
Reasoning About Method Calls in JML

Specifications

Ádám Darvas and Peter Müller

ETH Zurich, Switzerland
{Adam.Darvas,Peter.Mueller}@inf.ethz.ch

Abstract. The Java Modeling Language, JML, is an interface specifi-
cation language that uses side-effect free Java expressions to describe
program behavior. In particular, JML specifications can contain calls to
side-effect free methods.
To verify programs w.r.t. JML specifications, JML expressions have to
be encoded in a program logic. This encoding is non-trivial for method
calls. In this paper, we illustrate several subtle problems any program
verifier for JML has to address. We present an encoding of method calls
that handles abrupt termination, allows methods to create and initialize
objects, and is sound, even if the JML specification is not satisfiable.

1 Introduction

The Java Modeling Language, JML [10], is a behavioral interface specification
language that is supported by a variety of verification tools [3]. The syntax of the
JML expressions in invariants, pre- and postconditions, etc. is an extension of the
side-effect free expressions of Java. For verification purposes, these expressions
must be encoded in the underlying logic of a program verifier, in our case multi-
sorted first order logic with recursive datatypes.

To handle method calls in specifications, side-effect free methods can be en-
coded as mathematical functions and axioms that specify these functions [4]. The
axioms reflect the behavior of the methods expressed by their interface speci-
fications. Generating these axioms is difficult for the following reasons: (1) Ac-
cording to the JML semantics, a method call that terminates abruptly yields
an arbitrary value of the method’s return type. Therefore, the axiom for the
corresponding function must not specify a value for cases in which the method
terminates abruptly, but leave the value unspecified. (2) JML requires methods
that are called in specifications to be pure. Pure methods are not completely
side-effect free. They are allowed to allocate and initialize new objects, but must
not modify existing objects. We call this notion of purity weak purity. It is impor-
tant to model weak purity explicitly in the logic because object allocation and
initialization may have an effect on whether an assertion holds or not. (3) The
axiomatization of the functions has to be consistent, even if the JML specifica-
tion is not implementable. Inconsistent axioms lead to unsound reasoning.

In this paper, we illustrate these problems by examples and present a for-
malization of pure methods that addresses all of them. This formalization is still
work in progress. In particular, we make a few simplifying assumptions we want

2

to alleviate in the future. Nevertheless, our results are interesting to researchers
working on program verifiers for JML and on JML-style specification languages.
We plan to implement our approach in the Jive tool [12], but the main ideas
can be used in any program verifier.

The paper is structured as follows. Sec. 2 and 3 sketch the logical background
used in the rest of the paper. The following three sections explain the three main
problems described above as well as our solutions. Sec. 7 and 8 discuss related
and future work, respectively.

2 Background on program logic

We use Poetzsch-Heffter and Müller’s program logic [14] to formalize our encod-
ing of methods. This logic uses an explicit object store, which is necessary to
model the store changes performed by pure methods. In this section we describe
those parts of the logic that are needed in the rest of the paper.

For brevity, we present our results for a small subset of Java and JML. In
particular, we omit interfaces, arrays, and static class members. An extension to
arrays and static class members is straightforward. Interfaces require additional
proof obligations.

Types and Values. Java’s types and values are modeled by the sorts Type

and Value, respectively. Sort Type contains primitive types, the type of the null

reference, and class types. The reflexive, transitive subclass relation is denoted
by � . A Value is a value of a primitive type, the null reference, or a reference
to an object. The function typeof : Value → Type yields the type of a value.

Object States. Object states are modeled via locations (instance variables).
For each field of its class, an object has a location. The sort FieldId is the sort of
unique field identifiers of a program. The function loc(X, f) yields the location
of the object referenced by X for field f , or undefined if the object does not have
a location for f . Conversely, obj (L) yields a reference to the object a location L

belongs to. For brevity, we write X.f for loc(X, f) in the following.

loc : Value × FieldId → Location
obj : Location → Value

Object Stores. Object stores are modeled by an abstract data type with main
sort Store and operations to read and update locations, to create new objects,
and to test whether an object is allocated. Poetzsch-Heffter and Müller present
these functions and their axiomatization [14].

In this paper, we need only two store operations: OS(L) denotes the value
held by location L in store OS. alive(X, OS) yields true if and only if object X

is allocated in OS. Values of primitive types are allocated in all stores.

() : Store × Location → Value
alive : Value × Store → Bool

3

The constant symbol $ of sort Store is used to refer to the current object store
in formulas. The current object store $ can be considered as a global variable.

3 Encoding of methods and method calls

In this section, we describe the encoding of methods and method calls by func-
tions and function applications, respectively. The axiomatization of these func-
tions is explained in the following sections.

Encoding of methods. As mentioned in the introduction, pure methods can
be modeled as mathematical functions. These functions take one argument for
each parameter of the method and the object store in which they are evaluated,
and yield the result of the method. For instance, a method m with one implicit
parameter (the receiver) and one explicit parameter is modeled by the following
function:

m̂ : Value × Value × Store → Value

JML does not specify whether the meaning of a call to a method m in a speci-
fication is determined by m’s specification or its implementation. For our work
on static verification, m̂ is axiomatized based on m’s specification because (1) m

may be abstract, that is, have no implementation, and (2) the meaning of an
interface specification should be defined independently of a concrete implemen-
tation.

Encoding of method calls. To transform JML expressions into formulas of
our logic, we introduce an expression transformer, γ, which takes a JML expres-
sion and a term denoting a store, and yields a formula. The store argument is
necessary to handle weak purity.

The function γ is defined inductively over the syntax of JML expressions.
For brevity, we describe γ by examples instead of giving a full definition. For
instance, for a field f, γ(f==5, OS) yields “OS(this.f) = 5”.

The expression transformer γ maps method calls to applications of the cor-
responding functions. For instance, if x and p are local variables, the call x.m(p)
in the current object store is transformed to “m̂(x, p, $)”.

4 Normal and abrupt termination

The axiomatization of the functions for pure methods has to take into account
abrupt termination. JML’s semantics for abrupt termination considers a JML
expression e to yield an arbitrary value of e’s static type if e terminates abruptly
[8]. For instance, the expression 5/0 yields an arbitrary integer.

The same semantics is used for method calls. That is, in a JML specification,
a method call that terminates abruptly is considered to yield an arbitrary value
of the method’s result type. To reflect this semantics, specification cases of a

4

method m that permit abrupt termination must not introduce axioms for m̂,
that is, have to leave the definition of m̂ unspecified for these cases. Consider for
instance the following specification of a method abrupt:

/∗@ behavior

@ ensures \result == 5;
@∗/

/∗@ pure @∗/ int abrupt() { /∗ ... ∗/ }

JML’s default for an omitted signals clause in a behavior specification case allows
the method to throw any exception. That is, even the following code is a correct
implementation of abrupt’s specification:

/∗@ pure @∗/ int abrupt() { throw new RuntimeException(); }

This implementation throws an exception for all calls to abrupt. Therefore, any
call to abrupt in a specification should yield an arbitrary value. Concluding from
abrupt’s specification that the function ˆabrupt constantly yields 5 would not be
faithful to the JML semantics. Consequently, we generate axioms only for those
specification cases that forbid abrupt termination. In this paper, we use only
normal behavior specification cases, but our approach can be extended to all
specification cases that contain the signals clause false.

5 Weak purity

According to the design of JML, pure methods are weakly-pure. That is, they
must not modify existing objects, but are allowed to allocate and modify new
objects. This notion of purity is necessary to allow pure methods to return data
structures such as tuples. For instance, many of JML’s model classes create and
return objects of basic datatypes such as sets and sequences. In this section, we
illustrate that weak purity can be observed in interface specifications and show
how it can be modeled in a program logic.

Examples. In the following, we present two examples illustrating that weak
purity has to be modeled in the formalization of methods and constructors to
be faithful to JML’s semantics and to avoid unsoundness.

Class Alloc in Fig. 1 declares a weakly-pure method, alloc, which is used in
the specification of method foo. If an encoding of methods assumed that meth-
ods are completely side-effect free then foo’s ensures clause alloc()==alloc()

would translate to ˆalloc(this, $) = ˆalloc(this, $), which is trivially true. How-
ever, according to the JML semantics, foo’s ensures clause does not hold because
alloc is specified to return a fresh object. This shows that the store changes
performed by weakly-pure methods have to be encoded explicitly.

The example in Fig. 2 shows that neglecting weak purity in the formalization
can lead to unsoundness. Class Invariant has a field f and an invariant that
requires f to be non-zero. Invariant’s constructor is declared as helper, which
allows it to return an object that does not satisfy its invariant. In fact, the f

5

class Alloc {

/∗@ pure @∗/ Alloc()
{ /∗ ... ∗/ }

/∗@ normal behavior

@ ensures \fresh(\result);
@∗/

/∗@ pure @∗/ Alloc alloc() {
return new Alloc();

}
/∗@ normal behavior

@ assignable \nothing;
@ ensures

@ alloc () == alloc ();
@∗/

void foo () { /∗ ... ∗/ }
}

Fig. 1. The weakly-pure method
alloc returns a fresh object.

class Invariant {
int f ;
/∗@ invariant f != 0; @∗/

/∗@ private normal behavior

@ assignable f;
@ ensures this.f == 0;
@∗/

/∗@ pure helper @∗/ private Invariant()
{ f = 0; }

/∗@ private normal behavior

@ requires v == (new Invariant()).f;
@ assignable \nothing;
@∗/

int divide(int v) { return 5 / v; }

int showIt() { return divide(0); }
}

Fig. 2. The weakly-pure constructor does not
establish the invariant of the new object.

field of the new object is initialized to zero, as stated in the constructor’s ensures
clause. The constructor is pure since it modifies only the new object.

The constructor is called in the requires clause of method divide. According
to the JML semantics, one can assume that all objects satisfy their invariants in
the prestate of divide. If a formalization neglects the side-effects of a weakly-
pure constructor, then one can conclude that after the constructor call still all
object invariants hold (since the store is assumed to be unchanged) and, there-
fore, (new Invariant()).f evaluates to a non-zero value. By this reasoning,
one can conclude that v is different from zero, which allows one to verify that
divide does not terminate abruptly.

On the other hand, one can prove that the requires clause of the call divide(0)
in method showIt is satisfied because, by the ensures clause of the constructor,
(new Invariant()).f evaluates to zero. Therefore, method showIt verifies al-
though it leads to a runtime exception. This unsoundness can be avoided by
modeling weak purity in the encoding of methods.

Modeling store changes. To avoid the problems illustrated above, we make
the potential store changes by pure methods explicit. For each pure method m,
we introduce a function m̂S that takes the same arguments as m̂ and yields the
store after calling m. If m has one explicit parameter, m̂S has the signature:

m̂S : Value ×Value × Store → Store

In the following, we call these functions store functions.
A pure method is guaranteed not to modify existing objects. We say that

store OS′ is a pure successor of store OS if all objects allocated in OS are

6

still allocated and unchanged in OS ′. We express this property by the predicate
psucc(OS, OS′), where psucc is defined as follows:

psucc(OS, OS′) ≡ (∀X • alive(X, OS) ⇒ alive(X, OS′)) ∧
(∀L • alive(obj(L), OS) ⇒ OS(L) = OS′(L))

For a pure method m, m̂S(t, p, OS) is a pure successor of OS.

Expression transformer. The expression transformer γ is defined such that
each subexpression refers to the store resulting from the evaluation of the previ-
ous subexpression. In particular, after each method call, γ uses the corresponding
store function for the transformation of the following subexpression.

In our first example, the transformation of the ensures clause of method foo,
γ(alloc()==alloc(), $), yields “ ˆalloc(this, $) = ˆalloc(this, ˆallocS(this, $))”.
Whether this equality holds depends on the specification of method alloc. In
our example, the specification of alloc implies that the equality does not hold.
This reflects the JML semantics and also the behavior of JML’s runtime assertion
checker.

Analogously, the transformation of divide’s requires clause in our second
example uses the store function for Invariant’s constructor, ˆInvariantS: the
field f is read in store ˆInvariantS(this, $) rather than $. The fact that all object
invariants hold in the prestate of divide, $, does not imply that the invariant
of the new object holds in ˆInvariantS(this, $). This prevents the soundness
problem described above.

Modeling store changes is necessary to handle weak purity, but makes for-
mulas more complicated. For many common expressions, the evaluation of one
subexpression cannot observe store changes made by preceding subexpressions.
For instance, the evaluation of e2 in the conjunction e1 && e2 cannot ob-
serve the store changes made by e1.1 In such cases, it is possible to omit the
store functions and transform the expression as if e1 was strongly-pure, that is,
γ(e1 && e2, OS) = γ(e1, OS) ∧ γ(e2, OS). We proved an equivalence result for
this optimization for a small, but representative subset of Java and JML.

Summary. The axiomatization of the functions m̂ and m̂S for a method m is
based on m’s normal behavior specification cases and weak purity.

Let m be a method declared in class C that takes one explicit parame-
ter, p. PREC

m,i(this, p, $) denotes the (γ-converted) conjunction of the requires
clauses of the i-th normal behavior specification case for m in C and, un-
less m is a helper method, the predicate INV($) that expresses that all allo-
cated objects satisfy their invariants in the current object store, $. Analogously,
POST C

m,i(this, p, \result, $) denotes the (γ-converted) conjunction of the en-
sures clauses and, unless m is a helper method, INV($). The index i ranges

1 unless e2 contains a quantification over all allocated objects, even over those allo-
cated by the evaluation of e1. JML does not precisely define the range of quantifiers.

7

over all normal behavior specification cases for m in C, including specifications
inherited from C’s superclasses, which ensures behavioral subtyping [5].

In the axiomatization of m̂ and m̂S we express that if the arguments of a
call to method m satisfy m’s precondition then the result value satisfies the
postcondition. Moreover, we know that the result value is alive in the poststate
and that the poststate is a pure successor of the prestate. These properties are
formalized by the predicate

spec
C
m(t, p, OS, m̂(t, p, OS), m̂S(t, p, OS))

where t, p, and OS are the receiver, the explicit parameter, and the object store
of the prestate of the call to m. The predicate specC

m is defined as follows:

specC
m(t, p, OS, r,OS′) ≡

�

i

(PREC
m,i(t, p, OS) ⇒ POST C

m,i(t, p, r,OS′) ∧ alive(r, OS′) ∧ psucc(OS, OS′))

Although specC
m expresses the essential properties of the functions m̂ and m̂S,

we do not simply state

(∀ t, p, OS • spec
C
m(t, p,OS, m̂(t, p, OS), m̂S(t, p, OS)))

as an axiom because such a naive axiomatization can easily lead to unsoundness,
as we explain in the next section.

6 Consistent axiomatization

Our approach is based on an axiomatization of the functions m̂ and m̂S for
each pure method m. Soundness requires that this axiomatization is consistent,
that is, that there are functions that satisfy the axioms. Inconsistencies occur
when one can derive false from a single axiom or when several axioms contradict
each other. In this section, we discuss a JML example for both cases and show
how inconsistencies can be avoided. We present our axiomatization and prove
soundness.

6.1 Single axioms

With the naive axiomatization described above, method wrong in Fig. 3 leads
to the following axiom (we omit the conjunct INV ($) for simplicity):

(∀ t, OS • ˆwrong(t, OS) = 0 ∧ ˆwrong(t,OS) = 1 ∧

alive(ˆwrong(t,OS), ˆwrongS(t, OS)) ∧ psucc(OS, ˆwrongS(t, OS)))

Since wrong’s specification is not satisfiable, the axiom is equivalent to false (as
ˆwrong(t, OS) = 0 = 1). The axiom for a method m is part of the background

theory used to verify methods that use m in their specification. If this background
theory is inconsistent, the reasoning is potentially unsound. For instance, the

8

abstract class Inconsistent {

/∗@ normal behavior

@ ensures \result == 0;
@ ensures \result == 1;
@∗/

/∗@ pure @∗/ abstract int wrong();

/∗@ normal behavior

@ assignable \nothing;
@ ensures \result == 6 + wrong();
@ ensures \result == 5 + wrong();
@∗/

int bar() { return 6; }
}

Fig. 3. The specification of wrong is
not satisfiable.

class Cycle {

/∗@ normal behavior

@ ensures

@ \result == direct() +1;
@∗/

/∗@ pure @∗/ int direct() {
return 5;

}
}

Fig. 4. The recursive specification is
not satisfiable by a pure method.

above axiom is part of the background theory used to verify method bar and
allows one to verify bar, although its specification is obviously not satisfiable.
Note that this unsoundness occurs even though wrong is not called from bar’s
implementation.

To eliminate this source of unsoundness, we use axioms that are weaker than
the naive axiomatization. These axioms require one to prove that the specifica-
tion of a pure method m is satisfiable in order to assume the properties of m̂

and m̂S. One can assume that all arguments of these functions are allocated and
that the receiver object of the call is a non-null instance of the enclosing class.
This leads to the following axiom for a method m declared in class C with one
explicit parameter:

(∀ t, p, OS • alive(t, OS) ∧ alive(p,OS) ∧ t 6= null ∧ typeof (t) � C ∧

(∃ r, OS′ • specC
m(t, p,OS, r, OS′))

⇒

specC
m(t, p, OS, m̂(t, p, OS), m̂S(t, p, OS)))

For method wrong, this axiom is void since there is no r that satisfies r =
0 ∧ r = 1. Therefore, the left-hand side of the implication does not hold, and
the overall implication is trivially true.

6.2 Recursive specifications

Recursive specifications occur when a method is either directly or indirectly
specified in terms of itself. Class Cycle in Fig. 4 shows an example where a
recursive specification leads to unsoundness.

Method direct is specified in terms of itself. It leads to the following (slightly
simplified) axiom. To make the unsoundness more noticeable, we use the op-

9

timized expression transformer γ described in Sec. 5: since method direct re-
turns an integer, potential store changes cannot be observed by subsequent calls.
Therefore, we can use OS instead of ˆdirectS(t, OS).

(∀ t, OS • alive(t, OS) ∧ t 6= null ∧ typeof (t) � Cycle ∧

(∃ r, OS′ • r = ˆdirect(t, OS′) + 1 ∧ alive(r, OS′) ∧ psucc(OS, OS′))

⇒

ˆdirect(t, OS) = ˆdirect(t, OS) + 1 ∧ . . .)

By choosing r = ˆdirect(t, OS′) + 1 and OS′ = OS, the existentially quantified
formula holds because values of primitive types are always allocated and psucc is
reflexive. Therefore, the axiom allows one to prove ˆdirect(t, OS) = ˆdirect(t, OS)+
1 and, thereby, false.

To prevent this soundness problem, we take a rather drastic approach here:
we completely forbid recursive specifications. That is, we define a depends graph

and require it to be acyclic. The graph is defined as follows: (1) The nodes of
the graph are the pure methods of a program. (2) There is an edge from node m

to node n if a normal behavior specification case of method m mentions method
n. (3) There is an edge from node m to node n if m is not a helper method and
any invariant of the program mentions method n. This kind of edge is due to the
fact that invariants are implicitly conjoined to the requires and ensures clauses
of all non-helper methods.

While recursive specifications are often an indication that a specification is
redundant or flawed, completely forbidding them is too restrictive. For instance,
recursive methods such as a method that computes the factorial or the equals

method on a recursive data structure are typically specified recursively. For our
axiomatization, it is sufficient to require that such a recursive specification is
well-founded.

As future work, we plan to investigate different means of guaranteeing well-
foundedness, for instance, by using JML’s measured by clause to map method
parameters to a partially-ordered well-founded set and enforcing that each re-
cursive call uses parameters that are less according to this ordering. Such an
order is easily defined for values of primitive types. For objects, we plan to use
the partial order defined by the Universe type system (the ownership relation)
[6].

6.3 Soundness

For programs that do not contain recursive specifications, our axiomatization of
pure methods is consistent.

Theorem 1 (Consistency). Let P be a specified program with an acyclic de-

pends graph. There is a model for the axioms generated from the specifications

of P’s pure methods.

10

Proof sketch. The proof runs by induction on the depth of a method m in the
depends graph. The induction hypothesis is that there are well-defined functions
m̂ and m̂S for each method m with a depth up to N . These functions satisfy the
axioms for all methods with a depth up to N . The induction base (N = 0, that
is, the leaves of the graph) and induction step are proved by the same arguments,
which we present in the following.

Let m be a pure method with depth N that takes one explicit parameter and
is declared in class C, and consider any non-null C object t, value p, and store
OS. We show that there are values r, OS ′ for m̂(t, p, OS) and m̂S(t, p, OS) that
satisfy the axioms for m. The axioms for another method n with depth less or
equal N do not mention m̂ and m̂S because n is not specified in terms of m.
Therefore, these axioms are satisfied independently of the definition of m̂ and
m̂S. For the axioms for m, we continue as follows.

The axiom for each subclass S of C that is not a superclass of t’s dynamic
type holds trivially because typeof (t)�S does not hold. Since we do not consider
interfaces, we can assume single subtyping. Therefore, it remains to show that
there are values that satisfy the axioms for the superclasses of t’s dynamic type.

Let σ be the set of all superclasses D of t’s dynamic type (typeof (t)�D�C)
such that (∃ r, OS′ • specD

m(t, p, OS, r, OS′)) holds. For superclasses of t’s dy-
namic type that are not in σ, the axiom is trivially satisfied. In particular, if σ

is empty, the proof is completed.
If σ is not empty, let T be the smallest class in σ w.r.t. the subclass relation.

We define m̂(t, p, OS) and m̂S(t, p, OS) to yield any values r and OS ′ such that
specT

m(t, p, OS, r, OS′) holds. Since T is in σ, such values exist.
It remains to show that these values satisfy the axioms for all classes in σ.

Since T is the smallest class in σ, each member S of σ is a superclass of T .
Specification inheritance guarantees that the subclass specification is stronger
than the superclass specification: specT

m ⇒ specS
m. Therefore, r and OS′ also

satisfy specS
m(t, p, OS, r, OS′). �

Note that this soundness proof assumes single subtyping. With multiple sub-
typing (that is, interfaces), there can exist superinterfaces of typeof (t) that are
neither sub- nor supertypes of the class T . The axioms for these interfaces can
lead to inconsistencies. This source of unsoundness can be avoided by appropri-
ate proof obligations, which are beyond the scope of this paper.

7 Related work

According to our knowledge, our work is the first encoding of methods that
addresses abrupt termination, weak purity, and consistency.

The work closest to ours is that of Cok’s [4], which also uses axiomatized
functions to model pure methods. However, his formalization does not handle
weak purity and does not prevent inconsistent axiomatizations and, therefore,
unsoundness. For specification cases other than normal behavior, Cok uses sig-
nals clauses to generate axioms, which leads to a stronger axiomatization than
ours, but in general requires strong purity for soundness. Cok’s approach has

11

been implemented in ESC/Java2 [9] and Boogie [1]. We have verified all un-
sound examples presented in this paper with ESC/Java2. ESC/Java [7] does not
permit method calls in specifications.

Breunesse and Poll [2] address the consistency problem for model fields, which
are similar to parameterless methods. They propose two solutions. Like ours,
their first solution uses existential quantification to ensure that the representa-
tion relation of a model field is satisfiable. However, their encoding yields false

for every JML expression e that contains a model field whose representation can-
not be satisfied, even if e is a tautology. The second solution transforms model
fields into pure methods. This solution requires a sound encoding for methods,
which we presented in this paper. Breunesse and Poll do not address weak purity
and recursive specifications.

For pure methods with restricted ensures clauses, the Krakatoa tool [11]
generates function definitions rather than an axiomatization. Marché et al. do
not discuss the requirements that are necessary to ensure that these functions
are well-defined. They do not consider weak purity either.

Naumann [13] proposes a notion of purity that is more liberal than JML’s
weak purity and allows certain modifications of existing objects, for instance,
updates of encapsulated caches. Extending our approach to this notion of purity
seems possible.

8 Conclusion and future work

In this paper, we presented a formalization of pure methods as mathematical
functions. This formalization allows one to reason about method calls in JML
specifications. It handles abrupt termination and weak purity. The axiomatiza-
tion of the functions is consistent, even if the JML specification is not satisfiable.

As future work, we plan to investigate ways to guarantee that recursive speci-
fications of pure methods are well-founded, for instance, by using ownership. This
will allow us to use more liberal rules for recursive specifications and, thereby,
to handle more specifications. We also plan to implement our approach in Jive
and to assess its practicality in case studies.

Acknowledgments. We are grateful to David Cok, Gary Leavens, Rustan
Leino, Farhad Mehta, Nicole Rauch, Burkhart Wolff, and the reviewers for help-
ful comments and discussions.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System: An
Overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, ed-
itors, Construction and Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS), volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2005.

12

2. C.-B. Breunesse and E. Poll. Verifying JML specifications with model fields. In
Formal Techniques for Java-like Programs, pages 51–60, 2003. Technical Report
408, ETH Zurich.

3. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. In Eighth International
Workshop on Formal Methods for Industrial Critical Systems (FMICS 03), vol-
ume 80, pages 73–89. Elsevier, 2003.

4. D. Cok. Reasoning with specifications containing method calls in JML and
first-order provers. In Formal Techniques for Java Programs. Proceedings of the
ECOOP’2004 Workshop, 2004. An extended version of this paper will appear in
the Journal of Object Technology (JOT).

5. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification
inheritance. In International Conference on Software Engineering (ICSE), pages
258–267. IEEE Computer Society Press, 1996.

6. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 2005. To appear.

7. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Programming Language Design and Imple-
mentation (PLDI), volume 37, pages 234–245, 2002.

8. D. Gries and F. B. Schneider. Avoiding the undefined by underspecification. In
Computer Science Today, volume 1000 of LNCS, pages 366–373. Springer-Verlag,
1995.

9. J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java and JML: Progress
and issues in building and using ESC/Java2 and a report on a case study involv-
ing the use of ESC/Java2 to verify portions of an Internet voting tally system.
In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Con-
struction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS),
volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.

10. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06-rev27, Iowa State
University, 2005.

11. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certi-
fication of Java/JavaCard programs annotated in JML. Journal of Logic and
Algebraic Programming, 58(1–2):89–106, 2004.

12. J. Meyer, P. Müller, and A. Poetzsch-Heffter. The jive system—implementation
description. Available from sct.inf.ethz.ch/publications, 2000.

13. D. Naumann. Observational purity and encapsulation. In M. Cerioli, editor, Funda-
mental Aspects of Software Engineering (FASE), volume 3442 of LNCS. Springer-
Verlag, 2005.

14. A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented
languages. In D. Gries and W. De Roever, editors, Programming Concepts and
Methods (PROCOMET), pages 404–423, 1998.

