (next == null) return null;

else return next.get(k);

}

.

.

.

}

public class Hashtable {

region Key; region Value; region Structure;

private Bucket[] buckets in Structure with [].Key in Key,

[].Value in Value,

[].Structure in Structure;

private int size = 0 in Structure;

public synchronized Object get(Object k)

reads this.Key, this.Value, this.Structure, any(Object).Equal

{

int h = k.hashCode() % buckets.length;

Bucket b=buckets[h];

if (b == null) return null;

else return b.get(k);

}

.

.

.

}

Fig. 3. Hash tables with e�ects transfer

1.2 Uniqueness

There have been a number of uniqueness proposals: Islands [9], Linearity [2],

Ei�el� [16], Balloons [1], Virginity [15], and Alias Burying [3]. Islands and Bal-

loons are not useful for modeling a vector class because they would not permit

a vector to hold any shared references. Essentially the contents of the vector

would have to be unique or immutable references. Flexible Alias Protection [18]

describes how to avoid these problems but uses ownership [6] rather than unique-

ness.

Baker's Linearity and Minsky's Ei�el� (as well as Hogg's Islands) use de-

structive reads in which a read of a unique variable also implicitly stores null in

it. Destructive reads ensure uniqueness or null; instead of having multiple aliases

to an object, all but one will hold null. Destructive reads, however, are not a

satisfactory solution. First of all, it is diÆcult to program using such \slippery"

variables: many methods that take unique variables must also return them as

well as their normal result. Figure 4 shows how to code the hash table fragment

from Fig. 3 in a system with strict destructive reads (which are underlined). We

assume that operations such as == and [.] are overloaded to work for unique

objects, so that comparisons and array accesses can be made without destroy-

ing unique objects. The second problem is that the code now has many more

side-e�ects than previously, which will be diÆcult to ignore in an e�ects analysis.

More importantly, the code must now be prepared for the fact that the unique

variable may actually be null. For example, the hash table get method must be

prepared for the possibility that the �eld holding the array, or the array element

holding the head of the bucket chain might currently be null due to an ongoing

get call. Such a situation may take place, for instance, if the equals method for

an object requires looking something up in a hash table. Aliasing errors may thus

be transmuted into null pointer errors. While possessing the virtue of immediate

detection, null pointer errors can still have devastating run-time consequences for

the program. More desirable is a static checking system that can ag potential

alias errors at compilation time. For instance, the hash table class does not put

any �elds into the Equals region (that may be read by the equals method). If

an equals method tries to access a hash table, e�ects analysis would ag the

access as an error.1

For these reasons, some systems with destructive reads (such as Ei�el� and

Islands) provide \non-consuming" or \borrowing" reads in which certain kinds

of so-called \dynamic" aliases of unique variables are permitted. Methods can

be written to take borrowed receivers or parameters and promise not to store

them anywhere. At the conclusion of the call, then, uniqueness is restored au-

tomatically. Alias Burying similarly supports controlled aliasing, but as soon as

the unique variable is read, the aliases must be dead (\buried"). In particular,

if a method call may read the unique �eld, even indirectly, it may not be passed

1 Unfortunately the new collections framework requires equals on maps to compare

contents. Personally, I believe it was a mistake to require mutable containers to

override equals and hashCode.

class Bucket {

Object key, value;

unique Bucket next;

Bucket(Object k, Object v, unique Bucket n) { ... }

Pair<Object,unique Bucket> get(Object k) unique

{

if (key.equals(k)) return value;

else if (next == null) return null; // we assume == doesn't destruct

else {

Pair<Object,unique Bucket> p = next.get(k);

next = p.second;

return new Pair<p.first,this>;

}

}

.

.

.

}

public class Hashtable {

private unique Bucket unique [] buckets;

private int size = 0;

public synchronized Object get(Object k)

{

// NB: if buckets is null, we die with a NullPointerException

Pair<int,unique Bucket unique []> p = buckets.unique_length();

buckets = p.second;

int h = k.hashCode() % p.first;

unique Bucket b = buckets[h];

Object result;

if (b == null) {

// NB: b might be null due to an ongoing 'get' call

result = null;

} else {

Pair<Object,unique Bucket> p2 = b.get(k);

result = p.first;

b = p.second;

}

// need to restore array element

buckets[h] = b;

return result;

}

.

.

.

}

Fig. 4. Hash tables with destructive reads (underlined)

an alias of that same �eld. With Alias Burying the uniqueness annotations given

in Fig. 4 can be used with the code of Fig. 3; we do not need destructive reads.

Virginity and Alias Burying both provide ways to check uniqueness statically

without changing the underlying language semantics. In an interesting conver-

gence, both systems require \reads" clauses to ensure that uniqueness is not

compromised [3, 14].

When a unique pointer is passed out of the scope of the owning object in a call

(for example by calling a method), there must not be another call on the owning

object that uses the unique �eld until the �rst call is complete. Otherwise, the

uniqueness invariant would be violated; in the case of destructive reads, a null

pointer would be encountered unexpectedly. In the case of alias burying, one

of the called method's parameters is suddenly no longer valid. Thus the static

analysis needs to ensure that the unique �eld is not read during the dynamic

lifetime of the call. The Alias Burying paper [3] suggests listing the complete set

of �elds read during every procedure but concedes that this requirement breaks

information hiding. A much better solution is to use an object-oriented e�ects

system, but that brings us full circle.

Thus we see e�ects analysis depends on uniqueness analysis which depends

on e�ects analysis. Leino has also noticed this interdependence [12].

2 Resolving the Interdependence

In this section, we show how the interdependence can be resolved soundly by

giving a semantics to the annotations. Then we show how one can give semantics

to uniqueness annotations and �nally we sketch an idea for giving meaning to

e�ects annotations.

2.1 Separating the Analyses

The interdependence is a concern to us when we are trying to determine whether

the e�ects analysis and uniqueness analysis are both sound, and if so, writing a

proof. If both analyses depend on each other, we need to prove the correctness

of both together. In our situation, however, we are working with annotations

on methods and classes that summarize their behavior in particular ways. The

annotations provide some indirection: in the same manner as type checking,

analysis checks the annotations on an entity while using the annotations on

other entities, or (in the case of self-reference) itself.

Proving the soundness of the analysis, then, naturally requires that the an-

notations be assigned some meaning against which the analysis is checked. Fur-

thermore, to avoid tautologies, and to permit the substitution of more accurate

analyses, the semantics should be de�ned at a lower level than the analyses. In

particular, we wish to avoid giving an annotation a meaning such as \Analysis A

gives result B when applied to this method." Rather we are interested in mean-

ings such as safety properties: \Event E will never happen while executing this

method as long as the program state at the point of entry satis�es predicate I."

Assuming then that we can place the semantics on a complete (semi-)lattice

and de�ne our analyses monotonically on this lattice, proving the correctness of

the analysis becomes an application of the theory of abstract interpretation [7].

In particular, we can prove the soundness of a uniqueness analysis separate from

any e�ect analysis, and vice versa.

2.2 Semantics for Uniqueness

In a current paper [4], we give a capability-based low-level language that can

be used to give a meaning to uniqueness annotations. Uniqueness is expressed

through the exclusive holding of read and write access rights. Uniqueness invari-

ant failures are converted into capability failures, so that any analysis that en-

sures the absence of capability failures ensures the correctness of the uniqueness

annotations. Furthermore, the only way lack of an access right can be observed

is through a capability failure, and thus if a program is guaranteed to never

have failures, it can be executed in an environment that ignores access rights

completely. In particular, no space is needed to store the access rights.

2.3 Semantics for E�ects

A useful semantics of e�ects is not yet available. Our earlier paper [8] gives an

indirect basis for de�ning the soundness of e�ects annotations: whether a conict

detection analysis using the e�ects annotations always catches data dependencies

between adjacent program portions. But it does not give a semantics to the

annotations directly, and the conict detection analysis is overly conservative in

several situations.

Leino's abstract variables [10] (from which data groups were derived) have

a clear meaning in the context of a program speci�cation. However, because of

e�ects transfer, when a module speci�cation uses modifies clauses2 the client of

a module cannot make interesting use of the information in a sound manner [13].

Any problem in e�ects transfer shows up as unsoundness in the client, which is

\unfair" because the client has no control or even awareness of the transfer.

The semantics of e�ects could be speci�ed using uniqueness or ownership [17,

5] but that would tie us to a particular system, not directly related to e�ects.

Uniqueness systems �nd it diÆcult to model doubly linked lists and ownership

systems �nd it diÆcult to model transfer. Thus we prefer an e�ects semantics

not depending on the particular method for alias containment.

We suggest instead that the implementation of a method be charged with

ensuring the soundness of e�ects transfer. In particular, the state thus mapped

into the state of another object must not be available to any caller that does not

have access to the object through which the transfer is e�ected. Our position

is that this intuition can be formalized through a run-time hierarchy of actual

regions. E�ects transfer is implemented by mutations on this tree.

2 Leino does not currently use reads clauses.

At the start of a program, the entire state (the set of all �elds) is available for

reads and writes. Whenever a method with an e�ects annotation is called, the

available state is pared down to the intersection of the currently available state

and the state implied by the annotations. The available state is then restored

after the call. When a new object is created, all of its �elds are made available

for both reads and writes. When a �eld with an e�ects transfer is assigned to,

we check that the object's state is fully available for reads and writes (except

perhaps for immutability), and then transform the region hierarchy. If a read

of a �eld outside the permitted area occurs, the state is presumed immutable,

because reads of immutable state need not be declared. It is marked as such for

the duration of the program. When a write occurs, the system checks that the

�eld is in the area currently permitted for writes and that the �eld is not marked

immutable. An error causes evaluation to get stuck.

In this way, we achieve a semantics of e�ect annotations and transfer that

does not depend on a particular de�nition of uniqueness or ownership. The

details of this suggested semantics remain to be worked out.

3 Summary

Two apparently di�erent problems, (1) describing the reads and writes of meth-

ods and (2) upholding uniqueness invariants, are nonetheless interdependent.

The connectivity presses us to de�ne the semantics of e�ects separately from the

semantics of uniqueness. We currently have a promising semantics for unique-

ness, but an e�ects semantics which has the desired properties remains to be

fully eshed out.

Acknowledgments

I thank Aaron Greenhouse, Bill Retert and the FTJP 2001 reviewers for their

many useful comments. I also thank Rustan Leino for a good technical conver-

sation which encouraged me to write up this interesting interdependence. All

omissions and errors are strictly my own.

References

1. Paulo Sergio Almeida. Balloon types: Controlling sharing of state in data types. In

Mehmet Ak�sit and Satoshi Matsuoka, editors, ECOOP'97 | Object-Oriented Pro-

gramming, 11th European Conference, Jyv�askyl�a, Finland, June 9{13, volume 1241

of Lecture Notes in Computer Science, pages 32{59. Springer, Berlin, Heidelberg,

New York, 1997.

2. Henry G. Baker. `Use-once' variables and linear objects|storage management,

reection and multi-threading. ACM SIGPLAN Notices, 30(1):45{52, January

1995.

3. John Boyland. Alias burying: Unique variables without destructive reads. Software

Practice and Experience, 31(6):533{553, May 2001.

4. John Boyland, James Noble, and William Retert. Capabilities for sharing: A gen-

eralization of uniqueness and read-only. To appear in ECOOP 2001, 2001.
5. David G. Clarke, James Noble, and John M. Potter. Simple ownership types for

object containment. To appear in ECOOP 2001, 2001.
6. David G. Clarke, John M. Potter, and James Noble. Ownership types for ex-

ible alias protection. In OOPSLA'98 Conference Proceedings|Object-Oriented

Programming Systems, Languages and Applications, Vancouver, Canada, October

18{22, ACM SIGPLAN Notices, 33(10):48{64, October 1998.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lattice

model for static analysis of programs by construction of approximation of �xed

points. In Conference Record of the Fourth ACM Symposium on Principles of Pro-

gramming Languages, Los Angeles, California, USA, pages 238{252. ACM Press,

New York, January 1977.
8. Aaron Greenhouse and John Boyland. An object-oriented e�ects system. In Rachid

Guerraoui, editor, ECOOP'99 | Object-Oriented Programming, 13th European

Conference, Lisbon, Portugal, June 14{18, volume 1628 of Lecture Notes in Com-

puter Science, pages 205{229. Springer, Berlin, Heidelberg, New York, 1999.
9. John Hogg. Islands: Aliasing protection in object-oriented languages. In OOP-

SLA'91 Conference Proceedings|Object-Oriented Programming Systems, Lan-

guages and Applications, Phoenix, Arizona, USA, October 6{11, ACM SIGPLAN

Notices, 26(11):271{285, November 1991.

10. K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California

Institute of Technology, Pasadena, California, USA, 1995. Available as Technical

Report Caltech-CS-TR-95-03.

11. K. Rustan M. Leino. Data groups: Specifying the modi�cation of extended state.

In OOPSLA'98 Conference Proceedings|Object-Oriented Programming Systems,

Languages and Applications, Vancouver, Canada, October 18{22, ACM SIGPLAN

Notices, 33(10):144{153, October 1998.
12. K. Rustan M. Leino. Some thoughts about rep exposure and alias con�nement.

December 2000.
13. K. Rustan M. Leino and Gren Nelson. Data abstraction and information hiding.

SRC Research Report 160, Compaq Systems Research Center, Palo Alto, CA,

November 2000.
14. K. Rustan M. Leino and Raymie Stata. Smothering rep exposure with reads

clauses. November 1999.
15. K. Rustan M. Leino and Raymie Stata. Virginity: A contribution to the speci�-

cation of object-oriented software. Information Processing Letters, 70(2):99{105,

April 1999.
16. Naftaly Minsky. Towards alias-free pointers. In Pierre Cointe, editor, ECOOP'96

| Object-Oriented Programming, 10th European Conference, Linz, Austria, July

8{12, volume 1098 of Lecture Notes in Computer Science, pages 189{209. Springer,

Berlin, Heidelberg, New York, July 1996.
17. Peter M�uller and Arnd Poetzsch-He�ter. A type system for controlling represen-

tation exposure in Java. In Sophia Drossopolou, Susan Eisenbach, Bart Jacobs,

Gary T. Leavens, Peter M�uller, and Arnd Poetzsch-He�ter, editors, 2nd ECOOP

Workshop on Formal Techniques for Java Programs, Nice, France, June 12. 2000.
18. James Noble, Jan Vitek, and John Potter. Flexible alias protection. In Eric Jul,

editor, ECOOP'98 | Object-Oriented Programming, 12th European Conference,

Brussels, Belgium, July 20{24, volume 1445 of Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, New York, 1998.

Class Re�nement for Sequential Java

Ana Cavalcanti1 and David A. Naumann2

1 Centro de Inform�atica

Universidade Federal de Pernambuco (UFPE), Box 7851 50740-50 Recife PE Brazil

alcc@cin.ufpe.br www.cin.ufpe.br/~alcc
2 Department of Computer Science

Stevens Institute of Technology, Hoboken NJ 07030 USA

naumann@cs.stevens-tech.edu www.cs.stevens-tech.edu/~naumann

Keywords: class re�nement, modular speci�cation and veri�cation, inheritance
and dynamic binding, re�nement calculi, semantics

1 Introduction

This extended abstract describes progress in an ongoing project on re�nement
calculus for sequential Java. Predicate transformer semantics is being used to
validate correctness-preserving transformations for use in program development,
veri�cation, design refactoring, and compilation. We focus here on the seman-
tics and its application in showing soundness of forward simulation for class
re�nement, the foundation of behavioral subclassing.

This section is an overview of project objectives and recent progress. Section 2
addresses the language and its semantics. Section 3 discusses class re�nement,
Section 4 presents our ideas for future work.

Our work is being done in the context of a collaboration involving others
at UFPE (P. Borba and A. Sampaio) and Birmingham (U. Reddy), and our
research assistants.1 Our long-term goal is development of tools and methods for
speci�cation, construction, modular veri�cation, restructuring, and compilation
of Java programs. Current work uses an idealized language rool based on the
sequential part of Java.

Re�nement calculus is the unifying framework for the work. In re�nement
calculi, the speci�cation statement x : [pre; post] is treated as an \imaginary
command". For commands c and c

0, the algorithmic re�nement c v c
0 means

that c0 satis�es any speci�cation that c does. Ordinary correctness is expressed
using speci�cation statements: we have that x : [�;] v c holds just if c meets
the speci�cation \modi�es x , requires �, ensures ". Re�nement laws formalize
development by stepwise re�nement from speci�cations [Mor94].

One of our objectives is to extend this method to encompass object-oriented
programs, and in particular design patterns and refactoring transformations
[Fow99], including those that involve several classes at once. In a case study
applying our results, we restructure an object-oriented application to follow a

1 The work is funded by National Science Foundation under Grant No. 9813854, and

by CNPq under grants 520763/98-0 and 680032/99-1.

layered architecture [VB99]. Borba and his students are developing a tool to
automate the application of design transformations.

Speci�cation statements, including the special cases known as assertions and
assumptions, provide exible annotation of program fragments. This is useful not
only for veri�cation but also for static checking [DLNS98] and program trans-
formation. Sampaio, Cavalcanti, and their students are developing a compiler
based on the normal-form approach [HHS93,Sam97], which exploits speci�ca-
tion statements in transformation of code fragments. In the past year, a normal
form has been devised for a virtual machine based on JVM. Compilation is based
on normal-form laws, and some of these have been proved using our semantics.

A major objective is to derive design and compilation laws from basic laws
proved sound in predicate transformer semantics [BS00]. Weakest precondition
semantics is of direct use in veri�cation tools and it is well suited to proving
re�nement laws. Eventually we plan to prove soundness of this semantics with
respect to an operational semantics, hopefully one already developed by another
research group.

To this end, and in order to check proofs of laws and of results discussed in
the sequel, we are using PVS to encode the typing system and semantics of our
language. The encoding is purely de�nitional. We are using a deep embedding of
program expressions including predicate in speci�cation statements. In accord
with the new semantics described in Section 2, commands act on state sets in
PVS so this part is a shallow embedding.

Many design laws involve data re�nement, for which we use an intrinsic def-
inition [HHS86,dRE98], and behavioral subclassing, which is similar to a data
re�nement of coexisting classes. The primary means for establishing data re�ne-
ment and behavioral subclassing is (forward) simulation. The existing literature
falls short of the simulation results we need. Our new results on soundness and
preservation of simulation are the main topic in the sequel.

2 Syntax and semantics

A program in our language is a sequence cds of Java-like class declarations
followed by a main program c whose free variables may include objects of classes
in cds . Attributes can be private, protected, or public, like in Java, and they can
be mutually recursive. Methods are regarded as public. Mutual recursion between
methods is not allowed, to simplify the semantics of method calls and the proof
of laws. Methods are de�ned as parameterized commands [Bac87,CSW99] using
call by value, result, and value-result (with copy semantics).

In [CN99,CN00a] we de�ned a weakest precondition semantics for rool. In
that work, we regarded a predicate transformer as a function on formulae. We
extended traditional weakest precondition semantics and gave an account of
method calls that is both abstract and operationally intuitive. This semantics is
appropriate for the proof of re�nement laws, a work that is well under way [BS00].

For the proof of the soundness of simulation for data re�nement, however,
we �nd the syntactic approach to predicates to be a problem. In this context, it

2

is natural to consider the coupling invariant (or rather, a simulation relation) to
be a formula relating the private attributes of the abstract and concrete classes.
The proof of soundness of simulation requires a comparison of programs that
di�er only by the fact that the concrete class is substituted for the abstract one.
We cannot, however, say that the semantics of the �xed client classes is equal
in both programs. Since their semantics depends on the semantics of methods
de�ned in the simulated classes, the proper relation between them is that of a
simulation as well. To de�ne this simulation, we need what we call a generalized
coupling invariant to relate states of client classes.

We �nd it diÆcult to give a de�nition for this generalized invariant syntacti-
cally, but on the other hand, its de�nition as a relation on states is very intuitive
and straightforward [CN00b]. Also, a data re�nement proof technique should
involve the de�nition of the coupling invariant by the developer, but not the
de�nition of the generalized coupling invariant. So there is not really a justi�-
cation to have it as a formula. For this reason, we have given a new semantics
to our language where predicates are regarded as sets of states, and predicate
transformers as functions on these sets.

The de�nitions in this new semantics are very similar to those of our previous
work. We use type-theoretic techniques to organize the semantic de�nitions. If
a command c can occur in the methods of a class N , we use a typing judgement
�;�;N B c. The typing environment � records the classes in context, including
N , and the signature � includes the variables in scope for c: attributes of N , pa-
rameters, and local variables. The typing rules reect Java's restrictions on scope
and subsumption. The semantics is de�ned by induction on typing derivations.

As expected, the challenge was the de�nition of the semantics of method calls.
As before, we have an environment that records the semantics of methods and
that is de�ned by a �xpoint construction. The semantics recorded is that of the
behaviour of the method when called from inside the class where it is available.
We use this semantics directly to de�ne the meaning of calls self :m(e). For a
call of the form x :m(e), it must be adapted.

At the point where the call x :m(e) occurs, the state space includes x as
well as attributes of the calling object, parameters of the calling method, and
locals of the calling method. In a state where the dynamic type of x is N

0, the
environment � gives a meaning �N 0

m for the called method, but that meaning
acts on the state space consisting of attributes of N 0 and parameters of m. So we
have to adjust the postcondition at the point of call so that �N 0

m is applicable.
Roughly, this adjustment extracts the attributes of x to get a state of the right
kind and ensures that state variables other than x are unchanged. The de�nition
for a pre-state � and a postcondition is as follows.

� 2 [[�;�;N B x :m(e) : com]]� , fxg [rvrargs C � 2 pt (adapt �)

The environment � provides the transformer pt determined as pt = � N
0
m arglist ,

where N 0 is the class of x de�ned by �, and arglist is the list of arguments result-
ing from evaluating the expressions e in �. The predicate transformer pt is for a
local signature that contains only the attributes of N 0 and the parameters. On

3

the other hand, the predicate is on �;�;N , where � is the state space of the
caller. As already said, we need to reconcile these di�erences before applying pt .
This is the role of the function adapt . The method call can only a�ect the value
of x and of the result and value-result arguments rvrargs . We require that the
state resulting from the domain restriction (C) of � to x and rvrargs satis�es the
precondition. The function adapt considers the conjunction of with the pred-
icate that requires that the value of all variables, except x and those in rvrargs ,
are the same as in �. Moreover, it transforms the resulting predicate into another
one on the attributes of N 0 and on the result and value-result parameters, by
extracting the attributes of N 0 (or one of its subclasses) from � x and the value
of the parameters from the arguments. This new semantics combines elements
from [CN00a] and [Nau00].

3 Class Re�nement

Algorithmic re�nement of programs and commands is de�ned in the usual way
as the pointwise order on predicate transformers. In [CN00a], we de�ne two rela-
tions of class re�nement. Here, we are focusing on the relation cds B cda 4= cdc

that captures the situation in which the abstract class cda is data re�ned by the
concrete class cdc in the context of the sequence of class declarations cds . They
both introduce the same class Ns with the same superclass.

De�nition 1 (Class Re�nement). For a sequence of class declarations cds,

and class declarations cda, and cdc, that introduce a class called Ns, for instance,

we de�ne cds B cda 4= cdc if and only if

{ the sequences of class declarations cds cda and cds cdc are both well-formed;

{ for all commands c that use only methods in cds and cda and whose global

components have types that are Ns-free, if c is a well-typed main program

for cds cda, then

� c is well-typed for cds cdc; and

� (cds cda � c) v (cds cdc � c).

A sequence of class declarations is well-formed if all methods, or rather, the
commands in their bodies, are well-typed and there is no mutual recursion.
The global components are the free variables, and, inductively, components of
attributes of the object-valued free-variables. Intuitively, a type is N -free if any
variable declared to have such a type cannot have attributes of the class N .

If c has global components that are not N -free, then the program re�nement
(cdscda � c) v (cdscdc � c) is not even well-de�ned because the programs act
in di�erent state spaces. For this reason, no global variables of object types are
allowed in the result of [Nau01b], which is the closest result in the literature to
what we need. There, structural subtyping is used, so there is no way to de�ne
a notion like N -free.

Forward simulation (including abstraction functions) is the standard proof
technique for class re�nement. We de�ne class simulation in the context of private

4

attributes avs and cvs of cda and cdc, respectively, and of a coupling invariant
ci de�ned as a relation from states of cda to states of cdc. The classes cda and
cdc are assumed to provide exactly the same methods.

Coupling invariants have to satisfy certain healthiness conditions. For in-
stance, only states for the same class can be related. Also, the initial states of
the classes are related. More stringent conditions are motivated by the proof of
soundness of simulation and are discussed later on.

Simulation for predicate transformers is de�ned in the usual way [GM91],
but in terms of a generalized coupling invariant. First, if the class declarations
cda and cdc, or rather, the states of these classes, are related by the coupling
invariant ci , we de�ne a relation ogci T , coupling values of a type T . If the type
T is primitive, then ogci T is the identity: the values of such a type are the
same in both contexts. If T is either Ns or one of its subclasses, then ogci T is
the coupling invariant itself. Finally, if T is a class N that does not inherit from
Ns , then it has the same attributes in both contexts. In this case, we relate an
object o of N in the context of cda to an object o0 in the context of cdc, if the
values of the corresponding attributes of o and o

0 are related themselves.

The de�nition of the generalized coupling invariant for states is shown below.

De�nition 2 (Generalized Coupling Invariant). For a class N and local

variables in scope vs, we de�ne gci N vs to relate states � for N and vs in the

context of cda with states �
0
for the same class and local variables, but in the

context of cdc.

(�; �0) 2 gci N vs , (�(vs)�C �; �(vs) �C �0) 2 ci ^

8 x : �(vs) � (� x ; �
0
x) 2 ogci T if N is a subclass ofNs

(�; �0) 2 gci N vs , dom � = dom �
0 ^ � myclass = �

0
myclass ^

8 x : dom � n fmyclassg � (� x ; �
0
x) 2 ogci T otherwise

where T is the type of x in the context of N .

If N is a subclass of Ns we cannot simply de�ne gci N vs to be ci because
of the extra local variables vs . If we disregard them, by considering the states
�(vs)�C � and �(vs)�C �0, then we can require the resulting states to be related
by ci . The set �(vs) contains the local variables, as opposed to vs which is
their declaration. We use the operator �C (domain subtraction) to remove those
variables from the states. The values assigned to the variables of vs have to be
related by ogci . For the case in which N is not a subclass of Ns , we require the
states to give values to the same variables (dom � = dom �

0), to be for the same
class (� myclass = �

0
myclass), and �nally give related values to corresponding

attributes. Besides declared attributes, a state � has a special attribute myclass

that designates its class. The states for a class include all the states for its
subclasses.

To de�ne simulation for the classes cda and cdc we consider the method

5

environments � and �0 determined by cds cda and cds cdc.

De�nition 3 (Class Simulation). We de�ne

cds ; avs ; cvs ; ci B cda 4 cdc

if and only if for each method m of cda and cdc, we have that

cds ; cda; cdc; avs ; cvs ; ci ;Ns B (� Ns m) 4 (�0
Ns m)

We require that the meaning recorded in � for each method of cda and cdc is
simulated by the meaning recorded in �0.

The meaning of a method recorded in the environment is a curried function
from argument values to predicate transformers. Simulation for these functions
is de�ned in terms of simulation of predicate transformers. We require that if the
corresponding arguments are related by simulation, the resulting predicate trans-
formers are as well. Simulation of arguments amounts to simulation of values, for
value arguments, and the identity, for variables passed by result or value-result.

Our main theorem is stated below.

Theorem 1 (Soundness of Simulation). If cds ; avs ; cvs ; ci B cda 4 cdc,

then cds B cda 4= cdc.

The proof of this theorem relies mainly on two facts. The �rst is preservation: the
semantics of the commands of the client classes of cda and cdc are related by
simulation. This implies simulation for any main program. The second is an
identity extension lemma: the generalized coupling invariant is the identity when
the global components in context are Ns-free. Therefore, simulation of a main
program implies algorithmic re�nement, as required by De�nition 1.

The identity extension result is simple and rather straightforward. The proof
of preservation, on the other hand, brought to light a few surprises. The syn-
tactic approach to the semantics requires the inclusion of equality on objects
as a primitive function. We need that to de�ne, for instance, the semantics of
assignment. Such an expression, however, does not preserve data-re�nement as
it relies on equality of private attributes. Luckily it is not needed in the present
semantics and it was eliminated from the language.

For variable blocks, result and value-result parameterization, and speci�ca-
tion statements, the coupling invariant has to be surjective. The representation
of an object value has to include values of private attributes, even though they
are hidden. The semantics of a variable block, for instance, considers all initial
values that a local object variable can have, including the di�erent values for
its private attributes. If a variable block declares a variable whose type is that
being re�ned, then to relate the concrete block to the abstract block, we have to
relate every possible concrete value of the variable to a corresponding abstract
value. This requires the coupling relation to be surjective. This requirement is
unnecessary, and incomplete, for simple imperative programs [HHS86,dRE98].

A way around this problem is to consider that variables are initialized. In
that case, the semantics has to consider only those initial values, and the cou-
pling invariant only needs to be surjective for values that can be expressed in

6

the language. The visibility restrictions and the simulation properties ensure
that di�erences in values of hidden attributes are not relevant. This approach,
however, does not work for speci�cation statements.

We are going to investigate a solution in which each class has an invariant and
the semantics quanti�es over objects satisfying this invariant only. The coupling
invariant is de�ned as a relation on states that satisfy the invariant and the
surjectivity restriction is weaker. The user has to provide class invariants and
discharge the corresponding proof obligations. Nevertheless, class invariants are
normal practice and have independent justi�cation. Another alternative is to
change the semantics to quantify over object values obtained by applying the
methods of its class to the initial values de�ned by the constructor. In other
words, we use the weakest invariant determined by the program, rather than
requiring an explicitly declared invariant.

Angelic variable (logical constant) blocks only preserve data re�nement if the
coupling invariant is total. If the coupling invariant is not total, in the concrete
counterpart of the block, the angelic choice is restricted. As an example, consider
the block (avar x : T � : [x = v ; true]) using a speci�cation with empty frame. In
the abstract context, the block behaves like skip as the angelic choice can succeed
in establishing the precondition of the speci�cation statement by choosing x to
be v . If v does not have a concrete counterpart, however, the concrete block is
(avar x : T � : [false; true]), which behaves like abort. The approaches above
can also be used to avoid the totality restriction on coupling invariants.

In summary, forward simulation is sound for all the program constructs. To
extend soundness to speci�cation statements, uninitialized variable blocks, result
and value-result parameters, and angelic variables, however, we need surjectivity
and totality with respect to some form of class invariant.

4 Future Work

An immediate topic for further work is the investigation of the alternatives
pointed out in the previous Section to generalize our results to arbitrary cou-
pling invariants. Besides pursuing these approaches, we are going to adapt our
results for the relation cds B cd 46= cd

0. This is the second class re�nement
relation introduced in [CN00a], which captures the situation in which cd and cd

0

introduce classes of di�erent names. This subsumes the relation of behavioural
subclassing.

Besides the speci�c goals of our project, we believe that our work comple-
ments the work of others in various ways. In particular, we are using a semantic
model to justify simulation techniques that are often postulated as means to
achieve behavioral subclassing. As a speci�c example, we plan to work with
Gary Leavens to interpret the core constructs of JML using our semantics. On
this basis, we expect to justify JML rules for behavioral subclassing.

In the �rst phase of our project we decided that the scope of the lan-
guage would include core features of sequential Java, including visibility controls
and recursion, but excluding concurrency, exceptions, and most contentiously,

7

pointers. Meanwhile, Reddy and his student Hongseok Yang have worked on
modular reasoning for pointer programs, extending recent work of Reynolds
[Rey01,RO01,IO01,Yan00,ROY01].

This work is based on a non-standard logic, but we have recently shown how a
form of spatial conjunction can be used in the setting of standard logic and pred-
icate transformers [Nau01a]. This work focuses on reasoning about �ne-grained
manipulation of pointers. In particular, it localizes reasoning using partitions of
the heap that can have two-way interlinking, unlike disciplines such as Universe
Types [MPH00] which focus on modular reasoning at the level of classes. In the
next phase of our project we plan to deal with pointers using Universe Types
together with spatial conjunction.

Variations of the speci�cation statement are used in JML [LLP+00] as \model
programs" which are particularly useful in specifying calling patterns of methods,
including callbacks [BW99,RL00]. Up to now, our speci�cation constructs include
only the speci�cation statements and \angelic variables" (logical constants) of
Morgan's re�nement calculus [Mor94]. In the next phase, we plan to add abstract
attributes and dependencies for modular speci�cation [LN00,M�ul01].

References

[Bac87] R. J. R. Back. Procedural Abstraction in the Re�nement Calculus. Technical

report, Department of Computer Science, �Abo - Finland, 1987. Ser. A No.

55.

[BS00] P. H. M. Borba and A. C. A. Sampaio. Basic Laws of ROOL: an object-

oriented language. In 3rd Workshop on Formal Methods, pages 33 { 44,

Brazil, 2000.

[BW99] Martin B�uchi and Wolfgang Weck. The greybox approach:

When blackbox speci�cations hide too much. Technical Re-

port 297, Turku Center for Computer Science, August 1999.

http://www.abo.�/~mbuechi/publications/TR297.html.

[CN99] A. L. C. Cavalcanti and D. Naumann. A Weakest Precondition Semantics

for an Object-oriented Language of Re�nement. In J. M. Wing, J. C. P.

Woodcock, and J. Davies, editors, FM'99: World Congress on Formal Meth-

ods, volume 1709 of Lecture Notes in Computer Science, pages 1439 { 1459.

Springer-Verlag, September 1999.

[CN00a] A. L. C. Cavalcanti and D. A. Naumann. A Weakest Precondition Semantics

for Re�nement of Object-oriented Programs. IEEE Transactions on Software

Engineering, 26(8):713 { 728, August 2000.

[CN00b] A. L. C. Cavalcanti and D. A. Naumann. Simulation and Class Re�ne-

ment for Java. In S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens,

P. M�uller, and A. Poetzsch-He�ter, editors, Formal Techniques for Java Pro-

grams. Technical Report 269, Fernuniversit�at Hagen, 2000. Available from

http://www.informatik.fernuni-hagen.de/pi5/publications.html.

[CSW99] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. An Inconsistency

in Procedures, Parameters, and Substitution in the Re�nement Calculus.

Science of Computer Programming, 33(1):87 { 96, 1999.

8

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.

Extended static checking. Technical Report Report 159, Compaq Systems

Research Center, December 1998.

[dRE98] Willem-Paul de Roever and Kai Engelhardt. Data Re�nement: Model-

Oriented Proof Methods and their Comparison. Cambridge University Press,

1998.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

[GM91] P. H. B. Gardiner and C. C. Morgan. Data Re�nement of Predicate Trans-

formers. Theoretical Computer Science, 87:143 { 162, 1991.

[HHS86] J. He, C. A. R. Hoare, and J.W. Sanders. Data re�nement re�ned (resum�e).

In European Symposium on Programming, volume 213 of Springer LNCS,

1986.

[HHS93] C. A. R. Hoare, J. He, and A. Sampaio. Normal form approach to compiler

design. Acta Informatica, 30:701{739, 1993.

[IO01] Samin Ishtiaq and Peter W. O'Hearn. BI as an assertion language for mutable

data structures. In POPL. ACM Press, 2001.

[LLP+00] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart

Jacobs. JML: notations and tools supporting detailed design in Java. In

OOPSLA 2000 Companion, Minneapolis, Minnesota, pages 105{106. ACM,

October 2000.

[LN00] K. Rustan M. Leino and Greg Nelson. Data abstraction and information hid-

ing. Technical Report 160, COMPAQ Systems Research Center, November

2000.

[Mor94] Carroll Morgan. Programming from Speci�cations, second edition. Prentice

Hall, 1994.

[MPH00] Peter M�uller and Arnd Poetzsch-He�ter. A type system for control-

ling representation exposure in Java. In S. Drossopoulou, S. Eisen-

bach, B. Jacobs, G. T. Leavens, P. M�uller, and A. Poetzsch-He�ter,

editors, ECOOP Workshop on Formal Techniques for Java Programs.

Technical Report 269, Fernuniversit�at Hagen, 2000. Available from

www.informatik.fernuni-hagen.de/pi5/publications.html.

[M�ul01] P. M�uller. Modular Speci�cation and Veri�cation of Object-Oriented

Programs. PhD thesis, FernUniversit�at Hagen, 2001. Available from

www.informatik.fernuni-hagen.de/pi5/publications.html.

[Nau00] David A. Naumann. Predicate transformer semantics of a higher order im-

perative language with record subtyping. Science of Computer Programming,

2000. To appear.

[Nau01a] David A. Naumann. Ideal models for pointwise relational and state-free im-

perative programming. In Principles and Practice of Declarative Program-

ming, 2001. http: //www.cs.stevens-tech.edu/~naumann/relambda.ps,.

[Nau01b] David A. Naumann. Soundness of data re�nement for a higher order imper-

ative language. Theoretical Computer Science, 2001. To appear.

[Rey01] John C. Reynolds. Intuitionistic reasoning about shared mutable data struc-

ture. In Millenial Perspectives in Computer Science. Palgrave, 2001.

[RL00] Clyde Ruby and Gary T. Leavens. Safely creating correct subclasses without

seeing superclass code. In Proceedings of OOPSLA 2000, October 2000.

[RO01] John C. Reynolds and Peter W. O'Hearn. Reasoning about shared mutable

data structure. Slides from invited talk at SPACE 2001, January 2001.

9

[ROY01] John C. Reynolds, Peter W. O'Hearn, and Hongseok Yang. Local reasoning

about shared mutable data structure. Slides for invited talk at APPSEM

2001 workshop, 2001.

[Sam97] Augusto Sampaio. An Algebraic Approach to Compiler Design, volume 4 of

Algebraic Methodology and Software Technology. World Scienti�c, 1997.

[VB99] E. Viana and P. Borba. Integrando Java com Bancos de Dados Relacionais.

III Simp�osio Brasileiro de Linguagens de Programa�c~ao, pages 77{91, May

1999.

[Yan00] Hongseok Yang. An example of local reasoning in BI pointer logic:the schorr-

waite graph marking algorithm. Draft, December 2000.

10

On the Role of Invariants in Reasoning about
Object-Oriented Languages

Joachim van den Berg, Cees-Bart Breunesse, Bart Jacobs, Erik Poll

Computing Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
{joachim,ceesb,bart,erikpoll}@cs.kun.nl

Abstract The aim of this paper is to clarify the different roles that class
invariants play in the verification of object-oriented programs, namely in
method specifications as proof obligations for method implementations
(assume the precondition and then prove the postcondition) and in spe-
cifications as assumptions on method invocations (prove the precondition,
and then assume the postcondition), in order to prove the correctness of
other methods. The standard proof obligation is that individual methods
preserve the invariant of their class, as part of the method’s specifica-
tion. When trying to prove such an obligation one may have to be careful
about the invariants that are assumed to be part of the precondition, at
least if one wishes to use the same specification in other proofs. This
is what we call the conservative approach. There is an associated more
liberal approach which really makes a distinction between specifications
as obligations and as assumptions. In the latter case the requirement
to prove all invariants in the precondition is dropped. This considerably
simplifies the verification work, but relies on a suitable meta-result about
non-disturbance of invariants.

1 Introduction

Preconditions, postconditions and invariants are universally accepted as the ba-
sic ingredients for specification of OO programs. Invariants for classes play an
important role in object-oriented languages ([11,14]) because they often express
key data integrity properties, such as: this integer field is always non-negative,
or this reference is never null. The idea is that invariants should always hold.
But things are not so simple. Consider for example the invariant i+j==0. It does
not hold in between the two statements i++;j--, even though it will hold after
the composition, assuming it holds before. It is inevitable that some invariants
are temporarily invalidated in a method body, but they should be re-established
at some point.

Our perspective here—unlike for example [4]—is tool-assisted verification of
object-oriented programs. More specifically, proving specifications for method
implementations. The specifications we consider are written in the behavioural
interface specification language JML, developed by Leavens et al. [6]. The im-
plementations are written in Java. We have developed a special compiler, called

the LOOP tool (see [1]) which translates these JML specifications plus Java
implementations into their semantics in the language of the proof tool PVS.
Specifications become special predicates, which we try to prove for the (trans-
lated) implementations. In this context, we are forced to be very systematic and
precise about the meaning of invariants—which is a delicate matter. The pur-
pose of this short note is to make the main problems explicit, and to present the
options that one has.

The verification of a specification for a method proceeds by stepping through
the methods body via applying appropriate Hoare-like rules for JML, see [5],
for each individual statement in this body. These statements may consist of
method calls, like in void m() { ... o.k(); ... }. What we then do is use
the specification given for the method k—which involves in particular showing
that the precondition of this specification of k holds. The first point we wish to
emphasise is that there are thus two different roles for method specifications in
verification, namely as a proof obligation for the method implementation, and
as an assumption about a method invocation. Ideally, specifications have the
same meaning in these two roles, but that is possibly not the most convenient.
Invariants play a key part in making such a distinction.

Method specifications in JML contain several clauses for the various modes
of termination in Java, like divergence, normal termination, and exceptional
termination (see [5] for details). These differences are not so relevant in this
paper, and so we shall simplify this matter and use the standard triple notation
from Hoare logic,

{ pre } m { post } (1)

for partial correctness. Such a triple expresses that if the precondition pre holds
in the pre-state, and if the method m terminates normally, then the postcondition
post holds in the post-state. However, the triple (1) is too simple, because it
does not involve the invariant IA of the class A in which the method m is defined.
Thus the triple (1) should be:

{ IA && pre } m { IA && post } (2)

This is standardly taken as the meaning of a method specification, and is what
should be proved for the method.

2 Invariants and inheritance

The two main requirements1 of the behavioural approach to subtyping [10] are
the following. For a subclass B of a class A,

1. The invariant IB of B is stronger than the invariant IA of A, i.e. IB ⇒ IA.
2. For each method m in class A that is overridden in the subclass B, the spe-

cification of m in B is stronger than the one in A. Usually this is expressed by
the pair of implications:

preA =⇒ preB and postB =⇒ postA. (3)
1 Omitting constraints.

Notice that the second condition does not involve invariants. Simply adding them
in the straightforward way, namely as:

IA && preA =⇒ IB && preB and IB && postB =⇒ IA && postA (4)

is problematic, because the first implication does not hold in general—because
IB can be really stronger than IA.

The practice of actual verification [3,2] has taught us that a slightly different
approach is more appropriate (and effective), in which the above implications (3)
and (4) are not required. In order to explain this alternative we distinguish
notationally between the version mB of m in B, and the (overridden) version mA
in A. The meaning of the specification of mA is as in (2) above. For mB we use a
conjunction of two requirements:

{ IB && preB } mB { IB && postB }
{ IB && preA } mB { IB && postA }

(5)

Notice that the first triple is the analogue of (2) for mB. The second one expresses
that mB should also satisfy the specification of the superclass A, but with the in-
variant of its own class. Indeed, this is what is often needed in practice, typically
when the invariant IB expresses certain safety conditions that are essential for
the correct behaviour of mB. We shall use the second triple in (5) as interpret-
ation of the requirement 2. of behavioural subtyping in the beginning of this
section, namely that an overriding method should also satisfy the specification
of the overridden method.

Several further remarks should be made at this point.

1. The formulations (5) are convenient in verification because they are in a
form that can directly be used in proofs, when specifications are used as
assumptions.

2. The first requirement in (5) follows from the second if we can establish the
following adaptations of (4).

IB && preA =⇒ preB and IB && postB =⇒ postA.

And this is what we of course do, if possible, in order to prevent going
through the method body in another lengthy proof.

3. One distinguishing feature of object-oriented languages (with inheritance) is
that objects have both a static type and a dynamic (run-time) type—where
the latter is a subtype of the former. This raises the question whether the
invariant of an object refers to the invariant of the static or of the dynamic
type of an object. This difference is relevant if Java’s instanceof is used to
get more information about an objects dynamic type. In order not to make
matters more complicated than they already are, we shall ignore the differ-
ence between static and dynamic invariants and shall simply write Inv(o)
for the invariant of an object o.

4. Another question is whether late binding should be used to interpret the
(pure, side-effect free) methods that may occur in invariants. For example,
in

class A {
int i;
//@ invariant i > min();

//@ ensures \result >= 0;
/*@ pure */ int min() { .. }

}

class B extends A {
//@ ensures \result >= 10;
/*@ pure */ int min() { .. }

}

do we know, for an object b of class B, that b.i > 0 or—by late binding—b.i
> 10 ?

3 Invariants for objects (other than this)

Besides the invariant of the class in which the method is defined (the invariant of
this, as it is sometimes called), the correctness of a method’s implementation
may also rely on invariants of other objects used in the method body, such
as parameters and (possibly static) fields. Therefore, these invariants are also
important to prove the correctness of the implementation.

Like the class invariant (of this) that is assumed to hold in the pre-state, in
most cases also the invariants of the parameters and relevant fields are needed in
this state. The proof obligation for a method m with parameters −→a and defined
in class A will then become

{ Inv(this) && Inv(−→a) && Inv(
−→
f) && pre } m(−→a) { Inv(this) && post },

where Inv(this) is what we have written as IA before (with A the class of m),
Inv(−→a) are the invariants of the reference parameters in −→a , and Inv(−→f) are the
invariants of all the relevant reference fields. How it is determined which objects
are relevant is not so important at this stage.

It may also be the case that a method returns a reference to an object2. This
result object should also satisfy its invariant. Therefore, the proof obligation is
further strengthened to:

{ Inv(this) && Inv(−→a) && Inv(
−→
f) && pre }

m(−→a)
{ Inv(this) && Inv(\result) && post },

2 Also, the method may produce an exception object, which should also satisfy its
invariant. But this case does not occur in our simplified Hoare logic dealing only
with normal termination.

where Inv(\result) denotes the invariant for the return value.
In an object-oriented context, modular verification ([7,12]) is important, be-

cause one wishes correctness results to be robust with respect to addition of
subclasses. Consider the following example in which a method m has a reference
parameter o of class A:

void m (A o) { o.i=1; o.k(); }

One would like the specification of m to be correct for all possible future sub-
classes of class A—objects of which may be passed as actual parameter. In order
to achieve such correctness, it should be assured that each subclass of A be-
haves as A. The assignment o.i=1, however, may cause trouble: it might break
a possibly stronger invariant of a subclass of A.

In general terms, assignments may disturb the invariants of other objects via
exposure of the state of an object, e.g. via access to public fields or aliasing. In
order to control this, a meta-result about non-disturbance of other invariants is
needed. Müller and Poetzsch-Heffter [13,12] propose to use suitable “universes”
of objects that put restrictions on leaking references to the outside world. This
will be needed to make our verifications modular.

4 Invariants in verification

It is common in the literature on object-oriented specification and verification
to assume invariants, whenever needed. Explicitly, in the words of Liskov &
Wing [10, p.13]: “We omit adding the invariant, because if it is needed in doing
a proof it can always be assumed, since it is known to be true for all objects of its
type.” Such a hand-waving approach is not possible in a formalised semantics
for theorem proving, and must be described explicitly. This will be done by
explicitly distinguishing between proving and using method specifications.

For expository reasons we first consider some naive rules for invariants,
mainly to illustrate the subtleties involved.

4.1 The black box approach

In an ideal world, every object would be a black box, that only interacts with its
environment by method invocations. In such a setting, every object would take
care of maintaining its own invariant only. The proof obligation for a method
implementation would be as expected:

{Inv(callee) && pre}
m()
{Inv(callee) && post}

At first sight, one might expect that users of a method may make the following
assumption for method invocations:

{pre}
callee.m()
{post}

Given that the object callee takes care of maintaining its own invariant, the
caller can assume that the invariant of callee will hold.

However, the rule above is not correct, because the caller may have temporar-
ily invalidated its invariant at the moment of the invocation callee.m. This is a
problem because of possible call-backs: the execution of callee.m() may lead to
other method invocations, including method invocations on the object caller,
in which case execution of a method of caller would start in a state in which
its invariant does not hold. The simplest scenario where this problem occurs is
the case that caller and callee are the same object, i.e. if callee.m() is an
invocation of the objects own methods. To prevent such problems, the caller
should ensure that its own invariant holds whenever it invokes other methods:

{Inv(caller) && pre}
callee.m()
{Inv(caller) && post}

This may be seen as formalisation of the (standard) solution for call-backs, see
for example [14, Section 5.8]: “A simple solution would be to require all invariants
of an object to be established before calling any method.”

The big problem with this approach is that the underlying assumption—that
objects are black boxes—is not true for typical object-oriented languages such as
Java. For instance, invariants can be disturbed by assignments to public fields.
More importantly, the invariant of an object typically depends not just on the
states of that object (i.e. its fields), but often also depends on the states of other
objects (in its “universe”).

Another problem with this approach is that, in spite of the drastic simplifying
assumption, insisting that the invariant is maintained whenever another method
is invoked may be too strong a requirement in practice. As noted for instance
in [14, Section 5.8], (re)establishing an invariant might require a sequence of
method invocations. One place where this requirement is often unworkably strong
is in constructors; typically the invariant is not established until the end of a
constructor body, which means that we cannot invoke any methods (or super
constructors) in constructor bodies [9].

4.2 The white box approach

Diametrically opposed to the black box approach discussed above, where every
object is given the responsibility of maintaining only its own invariant, is what
we call the white box approach: here every individual object is given the re-
sponsibility of maintaining all the invariants of all existing objects.

For this approach the proof obligation for a method implementation would
be

{∀i. Inv(oi) && pre}
m()

{∀i. Inv(oi) && post}

and the assumption on method invocations would be

{∀i. Inv(oi) && pre}
callee.m()
{∀i. Inv(oi) && pre}

In this approach we know that at all visible states—all routine borders—all
invariants of all objects hold. This approach has the advantage of being sound, as
the proof obligation for method implementation and the assumption on method
invocation are identical. However, the problem with this approach is that the
proof obligation for method implementations is unworkably strong. In general
there is no way of knowing whether a given assignment to a field does not
invalidate the invariant of some other object. Additionally, we also have the
problem mentioned in the last paragraph of the Subsection 4.1.

4.3 The liberal and conservative approach

In light of the fundamental problems with the two approaches above, we now
consider two more pragmatic approaches to invariants, see Figure 1, called the
liberal and conservative approach. In the conservative approach there is no dis-
tinction between obligation and assumption—although we use a slightly different
formulation to emphasise that there are two objects involved when a specific-
ation is used as assumption. In the liberal approach one adds all invariants to
the precondition in a proof obligation, but one does not need to establish these
invariants when the specification is used as an assumption. The justification for
this omission is like in Liskov & Wing [10], as cited above. More formally, it
should be justified by a meta-result about non-disturbance of invariants, in the
universes setting of Poetzsch-Heffter & Müller [13,12]. This is needed for the
soundness of the liberal approach. But as we saw towards the end of Section 3,
the meta-result is needed anyway to be able to work modularly.

liberal conservative

specification
as obligation

{∀i. Inv(oi) && pre}
m()

{Inv(callee) && post}

{∀relevant i. Inv(oi) && pre}
m()

{Inv(callee) && post}

specification
as assumption

{Inv(caller) &&

Inv(callee) && pre}
callee.m()

{Inv(caller) &&

Inv(callee) && post}

{∀relevant i. Inv(oi) && pre}
callee.m()

{Inv(callee) && post}

Figure1. The proof obligations and assumptions for method specifications in the lib-
eral and the conservative approach.

Some motivations for the rules in Figure 1:

– The reason for including Inv(caller) in the precondition of the liberal
assumption rule is to allow for call-backs, as discussed in Subsection 4.1. In
the conservative assumption rule, Inv(caller) should be included as one of
the relevant objects if there is a call-back to it.

– The reason for including Inv(caller) in the postcondition of the liberal
assumption rule is that it is needed to prove that a method implementation
containing callee.m() preserves the caller’s invariant. However, one could
also rely on the modifiable clause (i.e. frame property) of the called method
m to prove this; this is what has to be done in the conservative approach.

If one wishes to use a specification in the conservative approach one needs
to prove explicitly that the invariants added to the precondition hold. Adding
the invariants of all objects makes proofs unnecessarily difficult—and often im-
possible, when certain, irrelevant, invariants do not hold. This is the reason for
restricting ourselves to what we call the invariants of all relevant objects. Still
this puts a considerable burden on the verifier: in our experience this requirement
gives a lot of work, which is in essence unnecessary. But the great advantage of
this conservative approach is of course its soundness.

By having a weaker specification as obligation than as assumption in the
liberal approach it is not hard to introduce logical inconsistencies in the back-
end theorem prover, namely in cases where an invariant of an other object (than
this) is necessary for a certain result value. Consider for example:

class A {
int i;
//@ invariant i > 0;

//@ requires a != null;
//@ ensures \result == true;
boolean m(A a) { return a.i > 0; }

//@ requires a != null && b != null;
//@ ensures \result == true;
boolean k(A a, A b) { b.i = 0; return a.m(b); }

}

Notice that k does not meet its specification. But it can be proven “correct”
with the liberal approach: the specification of m as assumption does not require
that the invariant for the parameters hold.

In the universe approach [13] certain constraints will have to be imposed, in
order to prevent that the integer field i can become non-positive, e.g. by making
it private or read-only. This disables invariant-disturbing assignments to i.

As mentioned, in the conservative approach only invariants of relevant objects
are added to the precondition, whereas all invariants are added when proving a
specification in the liberal approach. During such a “liberal” proof one quickly

restricts the invariants added to the precondition to only the relevant objects,
because otherwise one pushes too strong a formula through the method body
(via the rules for Hoare logic).

5 LOOP project

As stated in the introduction, the LOOP compiler translates Java classes plus
JML annotations into PVS. The translation covers almost all of sequential Java,
and this part is reasonably stable. The translation of JML is still under construc-
tion, but already covers a core part of JML: class invariants and constraints,
method specifications including modifiable clauses, but, for instance, not yet
model variables. The JML translation is being used for several case studies (not-
ably for JavaCard), and is optimised on the basis of the resulting experiences.

Originally, the approach we used was to explicitly include invariants of objects
other than this in pre- and postconditions, which is possible in JML using the
\invariant_for keyword. For example, the method m in the example above
could be specified as follows

//@ requires a != null && \invariant_for(a);
//@ ensures \result == true;
boolean m(A a) { return a.i > 0; }

to make it explicit that m relies on the invariant of its argument. The problem
with this approach is that it quickly becomes cumbersome to have to explicitly
include all these invariants in pre- and postconditions.

We then considered the conservative approach, mainly because this seemed
to be the safest. It has given rise to several difficulties.

– How to determine which objects are relevant? Adding invariants for reference
parameters is not problematic, but finding all other relevant objects in a
method body is beyond static analysis. This is a problem in generating the
semantics of a specification. ESC/Java uses some heuristic to choose the set
of relevant objects [8, Sect. 2.4.1]. One way to tackle this problem might be
to include a model variable relevantObjects,

//@ public model JMLObjectSet relevantObjects;

for every object, that keeps track of the set of relevant objects, i.e. o.rele-
vantObjects is the set of objects on whose invariants the methods of the
object o rely.

– Proving the invariants of all relevant objects when a method specification
is used is very time consuming, and does not yield very much in terms of
confidence because these invariants typically hold anyway.

On the basis of these experiences we are now moving to the liberal approach3,
also because there are now concrete plans to extend JML with the universe type
system of Poetzsch-Heffter & Müller. The liberal approach makes verification
easier, but it may lead to inconsistencies because the required meta-result about
non-disturbance of invariants is not formalised in PVS. This possibly unsound
approach goes very much against the very idea of formal verification, but seems
to be the most pragmatic: we have assumptions which are strong enough for
verifying non-trivial program properties, but which should not be abused.

6 Conclusion

Our work on tool-assisted verification of object-oriented programs forces us to
be very explicit and precise about the meaning of all the constructs involved.
This short note focuses on the role of invariants in this setting, and tries to
clarify several issues that occur in various places in the literature, but are still
confusing when it comes down to detailed formalisation.

References

1. J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In
T. Margaria and W. Yi, editors, TACAS01, Tools ans Algorithms for the Con-
struction and Analysis of Software, number 2031 in Lect. Notes Comp. Sci., pages
299–312. Springer, Berlin, 2001.

2. J. van den Berg, B. Jacobs, and E. Poll. Formal Specification and Verification
of JavaCard’s Application Identifier Class. In I. Attali and T. Jensen, editors,
Proceeding of the first JavaCard Workshop (JCW’2000), Lect. Notes Comp. Sci.
Springer, Berlin, 2001. To appear.

3. M. Huisman, B. Jacobs, and J. van den Berg. A case study in class library veri-
fication: Java’s Vector class. Techn. Rep. CSI-R0007, Comput. Sci. Inst., Univ. of
Nijmegen. To appear in Software Tools for Technology Transfer, 2001.

4. K. Huizing, R. Kuiper, and SOOP. Verification of object oriented programs using
class invariants. In T. Maibaum, editor, Fundamental Approaches to Software
Engineering, number 1783 in Lect. Notes Comp. Sci., pages 208–221. Springer,
Berlin, 2000.

5. B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Huss-
mann, editor, Fundamental Approaches to Software Engineering (FASE), number
2029 in Lect. Notes Comp. Sci., pages 284–299. Springer, Berlin, 2001.

6. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavi-
oral interface specification language for Java. Techn. Rep. 98-06, Dep. of Comp.
Sci., Iowa State Univ. (http://www.cs.iastate.edu/∼leavens/JML.html), 1998,
revised April 2001.

3 We are also considering an equally unsound variation of the liberal approach which
simply says (as an assumption in PVS) that all objects different from the caller
(this) satisfy their invariant. This is even easier to use, because it avoids that the
invariant assumptions at the beginning of proofs have to be carried along through
the method body until the point where they are needed.

7. K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California Inst. of
Techn., 1995.

8. K.R.M. Leino, G. Nelson, and J.B. Saxe. Esc/java user’s manual. Technical Report
(2000/002), Compaq SRC, 2000.

9. K.R.M. Leino and R. Stata. Checking object invariants. Technical Report 97/007,
Digital SRC, 1997.

10. B. Liskov and J. Wing. A behavioral notion of subtyping. TOPLAS, 16(6):1811–
1841, November 1994.

11. B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

12. P. Müller. Modular Specification and Verification of Object-Oriented
Programs. PhD thesis, FernUniversität Hagen, 2001. Available at
http://www.informatik.fernuni-hagen.de/pi5/publications.html.

13. P. Müller and A. Poetzsch-Heffter. Universes: a type system for alias and depend-
ency control. Tech. Rep. 279-1/2001, Fernuniversität Hagen, 2001.

14. C. Szyperski. Component Software. Addison-Wesley, 1998.

Formalising Dynamic Composition and

Evolution in Java Systems

Claus Pahl

Dublin City University, School of Computer Applications

Dublin 9, Ireland

cpahl@compapp.dcu.ie

Abstract. The Java platform allows the dynamic establishment and

closure of connections and also the composition and customisation of

components at deployment time. In order to guarantee reliability and

maintainability in dynamic evolving systems, we take a process-oriented

view on composition and interaction. This is supported by a contract

concept to formalise matching of suitable service provider and requestor.

1 Motivation

Forming a contract between service provider and service requestor can constrain
the invocation of remote or unknown methods [1], leading to more reliable sys-

tems. Since dynamic loading of classes is possible in Java, objects can interact
via RMI, and beans can use each others services [2] - possibly assembled and
customised at deployment time -, respective means to control the use of services
should be in place. A contract-based composition framework is su�cient for
static systems, but systems do evolve over time. Requirements change and force
contracts to be renegotiated. This can be addressed by embedding a concept of
contracts into a model of change. Reasoning about the impact of dynamic com-
position and change is important to achieve reliability for evolving systems. We
adapt a process calculus to capture the establishment and release of contracts.

2 Contracts and Connectors

The �-calculus shall be used to model the process of establishing contracts and
connections between components. The �-calculus o�ers means to specify commu-
nication between agents in a distributed environment. Objects communicating
through RMI and beans are agents in this sense. Modelling the process of change
using a process calculus is justi�ed by a similarity between mobility and evo-
lution. Mobility in the �-calculus is de�ned as a change of neighbourhood, i.e.,
a change of the links that an agent has with its environment. In the same way
evolution might require changes in connections between interacting objects or
between beans. Requirements of a client, formulated using pre- and postcondi-
tions, need to be satis�ed, or matched, by a service provider, formalised using the
re�nement calculus. Interfaces can be used to form contracts between a server

component and a client component. A requested and a provided method have to
be matched based on their speci�cations (pre- and postconditions) to form a con-
tract. The matching construct is re�nement v. The provider needs to satisfy the
needs of the requestor, i.e., a provided method n should re�ne the requirements
of m:

m v n
4
= pre(m) ! pre(n) ^ post(n)! post(m) (1)

The process of matching and creating a connector is described by:

Req cChmi:C 0jProv cC(n):P 0
mvn
�! priv m (C 0jP 0fm=ng) (2)

This rule is constrained by the re�nement m v n, i.e. it matches a service re-
quest m and a provided service n. This request is handled on a contract channel
cC. This step establishes a (private) connection m between the provider and
its client. Interactions between them, e.g. invocations of remote methods, can
now be executed via the connector m. This rule can model contracts between
client and server using RMI or between beans assembled to larger components.
Connectors occur in two forms in Java. Firstly, as a remote computation, i.e., a
service channel is used to invoke a remote method. Secondly, as a local compu-
tation, i.e., a data channel is used to load the class which contains the code to
be executed. Connectors are an abstraction to capture remote and mobile code.

In order to formalise the constraint language within the dynamic framework,
we need to see objects as entities with internal structure. We use hidden algebras
to de�ne semantical structures, embedding this into dynamic logic.

3 Management of Change

This framework for change and evolution in Java can be expanded into concepts
to determine the e�ects of change and to manage evolving systems. Both speci�-
cations of service requests and available services might change due to changes in
the overall requirements or the environment. Changes in one component might
force changes in other components - change is propagated. A framework based
on matching and internal correctness conditions can help to determine the e�ects
of change. This framework can be de�ned based on the dynamic logic semantics
used to embed pre- and postconditions. Matching is used to determine the e�ect
of change to contracts. Internal component correctness relations form a measure
for the e�ect of contract changes on a component implementation.

References

[1] L.F. Andrade and J.L. Fiadero. Interconnecting Objects via Contracts. In R. France

and B. Rumpe, editors, Proceedings 2nd Int. Conference UML'99 - The Uni�ed

Modeling Language. Springer Verlag, LNCS 1723, 1999.
[2] S. Cimato and P. Ciancarini. A formal approach to the speci�cation of java com-

ponents. In B. Jacobs, G. T. Leavens, P. M�uller, and A. Poetzsch-He�ter, editors,

Formal Techniques for Java Programs. Tech. Rep. 251, University of Hagen, 1999.

Process Algebra{Guided Design of Java Mobile

Network Applications.

Marco Carbone, Matteo Coccia, Gianluigi Ferrari, Sergio Ma�eis

Dipartimento di Informatica

Universit�a di Pisa, Italy

Highly distributed networks have now become a common platform for wide-

area applications which use network facilities to access remote resources and

services. WEB applications distinguish themselves from traditional distributed

applications mainly because they have to deal with dynamic and unpredictable

changes of network environment, e.g. availability of network connectivity, lack of

resources, dynamic service creation, network recon�guration, and so on. Mecha-

nisms to control how WEB applications can be dynamically assembled, extended

and recon�gured are therefore the key programming abstractions.

We propose a programming model and a design discipline for developing Java-

based (JINI{like) applications which exploit a programmable coordination lan-

guage amenable to formal veri�cation. Designers are forced to develop applica-

tions by clearly separating the computational modules from the coordination

ones. The distinguishing feature of our approach is that the coordination lan-

guage takes the shape of a distributed process calculus which provides mecha-

nisms for mobility of coordinating agents and for explicit distribution of modules

and their dynamic assembling over wide-are networks. The separation between

computation and coordination makes the calculus amenable to be e�ectively an-

alyzed with formal techniques. Hence behavioural properties can be stated and

possibly established, enforcing correctness for the programmable coordination

policies.

Our coordination/scripting language ED� is based on a variant of Hennessy and

Riely's Distributed �-calculus (D�) [3], and extends it with new mechanisms to

manage locations, to cope with IP name spaces, and with a new communica-

tion primitive allowing more powerful interactions (e.g. negotiation of services).

ED� is endowed with a formal LTS semantics and a structural congruence re-

lation amenable to formal proof techniques such as bisimulation-based equiv-

alences, control-ow analyses and many others. Related work includes several

scripting/architecture-description languages: in particular Piccola [1], but also

Darwin [5] and Nomadic Pict [6], and the application of formal methods to Java

(here we mention [4, 2]).

Follows an example explaining some of the features of the language and its in-

tended use: the de�nition of a service-fetching abstract operation FIND, meant

to retrieve on behalf of some client sitting at location Client, a service Service

starting the search from a given server location Server.

rec FIND(Client; Server; Service; Result):

go Server:lookUp(Client"; Servicel; R#)?

(go Client:Result(R"):

lookUp(Client"; (addr; Service)l; NewAddr#)?

(FIND(Client;NewAddr; Service; Result);

go Client:Result(FAIL"):0))

This process �rst moves (go Server:), to the default server site. Then, by ex-

ploiting a conventional public channel (lookUp) it checks whether the service

is available: lookUp(Client"; Servicel; R#)? .Here, communication is a bidirec-

tional synchronization via typed tuples and pattern matching. In the example at

hand this feature allows us to disclose the client's identity if and only if the server

o�ers the required service. In this case, the network reference to the service is

returned as a result. The arrows specify for each argument of the typed tuple

whether it is an input, output or synchronization parameter. If the request for

the service succeeds, the process goes back to the original location and commu-

nicates the result through the channel Result. Otherwise it asks the server for

an alternative address for the service and recursively begins the fetch protocol.

Notice that typed tuples provide the mean to negotiate service requests by ex-

plicitly stating a speci�c range of values, e.g. the minimum level of service that

components are willing to accept and the maximum level that they are able to

use.

The Java implementation consists in a package providing classes for each of the

process-algebra constructs, so to stress on the programmer's side the connec-

tion with the underlying formal model. Work in progress includes a security

type system for the language, static analyzers and an extensive revision of the

implementation.

References

1. F. Achermann, S. Kneubuehl, O. Nierstrasz. Scripting Coordination Styles. In

Proc. Proc. Coordination'01, LNCS 1906, 2001.
2. S. Drossopoulou. Towards an abstract model of Java dynamic linking and veri�ca-

tion. In Proc. TIC'2000, CMU Technical Reports, CMU-CS-00-161, 2000.
3. M. Hennessy, J. Riely. Type-safe execution of mobile agents in anonymous net-

works. In J. Vitek, C. Jensen, Eds. Secure Internet Programming: Security Issues

for Distributed and Mobile Objects, LNCS State-Of-The-Art-Survey, NCS 1603,

Springer, 1999.
4. S. N. Freund and J. C. Mitchell. A formal framework for the Java Bytecode

Language and Veri�er. In ACM OOPSLA '99, pp. 147{166.
5. Je� Magee, Naranker Dulay, Susan Eisenbach, Je� Kramer Specifying Distributed

Software Architectures In. Proc. of 5th European Software Engineering Conference

(ESEC '95), LNCS 989, (Springer-Verlag), 1995.
6. Sewell, P., Wojciechowski, P.Nomadic Pict: Language and Infrastructure Design

for Mobile Agents. IEEE Concurrency, 2000.

Introducing Meta-Interfaces into Java

Peep K�ungas, Vahur Kotkas, and Enn Tyugu

Software Department

Institute of Cybernetics at Tallinn Technical University, Estonia

fpeep,vahur,tyugug@cs.ioc.ee

In the present work we apply a formal program construction method with

the aim of increasing the exibility of Java classes. This work relates to recent

results in the dynamic composition of software and component-based program

development.

A meta-interface is a speci�cation that introduces a collection of interface

variables of a class and de�nes, which interface variables are computable from

others under what conditions.
For instance, having a class Triangle with methods sinF indSide, sinF ind-

Angle for computing based on theorem of sine: a

sin(A) =
b

sin(B) =
c

sin(C) ; we can

introduce interface variables for all angles (A, B, C) and sides (a, b, c) of the
triangle and declare a meta-interface that will specify the methods that can be
used. Such meta-interface could look as follows:

var a, b, c, A, B, C : any

rel a,A,B -> b {sinFindSide}

...

rel b,B,a -> A {sinFindAngle}

Here sinF indSide and sinF indAngle are implementations of the sine theo-

rem in Java methods. The meta-interface just declares how these methods can

be used.
After introducing an extension of the language that allows one to use equa-

tions, we can specify this meta-interface by using a shorter description and do
not need the methods implemented by programmers:

var a,b,c, A,B,C : any

rel a/sin(A)=b/sin(B)

rel a/sin(A)=c/sin(C)

rel c/sin(C)=b/sin(B)

Note that the components speci�ed in a meta-interface as of type any have

to be actual components of the Java class and their type is determined by the

Java declarations.

The meta-interface is used as follows: one writes a request for synthesis

of a method with input x1; : : : ; xm, where m > 0, and output y, whereas

x1; : : : ; xm; y are variables speci�ed in the meta-interface, for instance, in the

form x1& : : :&xm ! y, and uses a prover to prove that this formula is derivable

from the speci�cation of the meta-interface.

The prover returns a sequence of rules applied in the proof, which from the

synthesis point of view represents an algorithm we use to generate the program

code to solve the problem. Thus the algorithm is the co-result (or side-e�ect) of

the proving process.

A meta-interface can be written for two di�erent purposes. First, it may

specify possible usage of the class, i.e. its derivable methods, like in our ex-

ample. Second, it can be used as a speci�cation showing how some application

software should be composed from components supplied with meta-interfaces.

In the latter case, a new class can be built completely from a speci�cation of

its meta-interface. The aim of introducing meta-interfaces is to make classes as

components more exible.

To illustrate the usage of meta-interfaces let us specify a class for solving

a computational problem on two triangles that have one common side and one

common angle (see following �gure).

AB

C

a b

c

t1 t2a

C

B Ac

b

Values of some components of triangles are given, as can be seen from the
following class code.

class Problem implements metaInterface {

public static String[] metaInterface = {

"var t1, t2 : any",

"rel t1.b==t2.a",

"rel t1.A==t2.B"};

Triangle t1 = new Triangle(), t2 = new Triangle();

public void main(String[] args) {

Problem p = new Problem();

p.t1.b = 5;

p.t1.B = 70;

p.t2.A = 40;

String name = SSP.synthesize(p, "t1.a -> t2.b");

SSP.exec(name, p, new Integer(4));

}

}

As a result of the call SSP:synthesize a new method will be synthesized (see

method xf17634 below) that realizes the requested computational problem.
The method SSP:exec executes the synthesized method and as a result mod-

i�es the object p by assigning proper value to the component t2:b.

public void xf17634(Problem p, int i) {

p.t1.a = i;

p.t1.A = p.t1.sinFindAngle(p.t1.b, p.t1.B, p.t1.a);

p.t2.a = p.t1.b;

p.t2.B = p.t1.A;

p.t2.b = p.t2.sinFindSide(p.t2.a, p.t2.A, p.t2.B);

}

