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Abstract. We present SmartJavaMod, a language of mixin modules
supporting compositional compilation, and constructed on top of the Java
language. More in detail, this means that basic modules are collections of
Java classes which can be typechecked in isolation, inferring constraints
on missing classes and allowing safe reuse of the module in as many con-
texts as possible. Furthermore, it is possible to write structured module
expressions by means of a set of module operators, and a type system
at the module level ensures type safety, in the sense that we can always
reduce a module expression to a well-formed collection of Java classes.
What we obtain is a module language which is extremely flexible and
allows the encoding (without any need of enriching the core level, that
is, the Java language) of a variety of constructs supporting software reuse
and extensibility.

1 Introduction

One of the main reasons of the success of the object-oriented paradigm is its good
support for software reuse and extensibility; yet, mainstream object-oriented
strongly typed languages still suffer from problems which prevent code to be
easily and modularly reused in many circumstances.

Witness of this problem is the amount of recent papers which can be found
in literature which aim at enhancing software extensibility in object-oriented
languages[12, 3, 2, 14, 13, 8]. The proposed solutions are very disparate, ranging
from the introduction of single new abstraction mechanisms that can be more
or less easily integrated with existing languages, to more general and pervasive
solutions leading to new languages and even paradigms [25, 21].

The approach followed here is partly different from both, and is based on the
idea that software extensibility can be enhanced without extending a language
in itself, but rather by building on top of this language a module system, as it has
been successfully achieved in the functional paradigm (see SML for instance).
Indeed, Java (and the other mainstream object-oriented languages) lack a real
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module system, partly because the notion of class is overloaded and, in fact,
classes play the double role of object templates and modules. However, as firstly
recognized by Szyperski [28], classes do not offer all features expected from a
modern module system (see also [16] for an extended discussion). Java packages
are a symptom of this deficiency: they provide a better support than classes
for name space management and code structuring, but still they are not real
modules.

In particular, the module system we consider in this paper is based on the
notion of mixin module, which has received a quite consolidated consensus as
an effective means for enhancing software reuse. Mixin modules are a gener-
alization, due to Cook and Bracha [10, 11], of the notion of mixin class (heir
class parametric in the parent) [9, 18, 2]. With respect to conventional modules,
mixin modules offer advanced features including mutually recursive modules and
virtual module components which can be redefined via an overriding operator.
Mixin modules are equipped with a quite powerful set of operations which allow
flexible manipulation and reuse of code in a type safe style, and they offer gen-
eral and uniform solutions to the problem of software extension, so that some
other mechanisms (as, for instance, traits, generic classes, mixin classes) can be,
totally or partially, recovered in them.

While the theoretical foundations of mixin modules have been already in-
vestigated in details [4], much work still needs to be done for integrating real
languages with systems of mixin modules. In particular, designing a system of
mixin modules on top of Java is not a simple task. One of the main challenges is
to devise a type system expressive enough for supporting separate typechecking
and compilation of modules, without losing the potentialities offered by mixins
for reusing and extending code. In [3], we described a proposal, called JavaMod
(supporting separate typechecking via module interfaces, and module expres-
sions constructed by merge, renaming and hiding operators), which, however,
had many limitations. In particular, the programmer had to explicitly annotate
with their required types the classes used as parameters in modules, thus mak-
ing module declarations cumbersome; the type system was too restrictive (see
below); furthermore, virtual classes were not supported.

In this paper we present SmartJavaMod, a major revision of the design
given in [3], with the aim of defining a much more expressive type system, and
a richer set of module operators supporting virtual classes and, more generally,
code reuse in presence of unanticipated software modifications.

The key novelties of the approach are the following:

– Type requirements on classes used in a module are automatically inferred,
without any need for extra type annotations provided by the programmer.
We call smart modules our modules to stress that, thanks to the type infer-
ence algorithm, a basic module (that is, a named collection of class declara-
tions possibly parametric in some classes) can be typechecked and compiled
in full isolation, without any need that either used classes in source/bytecode
form or even a specification file is available. Moreover, these type require-
ments are the minimal requirements on the context needed to safely use a
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module. This can be achieved by using the recent technology developed in
[1], where a type system supporting principal typings [?] for Featherweight
Java [20] has been defined. More in detail, in [1] the type information inferred
for a class c is a pair consisting of the set of constraints (possibly involving
type variables) on all classes used in the code of c (c included) sufficient
and necessary for successfully compiling c, and of the type of c which can
be easily extracted from its declaration by removing all the method bodies.
Furthermore, the notion of polymorphic bytecode (bytecode where type an-
notations can contain type variables) supports separate bytecode generation
for classes.

– Classes declared in a module are all implicitly virtual, that is, their definition
can be later replaced when composing the module with others. The standard
way to override components (classes in this case) of mixin modules is by
means of a restrict operator [10, 4] which allows the deletion of a component
definition, in such a way that a new definition can then be provided by
merging the module with another. In order to support this mechanism, here
type inference uses the same algorithm proposed in [1], but, differently from
there (where constraints were incrementally simplified when linking classes
together), simplification of constraints is never performed, since they clearly
need to be re-checked in case some class declaration is overridden.

– Finally, in addition to classical operators for manipulating mixin modules
[10, 4], such as merge and renaming (already present in [3]), and restrict , we
introduce here the novel bind and unbind operators; the former is used to
associate module parameters with class declarations already present in the
same module, the latter to introduce a new module parameter by remov-
ing an existing association. These operators can be expressed in terms of
primitive module operators (namely, by using reduct [4]), but to our knowl-
edge have never been proposed as high-level constructs in previous languages
supporting mixin modules. In this paper, we introduce them (in particular
unbind) as a powerful means, yet with simple and clean semantics, for sup-
porting unanticipated software evolution, in what it allows an external user
to take some code which was designed as closed and to make it parametric,
hence available to further composition.

The formalization of the module system is carried out with Featherweight
Java as the underlying language. The semantics of module expressions is defined
by a set of rewriting rules which allow simplification of each module expression
into a basic module. The type system turns out to be sound with respect to
the rewriting semantics: the usual subject reduction and progress properties are
stated.

The paper is organized as follows. In Section 2 we discuss more in detail the
key ideas at the basis of smart modules. Section 3 is a gentle introduction to
SmartJavaMod, while Section 4 shows the expressive power of the language
and its ability to support software reuse and unanticipated software evolution by
using a complete running example. The formalization of the semantics and type
system of smart modules for Featherweight Java can be found in Section 5, while
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Section 6 gives some hints towards a possible implementation. Finally, Section 7
contains pointers to related work and some final remarks and directions for future
developments.

2 Smart Modules

Java and other widely used object-oriented languages, like C++, provide only
weak module systems. Java packages and C++ namespaces, for instance, are
just a means for structuring the namespace, and Java/C++ classes incorporate
some, but not all, features found in richer module mechanisms.

For instance, visibility levels are handled at the class level, while a separation
of concerns allows a more clean and powerful language design, as already pointed
out in [28] (see also [16] for an extended discussion on this point).

Despite the considerable effort invested in studying theoretical foundations
and developing new forms of module systems1, there is relatively little amount of
effort, both on the theoretical and implementation side, on applying these ideas
to the case of object-oriented languages.

Highly desirable features for a modular approach to software development
are:

Separate type-checking A code fragment (module) which needs some services
from others should be possibly typed in isolation. In Java the type-checking
of a class which relies on other classes requires all the definitions of these
classes in the environment. For instance, consider the following simple class,
representing single-linked lists (where N, not present, is the type of a node):

class List {

N first;

void addFirst() { first=new N(first); }

}

This class cannot be compiled if the definition of class N is unavailable. One
reason is the fact that a Java compiler, in order to typecheck the expression
new N(first), needs to
– know which (accessible) constructors class N provides,
– choose the most specific among the applicable ones2,
– annotate the generated bytecode for the invocation with the parameter

types of the chosen constructor.
For instance, the compiled bytecode might look, from a very abstract point of
view, like new N<<Object>>(first) if class N provides a constructor which
receives an Object (and does not provide a more specific constructor).

1 Let us mention the wide literature about foundations and improvements of Standard
ML module system (see, e.g., [22, 19]), the notions of mixin (see, e.g., [11, 10, 4]) and
unit [17] and the type-theoretical analysis of recursion between modules proposed
in [15].

2 If a most specific constructor cannot be found, then an error is raised and the
compilation aborted.
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As the name N may be seen as a parameter for class List and generics3
allow to abstract over types, one might be tempted to transform List into
List<N> in order to compile its definition in isolation:

class List<N> {

N first;

void addFirst() {

first=new N(first) ; // ERROR

}

}

Unfortunately, this is not possible for various reasons: first of all, N can be
used only as a type, that is, instances of N cannot be created using new
operator. Also, inside the body of List<N> all you can do with an object of
type N is determined by its upper bound4; this strongly limits the reuse of
a module, as we discuss further below. On the contrary, a similar solution
works with C++ templates, just because in that case there are no limitations
on the use of N. However, since typechecking and compilation of templates
is postponed at instantiation time, the C++ solution does not meet our
modularity requirements.
From an implementation point of view, generics are currently implemented
by the Java compiler using type erasure so, all instances of List<N> are
translated to the same class List and, roughly speaking, the identity of N
is unknown at runtime. Anyway, even if the identity of N were not lost at
runtime (some extensions of Java, as LOOJ [13] and NextGEN [27], do not
lose it) the fact that in Java constructors are not inherited makes impossible
to know which constructors are available given only the upper bound of a
type parameter.

Module interfaces A module interface is a specification of the services a given
module both needs from and provides to others. As it is well-known, these
specifications serve as a formal contract [26] between server and client. Hence,
the client can rely on the server specification without any need at looking at
the implementation; on the other hand, the correctness of an implementation
w.r.t. the specification can be separately checked.

Module expressions A principle which has recently become popular in the
programming language community (see, e.g., [23]) is that a module system
should have two linguistic levels: a module language providing operators for
combining software components, constructed on top of a core language (fol-
lowing the terminology introduced with Standard ML) for defining module
components. The module language should have its own typing rules and be
as independent as possible from the core language; even more, it could be in
principle instantiated over different core languages.

Module interfaces and separate type-checking usually go hand in hand as the
former is used to implement the latter. For instance, Jiazzi [24], Keris [30] and

3 Introduced in JDK 1.5.
4 In this example the upper bound is implicitly the default one: class Object.
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our JavaMod [3] are three proposals which build a module system upon Java,
enjoy the desirable features listed before, and require the user to write module
interfaces. This last requirement, that is, requiring the user to write an explicit
module interface is the source of two drawbacks. The more obvious is that the
user is forced to write more than she/he would probably like to; the other, less
obvious, drawback is the fact that fixing an interface, expressed as a sequence of
fields/methods and so on, severely limits the reuse of a module because such an
interface, in most cases, is more specific than it needs to be. Let us explain both
points by means of an example; consider again the module for defining single-
linked lists, sketched before. In JavaMod it can be written as the following basic
module:

interface ParametricList is
N: { N(N) } ->

List : { N first ; void addFirst() ; }

module ParametricList is
class List {

N first;
void addFirst() { first=new N(first); }

}

The definition of a basic module is split in two parts: a module interface which
describes what a module expects and provides, and a module definition. In this
example the module interface describes that, given a (parameter) class N which
provides a constructor which receives, as the only argument, an object of the
same class, the module ParametricList provides a class named List with an N
field called first and a void method called addFirst.

Let us consider the following module:

interface Node is
-> N : { N(Object) }

module Node is
class N {

N(Object) {}
}

When two modules are merged, the expected and provided interfaces are matched
for equality, so the module Node cannot be merged with module ParametricList
because class N does not provide a constructor which receives an N.

Yet, class List can be successfully typechecked and compiled in an environ-
ment where the only constructor for N receives an Object; one definition of N
is as good as the other. So, from the point of view of module ParametricList,
the most general requirement on the parameter N is not simply “to provide a
constructor which receives an N”, as expressed by a classic module interface, but
“to provide a constructor which can be unambiguously called passing an N”.
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Keeping the module interfaces unaltered and relaxing the check on interface
matching is not an option because, as we recalled before, in order to compile the
expression new N(first), the compiler must know exactly which is the type of
the parameter of the chosen constructor. Moreover, relaxing the requirements
on interface matching and taking into account overloading resolution would be
a very challenging task.

It may appear that trying to make the module interfaces more precise, in or-
der to capture more reuse contexts, would put more burden on the programmer.

Interestingly, we can disburden the programmer from writing module inter-
faces and retain all the desirable features listed before in one fell swoop using
inferred type constraints and polymorphic bytecode [1].

As the rest of the paper illustrates, in the new approach we propose here,
the programmer does not need to write explicitly the interfaces of the modules
a basic module M depends on, as the most general requirements needed for a
successful compilation of M are automatically inferred by the compiler, which
can compile M in total isolation.

3 Language Overview

This section is a brief introduction to smart modules: their main features are
presented through some simple, but still meaningful, examples showing their
expressive power.

For convenience, the underlying core language used in the examples of this
section is Java, but all code could be easily rewritten in C#; however, for sim-
plicity, the formal treatment given in Section 5 will consider only a subset of
Java, namely Featherweight Java [20].

3.1 Basic Smart Modules

Let us start our introduction with an example5 of declaration of basic module:

module LinkedList{ // parametric in N

class List{

N first;

void addFirst(){first=new N(first);}

}

class Node{

N next;

Node(N n){next=n;}

N getNext(){return next;}

}

}

A basic module is a collection of class/interface declarations (like List and
Node) possibly parametric in classes/interfaces (like N) which can be bound to

5 For simplicity, we will keep the examples small and avoid access modifiers.
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their definition later. In this example the name N is a parameter, as no types
named N are declared inside the module.

Within this example, the intuition is that N could be Node; indeed, if we
replaced all occurrences of N with Node, then we would obtain the classic example
of single-linked lists. Of course, having used a parameter instead of the name of
a fixed class, allows us to bind N to something more specific than Node later, for
instance a class DoubleNode (which, presumably, extends Node).

This particular use of a module parameter roughly corresponds to the idea
of type ThisClass of LOOJ [13].

Our approach allows a step further though: N can be bound to any class that
provides an accessible constructor which can be invoked passing an object of
type N as the single argument; that is, a constructor which is declared to receive
a N or any of its supertypes (superclasses or implemented interfaces, whatever
they might be).

Note that even if the programmer does not have to declare:

1. which are the parameters of a module (in this case, N is the only one) and
2. what features (methods, fields and so on) N is supposed to provide,

our approach allows to compile this basic module in total isolation (no other
sources or binary .class files are needed) and to compose this module with
others in a type safe manner.

The point is that we do not require the programmer to write the interfaces
of used modules because we can infer the most general requirements on used
modules, which can be later used to check whether module compositions are
type safe or not.

For instance, the type inferred for LinkedList is

{

List:{cons(N,N,’a)} ->

extends Object {N first; void addFirst();}

Node:{exists(N)} ->

extends Object {N next; Node(N n); N getNext();}

}

The type of a module is a mapping from the class names declared in the module
to their corresponding class types. In a class type, the set on the left hand side of
-> contains all the type constraints needed for successfully compiling the class,
while the right hand side provides all the type information on the class. For
instance, the type of List means that the class can be successfully compiled if
and only if N is bound to a class declaration providing a constructor which is
the most specific for an argument of type N (hence, having a parameter of type
’a, with ’a a type variable such that N <= ’a). Similar constraints are used for
dealing with field access and method invocations.

Note that the type variables which occur in the constraints are all existen-
tially quantified and their scope is limited to the left hand side of ->; more
precisely, the type of List should be rewritten as follows:
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( ∃ ’a.{cons(N,N,’a)}) ->

extends Object {N first; void addFirst();}

The fact that the right hand side of -> might contain type variables as well
merely depends on the underlying programming language: for instance, only the
latest version of Java (JDK 1.5) allows generic classes and polymorphic methods.

Since N is used in Node as a type, the only constraint is exists(N) which
requires class N to be bound to an existing class declaration.6

3.2 Open and Closed Modules

Classes List and Node inside LinkedList cannot be used until the parameter N
is bound to a class declaration which satisfies the constraints of List and Node.

// the following is a type error,

// since N has not been instantiated yet

LinkedList.List l=new LinkedList.List(); // ERROR

A module with parameters, such as LinkedList, is called open. The mod-
ule system offers two different operators for instantiating parameters of open
modules: bind and merge.

Bind The bind operator allows self-instantiation. For instance, since class Node
satisfies all required constraints on N, we can define a module ClosedLinkedList
obtained from LinkedList by binding N to Node:

module ClosedLinkedList=bind(LinkedList,{N->Node}) ;

Module ClosedLinkedList is closed , since it has no parameters. Equivalently,
ClosedLinkedList could have been declared by copying the definition of LinkedList
and replacing each occurrence of N with Node.

module ClosedLinkedList { // naive cut-and-paste approach

class List {

Node first;

void addFirst() {first=new Node(first);}

}

class Node {

Node next;

Node(Node n) {next=n;}

Node getNext() {return next;}

}

}

Now classes List and Node can be used:
6 Note that cons(N,N,’a) subsumes exists(N) and N<=’a.
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ClosedLinkedList.List l=new ClosedLinkedList.List();

When closing a module, all type constraints in the class types must be verified,
otherwise a type error is issued.7 For instance, the expression bind(LinkedList,{N->List})
is not type correct, since List does not satisfy the constraint cons(List,List,’a).

The reader might expect that the type of a closed module contains no con-
straints, but this is not the case. Indeed, a closed module is not “sealed” once
and for all, but can be reopened using operators restrict and unbind , which we
discuss in Section 3.4. So, for instance, the type of ClosedLinkedList is

{

List:{cons(Node,Node,’a)} ->

extends Object {Node first; void addFirst();}

Node:{exists(Node)} ->

extends Object {Node next; Node(Node n); Node getNext();}

}

Finally, note that the fact that a module as ClosedLinkedList is closed can be
simply deduced from its type: it is immediate to see that all class names contained
in the type of ClosedLinkedList are declared inside the module itself.

Merge Assume we want to extend the code in LinkedList in order to support
doubly linked lists. This extension can be isolated in a separate module:

module Double { // three parameters: N, List and Node

class DoubleList extends List {

N last;

void addLast() {

N n = new N(last, null) ;

if (first==null) first = n ;

if (last!=null) last.next = n ;

last = n;

}

void addFirst() {

N n=new N(null, first);

if (first!=null) first.prev = n ;

first = n ;

if (last==null) last=n ;

}

}

class DoubleNode extends Node {

N prev;

DoubleNode(N n) {super(n);}

DoubleNode(N p,N n) {super(n); prev=p;}

N getPrev() {

return prev;

}

}

}

7 For constraint verification see also Section 3.5.

10



Now we can define DoubleLinkedList by merging LinkedList with the exten-
sion defined in Double:

module DoubleLinkedList=merge(LinkedList,Double);

Note that the two parameters List and Node of module Double have been au-
tomatically instantiated in DoubleLinkedList with the corresponding classes
declared in LinkedList, whereas the parameter N is shared (instantiation and
sharing of parameters are by class name matching).

Now we can instantiate N with DoubleNode:

module ClosedDoubleLinkedList =

bind(DoubleLinkedList, {N->DoubleNode}) ;

// this below would be a type error, since

// DoubleList requires N to satisfy

// cons(N,(N,Null),(’a,’b))

//

// module ClosedDoubleLinkedList =

// bind(DoubleLinkedList, {N->Node}) ; // ERROR

3.3 Renaming Facilities

Assume that, instead of N, List and Node, the three parameters of module
Double have been named DN, L and N, respectively. Since, when merging modules,
parameter instantiation and sharing is by name matching, we need a renaming
operator for correctly defining module DoubleLinkedList as above.

module DoubleLinkedList =

merge(LinkedList,

rename(Double,{N->Node,L->List,DN->N})) ;

The rename operator allows renaming of a single class name at time, therefore
the syntax we have just used is just a convenient shortcut for the more verbose
expression:

rename(rename(rename(Double,N->Node),L->List),DN->N)

This means that renaming of more components is accomplished sequentially from
left to right. Both parameters and declared classes can be renamed, however the
new name must be unused in order to avoid conflicts; in other words, the operator
allows only bijective renaming.

3.4 Virtual Classes and Unanticipated Code Modification

Let us consider again module ClosedLinkedList as defined in Section 3.2. As
already noted, the type of the module contains constraints on Node, even though
Node is not a parameter. This is because all classes defined in a module are
virtual, in the sense that their definitions can be overridden; hence, constraints
involving a class must be kept in order to be sure that they are still satisfied by
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later redefinitions of the other classes. Since the merge operator does not allow
class overriding (trying to merge modules which declare classes with the same
name is a type error), class redefinition can be accomplished in two steps by
means of the restrict operator.

For instance, let us assume we want to define a new module ClosedIntLinkedList
obtained from ClosedLinkedList by overriding the definition of Node:

module IntNode {

class Node {

Node next;

int elem;

Node(Node n) {next=n;}

Node(Node n,int e) {next=n;elem=e;}

Node getNext() {return next;}

int getElem() {return elem;}

}

}

module ClosedIntLinkedList =

merge(restrict(ClosedLinkedList, Node), IntNode);

First, we remove the declaration of Node in ClosedLinkedList by means of the
restrict operator. Then we add the new declaration contained in IntNode with
the merge operator.

Now it should be clear why type constraints must always be kept: if we had re-
moved the constraint cons(Node,Node,’a) from the type of ClosedLinkedList,
we would not be able to correctly typecheck the definition of ClosedIntLinkedList.

In general, the restrict operator allows the removal of class declarations in a
module (trying to remove classes which are not declared is a type error). As for
renaming, a convenient shortcut is provided for allowing restriction of multiple
classes (however here the order is immaterial).

A preferential merge operator resolving conflicts between class declarations
can be obtained as a more powerful form of syntactic shortcut:

merge(M1 < M2)

is an abbreviation for

merge(restrict(M1,{C1,..,Cn}),M2)

where C1,..,Cn are all the classes declared in both modules.
Finally, unbind is another operator which, like restrict, enhances code reuse in

the presence of unanticipated software modifications. For instance, the class Node
in module ClosedLinkedList as defined in Section 3.2 cannot be directly reused
for defining doubly linked nodes as it can be done with the class Node in module
LinkedList declared in Section 3.1. However, the availability of LinkedList is
not essential, since that module can be obtained from ClosedLinkedList by
unbinding Node.

module LinkedList=unbind(ClosedLinkedList,{Node->N})
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The unbind operator is the inverse of bind: the class to be unbound (Node in the
example) must be declared in the module while the new name (N in the example)
must be unused. The effect consists in replacing all non defining occurrences of
Node with N. A defining occurrence is either that immediately following the class
keyword, or those introducing constructor definitions.

3.5 More on Typing

In this final part more details on type inference for smart modules can be found.
We refer to Section 5 and to the related paper [5, 1] for a complete technical
treatment of the topic.

Constraint Verification Let us consider the declaration of the following open
module:

module Vain {// parametric in D
class C extends D {
C m() {return new D();}
}
}

In order to be able to use class C, the parameter D needs to be instantiated. How-
ever, it turns out that there is no way to correctly bind D to a class declaration:
in order to do that the constraint D <= C in the type of C should be satisfied, but
class C extends D, therefore C < D holds which is in contradiction with D <= C.
As a matter of fact, module Vain is rather useless. From a software engineering
point of view, declarations of open modules, like Vain, which cannot be closed
should be avoided in favor of earlier error detection.

The type inference algorithm defined in [1] is smart enough to reject the
declaration of Vain; however, it is not so smart to recognize all possible cases.
Luckily, verification of constraints is complete in case of closed modules [1]: typ-
ing of a closed module succeeds if and only if all its classes are type compatible.

Dot notation As in almost all module systems, smart modules support the
dot notation for accessing classes declared in other modules. However two main
restrictions apply to the use of the dot notation in order to avoid a too complex
type system.

1. As already seen in Section 3.2, dot notation is only allowed for closed mod-
ules, in order to avoid run-time errors. For instance, referring to module
LinkedList defined in Section 3.1, if we try to evaluate the ill-typed expres-
sion

new LinkedList.List().addFirst()

then the exception NoClassDefFoundError is thrown when trying to invoke
the constructor in the body of addFirst().
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2. The most general syntax ME.c, where ME is a generic module expression, is
not allowed; instead, the correct syntactic form is M.c, where M is a module
name. This is the same restriction adopted for the module systems of SML
and OCaml in order to avoid a too complex definition of type equivalence.
Here we would have the same problems, since in Java a class name denotes
a type as well.

Generativity versus Transparency Let us consider the following two module
declarations:

module ClosedLinkedList =bind(LinkedList,{N->Node})

module ClosedLinkedList2=bind(LinkedList,{N->Node})

Should the two types ClosedLinkedList.List and ClosedLinkedList2.List
be considered equivalent? This is a well known issue in ML module systems
where the following terminology has been adopted: in case the two types above
have to be considered unrelated, the two corresponding module declarations are
said to be generative (or opaque), otherwise they are said to be transparent.

In Java all class declarations are generative; for instance, the same class decla-
ration in two different packages always denotes two unrelated types. For analogy
one can follow the same approach for modules and, indeed, this is our choice
here, but mainly because transparency makes the type system more complex.
Let us consider, for instance, the following artificial example:

module M1 { // parametric in C
class A {}
class B extends C {}
}
module M2=merge({class C{int i;}}, M1);
module M3=merge({class C{boolean b;}}, M1);

Let us assume a transparent declaration for M2 and M3. Clearly, M2.C and M3.C
can only be considered unrelated types. Concerning the other two classes A and
B, while M2.A and M3.A can be safely considered equivalent, the same cannot be
done for M2.B and M3.B, even though B comes from the same declaration.

Although the generative approach allows a simpler type system, transparency
is advocated in some cases. For this reason, transparent smart modules is an issue
that deserves future investigation.

4 Smart Modules at Work

In this section we show the expressive power of smart modules by considering
as “benchmark” the classical expression problem (or extensibility problem). For
simplicity we use a slightly more complex variation of Torgersen’s example [29];
we refer to the same paper for a comprehensive treatment of the expression
problem which would be out of scope in this paper.
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The approach we take here is the classical data-centered one, which is more
intuitive and simpler, but also less suitable for adding new methods. Our goal
is to show that even with the data-centered approach, smart modules allows
addition of new methods with full reuse of the code, at the cost of introducing a
parameter (for other approaches on adding methods to existing classes see also
[8, 14]).

What follows is an implementation of a type Exp of simple integer expressions
built on top of literals and addition. The only available methods are clone(),
which allows cloning of an expression, and print(), which displays the expres-
sion on the screen.

module Exp { // parametric in E

interface Exp {

E clone();

void print();

}

class Lit implements Exp {

int value;

Lit(int v) {value=v;}

E clone() {return new Lit(value);}

void print() {System.out.print(value);}

}

class Add implements Exp {

E left,right;

Add(E l,E r) {left=l; right=r;}

E clone() {return new Add(left,right);}

void print() {

left.print();

System.out.print(’+’);

right.print();

}

}

}

The code of the module is very similar to a standard data-centered implemen-
tation one would write in a Java package. The only difference is the use of the
parameter E where the standard implementation would use Exp instead. As we
will see, this is the only complicacy needed for allowing addition of new methods.

The module can be used by a client (for instance a parser) by means of the
bind operation.

module Client { // parametric in Exp, Lit, Add

class Producer { // typically, the parser

Exp produce() {return new Add(new Lit(2),new Lit(3));}

}
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}

module Application =

bind(merge(Exp, Client), {E->Exp}) ;

For instance, executing the following well-typed statement

new Application.Producer().produce().clone().print();

will display 2+3 on the screen, as expected.
Assume now we need to extend our code. Since we have chosen a data-

centered approach, adding new methods is more challenging than adding new
kinds of expressions, therefore let us assume we want to add a new method
eval() for evaluating expressions.

We can confine the needed extension into a new module:

module Eval{ // parameteric in E, Exp, Lit, Add

interface EvalExp extends Exp {

int eval();

}

class EvalLit extends Lit implements EvalExp {

EvalLit(int v) {super(v);}

int eval() {return value;}

}

class EvalAdd extends Add implements EvalExp {

EvalAdd(E l,E r) {super(l,r);}

int eval() {return left.eval()+right.eval();}

}

}

A first tentative for instantiating the parameters of Eval would consist in directly
merging Eval with Exp and, then, binding E to EvalExp. However, this is not
type correct, since, for instance, class Lit in Exp requires the constraint Lit <= E
and this would not hold if we replace E with EvalExp. The real source of the
problem is the fact that now the code of Lit and Add should refer to classes
EvalLit and EvalAdd. This can be accomplished by unbinding Lit and Add in
module Exp.

module EvalExp =

merge(Eval, unbind(Exp, {Lit->EvalLit,Add->EvalAdd}));

module Application2 =

merge(bind(EvalExp, {E->EvalExp}),

rename(Client, {Exp->EvalExp, Lit->EvalLit,

Add->EvalAdd})) ;

Now we can execute the following code:
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Application2.EvalExp e =

new Application2.Producer().produce().clone();

e.print();

System.out.println(" = "+e.eval());

and, as expected, 2+3 = 5 will be displayed on the screen.
Finally, note that, because of generativity, the following code is ill-typed:

// this below would be a type error:

// Application2.Exp is not comparable with Application.Exp

Application.Exp e2=e; // ERROR

5 Smart Modules for Featherweight Java

The syntax of the core language is defined in Fig.1.

cd ::= class c extends n { fds mds } (c 6= Object) class declaration
fds ::= n1 f1; . . . nn fn; field declarations

mds ::= md1 . . . mdn method declarations
md ::= mh {return e;} method declaration
mh ::= n0 m(n1 x1, . . . , nn xn) method header

e ::= x | e.f | e0.m(e1, . . . , en) | new n(e1, . . . , en) | (n)e expression
n ::= c | M.c class name

where field, method and parameter names in fds, mds and mh are distinct

Fig. 1. FJ syntax

We consider the same language as in [1], that is, basically Featherweight
Java [20] (FJ in the sequel) hence a functional subset of Java with no primitive
types, except that here class constructors are implicitly declared, and class names
(references to other classes) appearing in code can be, besides simple names,
qualified names of the form M.c, referring to classes declared in external (closed)
modules.

Note that considering a purely functional language here is not a limitation,
since modules can only contain classes, and during evaluation of module expres-
sions, classes are not evaluated, hence there would be no side effects even in
presence of objects with state.

Every class can contain instance field and method declarations and has only
one constructor whose parameters correspond to all class fields (both inherited
and declared) in the order of declaration. In class declarations we assume that
the name of the class c cannot be Object. Method overloading and field hiding
are not supported8. Expressions are variables, field access, method invocation,

8 Just for simplicity and for keeping original FJ definition: it is easy to extend the
type system in order to support these features.
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instance creation and casting; the keyword this is considered a special variable.9

Finally, in order to simplify the presentation, we assume field names in fds,
method names in mds, parameter names in mh to be distinct.

The syntax of SmartJavaMod is given in Fig.2.

MDS ::= MD1 . . . MDn module environment
MD ::= module M is ME module declaration
ME ::= M | cds | merge(ME1, ME2) | restrict(ME, c) |

rename(ME, c→ c′) | module expression
bind(ME, d→ c) | unbind(ME, c→ d)

cds ::= cd1 . . . cdn class declarations
where simple class names in cds are distinct

Fig. 2. SmartJavaMod syntax

A basic module is a sequence of class declarations, where for simplicity we
assume declared class names to be distinct. A class declaration in a basic module
can contain qualified class names, that is, references to classes defined in other
(closed) modules, and simple class names. Simple class names can be either
defined, that is, names referring to classes declared in the module, or deferred,
that is, names for which a declaration is expected to be provided later when
composing the module with others. A module with no deferred class names
is said to be closed. Note that defined class names are not associated with a
class declaration in the module once and for all, but their definition can be
changed later when composing the module with others. In other words, module
components (classes) are all implicitly virtual.10

Module operators include merging two modules, removing a class declaration,
renaming a class and two operators which allow to bind a deferred class name
to a class declaration inside the module and, conversely, to make a class used
inside a module deferred.

Reduction rules for module environments and module expressions (in a given
module environment) are those given in Fig.3, plus usual contextual closure for
module expressions. We denote by in(cds) and out(cds) the deferred and defined
class names in class declarations cds, respectively.

We call output occurrence of a class name c in class declarations cds only
the occurrence in the declaration class c extends n { fds mds }, if any; we
call input occurrence any other occurrence. We denote by cds[c′/out c] the class
declarations obtained from cds by only replacing the output occurrence of c, if
9 We do not consider the keyword super even though used in the examples of Section 3.

However, it could be added with no cost at the level of type inference.
10 We consider only virtual classes in this paper for simplicity, since this is enough for

the applications we want to illustrate; however, mixin modules typically support also
an operator which allows to make a component frozen [10, 4], in such a way that
references to this component inside the module can no longer be affected by module
composition.
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(mdecs)
MDi →MDS MD

′
i

MD1 . . . MDn →MDS MD1 . . . MD′i . . . MDn
MDS = MD1 . . . MDn

(mdec)
ME→MDS ME

′

module M is ME→MDS module M is ME′

(mname)
M→MDS MEi

MDS = module M1 is ME1 . . . module Mn is MEn

M = Mi

(merge)
merge(cds1, cds2) →MDS cds1 cds2

out(cds1) ∩ out(cds2) = ∅

(restrict)
restrict(cd1 . . . cdn, c) →MDS cd1 . . . cdi−1cdi+1 . . . cdn

out(cdi) = {c}

(rename)
rename(cds, c→ c′) →MDS cds[c′/in c][c′/out c]

c ∈ in(cds) ∪ out(cds)
c′ 6∈ in(cds) ∪ out(cds)

(bind)
bind(cds, d→ c) →MDS cds[c/in d]

d ∈ in(cds)
c ∈ out(cds)

(unbind)
unbind(cds, c→ d) →MDS cds[d/in c]

c ∈ out(cds)
d 6∈ in(cds) ∪ out(cds)

Fig. 3. Reduction rules for module expressions
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any, by c′; we denote by cds[c′/in c] the class declarations obtained from cds
by replacing every input occurrence of c by c′. Note that cds[c′/out c][c′/in c]
corresponds to standard replacement of all occurrences of c by c′ in cds, which
we will also denote by cds[c′/c].

Merging two basic modules corresponds to just putting together their class
declarations, provided that there are no conflicts (note that deferred class names
are shared). The restrict operator removes a class declaration, thus making de-
ferred a class name which was defined. The rename operator replaces everywhere
a class name with a new name. The bind operator replaces a deferred class name
with the name of a class declared in the module, with the effect of removing a
dependency from an external class. Conversely, the unbind operator replaces all
references to a class declaration inside the module by references to a new name,
with the effect of introducing a dependency from an external class.

Types are given in Fig.4.

M ::= (M1, MT1) . . . (Mn, MTn) module type environment
MT ::= (Γ1, δ1) . . . (Γn, δn) module type
Γ ::= γ1 . . . γn constraints
∆ ::= δ1 . . . δn class type environment
δ ::= (c, n, fss, mss) class signature

Fig. 4. Types

A module type environment is a sequence of module type assignments, which
are pairs consisting of a module name and a module type. A module type is
the type information needed to safely use a module in a context, and consists
of a sequence of class type assignments. A class type assignment is the type
information on a single class declared in the module, and consists in a sequence
of constraints and a class signature.

Constraints γ [1] express expectations on other classes used inside the class,
and are formally defined and explained in the Appendix. Constraints may contain
type variables α which denote arbitrary class names. For instance, φ(c, f, α)
means that class c is expected to provide a field named f of an arbitrary type.
If the class for which this constraint has been inferred is then combined with a
class named c providing a field named f of type, say, d, then the constraint is
satisfied and the type variable α is instantiated to d.

A class type environment is a sequence of class signatures. Class signatures
are the type information which can be extracted from a class declaration and
consist of a simple class name (the name of the declared class), a class name
(the name of the parent class), a sequence of field signatures (type and name
of declared fields) and a sequence of method signatures (return type, name and
parameter types of declared methods). The formal definition is provided in Fig.8
in the Appendix.

Typing rules are given in Fig.5.
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(mdecs)
M ` MDi : (Mi, MTi)∀ i ∈ 1..n

` MDS : M

MDS = MD1 . . . MDn

M = (M1, MT1) . . . (Mn, MTn)
→+

MDS acyclic

(mdec)
M ` ME : MT

M ` module M is ME : (M, MT)

(mname)M ` M : MTi

M = (M1, MT1) . . . (Mn, MTn)
Mi = M

(basic)

` cdi : Γi | δi ∀i ∈ 1..n
∆ ` Γi  Γ ′

i ∀i ∈ 1..n
∆ δ1 . . . δn ` Γ ′

1 . . . Γ ′
n�

M ` cdi∈1..n
i : (Γ ′

i , δi)i∈1..n
∆ = ctenv(M)

(merge)

M ` ME1 : MT1

M ` ME2 : MT2

∆ ∆1 ∆2 ` Γ �
M ` merge(ME1, ME2) : MT1 MT2

∆ = ctenv(M)
∆1 = ctenv(MT1)
∆2 = ctenv(MT2)
Γ = cnstrs(MT1 MT2)
out(MT1) ∩ out(MT2) = ∅

(restrict)
M ` ME : (Γ1, δ1) . . . (Γn, δn)

M ` restrict(ME, c) : (Γ1, δ1) . . . (Γi−1, δi−1)(Γi+1, δi+1)(Γn, δn)
out(δi) = c

(rename)
M ` ME : MT

M ` rename(ME, c→ c′) : MT[c′/in c][c′/out c]

c ∈ in(cds) ∪ out(cds)
c′ 6∈ in(M) ∪ out(M)

(bind)

M ` ME : MT
∆ ∆′ ` Γ�

M ` bind(ME, d→ c) : MT[c/in d]

∆ = ctenv(M)
∆′ = ctenv(MT[c/in d])
Γ = cnstrs(MT[c/in d])
d ∈ in(MT)
c ∈ out(MT)

(unbind)
M ` ME : MT

M ` unbind(ME, c→ d) : MT[d/in c]

c ∈ out(MT)
d 6∈ in(MT) ∪ out(MT)

Fig. 5. Typing rules
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In rule (mdecs), a sequence of module declarations is well-formed and pro-
duces a given module type environment if under this module type environment
each module declaration is well-formed and has the assigned module type. Note
that this metarule is recursive to allow mutual references to module components,
as in the following example:

module M1 is class C { M2.D f; ...}
module M2 is class D { M1.C g; ... }

However, mutual references to module names, as in

module M1 is rename C by D in M2
module M2 is rename D by C in M1

obviously make no sense, hence must be rejected by the type system. To this
end, the side condition in rule (mdecs) requires the relation →+

MDS to be acyclic,
where M1 →MDS M2 if there is in MDS a declaration module M1 is ME with M2

subterm of ME, and →+
MDS denotes the transitive closure of →MDS.

Rule (mdec) and (mname) are straightforward. We denote by mname(MT)
the first component of a module type (the module name).

In rule (basic), the type of a basic module (sequence of class declarations)
can be inferred by the following steps:

– Each class declaration is separately type-checked, obtaining the constraints
on other classes and the class signature. The formal definition of the judg-
ment ` cd : Γ | δ, introduced in [1], is reported in Fig.8 in the Appendix.

– For each declared class, it is checked that constraints on qualified class names,
that is, class names of the form M.c, are satisfied by components of other mod-
ules, using their type information provided by the module type environment
M, and these constraints are removed. Formally, constraints Γi are simpli-
fied to Γ ′

i under the class type environment ∆ which can be extracted from
M. Note that a class signature for M.c can be extracted from the module
type of M in M only if M has a c component and, moreover, is closed. This is
expressed by the formal definition of ctenv in Fig.6, where in(MT) and out(MT)
denotes the deferred and defined class names appearing in MT, respectively
(defined class names are those appearing as first components of class signa-
tures), and δ[c′/c] denotes replacement of all occurrences of c by c′ in δ. For
the formal definition of the judgment ∆ ` Γ  Γ ′ we refer to [1].

– Then, it is checked that mutual constraints are satisfied by the class decla-
rations in the module. Formally, constraints Γ ′

1 . . . Γ ′
n left from the previous

step are checked under the class type environment consisting of ∆ and the
class signatures extracted from the class declarations. Note that these con-
straints are checked but not simplified, since, as already explained, they need
to be checked again in case a class declaration will be later overriden.The
notation ∆ ` Γ� is an abbreviation for ∆ ` Γ  Γ ′ for some Γ ′.
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ctenv((M1, MT1) . . . (Mn, MTn)) = ctenv((M1, MT1)) . . . ctenv((Mn, MTn))
ctenv((M, MT)) = ctenv(MT)[M.ci/c

i∈1..n
i ] where {c1, . . . , cn} = out(MT) if in(MT) = ∅,

ctenv((M, MT)) = Λ if in(MT) 6= ∅
ctenv((Γ1, δ1) . . . (Γn, δn)) = δ1 . . . δn

cnstrs((Γ1, δ1) . . . (Γn, δn)) = Γ1 . . . Γn

Fig. 6. Functions ctenv and cnstrs

In rule (merge), the operator can be safely applied only if the arguments have
no conflicting class declarations, and, moreover, mutual constraints are satisfied
by the class declarations in the two modules. Formally, constraints required by
either argument are checked under the class type environment consisting of ∆
and the class signatures extracted from both module types. The resulting module
type is simply obtained by putting together the module types of the arguments.
As in (basic), constraints are checked but not simplified.

In rule (restrict), the operator can be safely applied only if the class to be
removed actually is a defined class of the module. The resulting module type is
obtained by removing the corresponding class type assignment from the module
type of the argument.

In rule (rename), the operator can be safely applied only if the class to be
renamed is either a deferred or defined class of the module, and the new name
is unused. The resulting module type is obtained by correspondingly renaming
the module type of the argument.

In rule (bind), the operator can be safely applied only if a deferred class
name d is bound to a defined class name c, and, moreover, constraints which
previously involved d are satisfied by c. Formally, constraints extracted from
the module type, where d has been replaced by c, are checked under the class
type environment consisting of ∆ and the class signatures extracted from the
module type, where also d has been replaced by c. The resulting module type is
obtained by replacing d by c in the module type of the argument. As in (basic)
and (merge), constraints are checked but not simplified.

In rule (unbind), the operator can be safely applied only if a defined class
name c is unbound, by replacing all its input occurrences by a fresh name d. The
resulting module type is obtained by analogously replacing all input occurrences
of c by d in the module type of the argument (in analogy to what we have
defined for class declarations, in a module type output occurrences are only
those appearing as first components of class signatures).

In summary, the only operators which require a check of constraints are basic
module, merge and bind, since these are the cases in which class names which
were deferred (or just taken in isolation in the case of basic module) can become
defined, hence some new type information on them can be provided which could
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possibly contradict some required constraints. Restrict corresponds to remove
some constraints, rename and unbind just to a syntactic manipulation of them.

Also note that constraint checking in the above rules is sometimes redun-
dant, due to the fact that, as already explained, constraints are checked but
not simplified in rules (basic), (merge), and (bind). An alternative type system
could also keep trace, for each module, of the simplified constraints (that is,
those which cannot be checked inside the module itself, since they still involve
deferred classes). This would allow a more efficient approach in these rules: for
instance, in rule (merge) it would be enough to check the simplified constraints
of both modules, whereas in the rule presented here also constraints expressing
internal consistency of both modules are checked again; however, with this ap-
proach it would be necessary to calculate again simplified constraints in rules
(restrict) and (unbind), whereas no constraint simplification step is required for
these rules in the current approach.

The relevance of the type system presented until now is that it supports
compositional compilation of modules. This means that it is possible for the
programmer to write and compile a SmartJavaMod module in isolation11,
and then to combine it with other modules by just checking that mutual as-
sumptions are satisfied, without any need of reinspecting code. In this sense,
SmartJavaMod is as an expressive module language layer constructed on top
of the type system in [1]. Here only compositional compilation of single classes
and fragments, consisting of either a single class or, inductively, a concatenation
of fragments (as a matter of fact, an implicit merge operator), was considered.

Of course, compositional compilation can be safely used only in place of global
compilation (that is, compilation of a sequence of classes in a context where
all used classes are available in either source or binary form, as standard Java
compilers do) only if module typing rules guarantee that, whenever by module
composition we obtain in the end a closed module expression, then this module
expression reduces to a well-typed self-contained sequence of classes. This is
formally expressed, in a more general formulation which also takes into account
module environment, by Theorem 3 below, which, as usually, can be proved by
means of subject reduction and progress properties stated in Theorem 1 and 2,
respectively.

Theorem 1 (Subject reduction).

– If ` MDS : M, MDS→ MDS′, then ` MDS′ : M.
– If ` MDS : M, M ` ME : MT, ME→MDS ME

′, then M ` ME′ : MT.

We say that a module declaration module M is ME is a basic module declaration
if ME is a basic module; we say that a module environment MD1 . . . MDn is a basic
module environment if each MDi is a basic module declaration. For MDS basic
module environment, we denote by cenv(MDS) the sequence of class declarations
consisting of all the class declarations in some closed module, say M, where simple

11 That is, in a context where classes used inside the module are not available; however,
note that used modules must be available.
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class names have been qualified by M, as formally defined in Fig.7. Analogously,
mt(M) denotes the sequence of class type assignments extracted from a module
type environment.

cenv(MD1 . . . MDs) = cenv(MD1) . . . cenv(MDn)
cenv(module M is cds) = cds[M.ci/c

i∈1..n
i ] where {c1, . . . , cn} = out(cds) if in(cds) = ∅

cenv(module M is cds) = Λ if in(cds) 6= ∅
mt((M1, MT1) . . . (Mn, MTn)) = mt(M1, MT1) . . .mt(Mn, MTn)
mt(M, MT) = MT[M.ci/c

i∈1..n
i ] where {c1, . . . , cn} = out(MT) if in(MT) = ∅

mt(M, MT) = Λ if in(MT) 6= ∅

Fig. 7. Functions cenv and mt

Theorem 2 (Progress).

– If ` MDS : M, MDS not a basic module environment, then MDS → MDS′ for
some MDS′.

– If M ` ME : MT, ME not a basic module, then ME→MDS ME
′ for some ME′.

Theorem 3. If ` MDS : M, M ` ME : MT, in(MT) = ∅, then MDS →? MDS′ with
MDS basic module environment, ME→?

MDS cds, Λ ` cenv(MDS′) cds : mt(M) MT with
in(mt(M) MT) = ∅.

Theorem 3 states that, starting from a well-formed closed module expression
in a well-formed module environment, we can always obtain a well-formed closed
sequence of class declarations, consisting, roughly speaking, of the class decla-
rations we get by reducing the module expression, together with those obtained
by “flattening” class declarations in closed modules in the environment. Hence,
the reduction semantics of an FJ expression in the context of a closed module
expression ME and a module environment MDS can be defined as the reduction
semantics of the expression in the context of the FJ program obtained by reduc-
ing ME and reducing and flattening MDS, and the result above guarantees type
safety.

6 Implementation issues

In this section we discuss how a prototype compiler for SmartJavaMod could
be implemented.

One of the key points of our approach is the ability of compiling Java classes
and interfaces12 in total isolation, without any burden on the programmers’ side.
The idea, as we already said, is to generate polymorphic bytecode, along with
12 Not to be confused with module interfaces.
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the type constraints representing the inferred requirements. We refer to [1] for a
more detailed discussion of this topic.

A basic module is a collection of one or more classes/interfaces, which can
be defined in one single file, as the examples seen so far may have suggested,
or in many files, using one module definition file which “points to” standard Java
sources (this feature comes handy to include plain Java classes in SmartJavaMod
modules).

A non basic module is defined in a single file which contains the association
between the module name and its defining module expression.

When compiled, all kinds of modules share the same file format. The binary
form of compiled modules is very similar to Jiazzi’s one [24]; that is, a compiled
module is an archive (a JAR file) which contains:

– the binary form of all classes/interfaces contained in the module, and
– the type constraints needed to ensure a type-safe linking.

If a module is open, then binary classes consist of polymorphic bytecode which
cannot be directly loaded, much less executed, by a standard JVM (Java Virtual
Machine). This is not a problem though, as an open module is incomplete and
could not be run anyway.

When modules are composed by module operators, the type constraints are
checked for consistency and if no errors are detected, a new module is created.
Unfortunately, as said in Section 3.5, some errors could go undetected as long
as modules remains open. Luckily, verification of constraints is complete in case
of closed modules [1]. Enhancing the verification algorithm in order to capture
inconsistencies as soon as possible is a challenging task which deserves future
work.

In a closed module binary classes are stored in plain standard bytecode, so
a binary module can be loaded and executed on any JVM. Moreover, module
names are mapped into Java package names so, for instance, a class C contained
in a module called m can be referenced by any Java class using the name m.C.
This makes possible to use a compiled SmartJavaMod (closed) module with
any Java compiler (because type constraints are simply ignored by standard
tools).

A feature, which could be beneficial for a real-world implementation, is the
ability to add, along inferred type constraints, some constraints explicitly spec-
ified by the programmer. While this feature is unnecessary from a strictly the-
oretical point of view, as the most general requirements are always inferred, it
could come handy when programmers needs to enforce particular module inter-
faces in order to interact with legacy code. Fortunately, this feature is very easy
to add, as the constraint checking algorithm does not care whether a constraint
has been inferred or written by the programmer. So, the compiler just needs to
add the specified constraints to inferred ones to implement this feature.
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7 Conclusion

We have presented SmartJavaMod, a language of mixin modules constructed
on top of Java which supports compositional compilation [1]. The semantics is
given by reduction into pure Java, and the type system guarantees that the
collection of classes obtained in the end is a well-formed Java program.

We have obtained a module language which is extremely flexible and allows
to express a variety of constructs supporting software reuse and extensibility.

There are, to our knowledge, few attempts at integrating a true module
system with Java. They include the simple extension of the package system pro-
posed in [7], Jiazzi [24], Keris [30] and our own work in [3]. Instead there are
many proposals for adding expressiveness to Java-like languages by extending
the language in various ways, e.g., by introducing mixin classes [2], and virtual
classes [12]. On the other hand, there exist several languages supporting mod-
ules in the context of object-oriented programming with structured types [?,?];
however, nominal types, as in Java, introduce different problems.

Concerning type inference for Java/Javascript-like languages, we mention
some recent work [6], which, however, considers a very different setting (object
based with structural subtyping).

The approach presented here introduces the following key novelties. First,
compositional compilation allows to typecheck a module in isolation, inferring
the type constraints needed for safely using it in any context, without any need
for the user to specify an interface. Secondly, the module language supports mixin
modules, that is, module operators which allow to redefine components. Finally,
this module layer allows to express a variety of constructs, including mixin classes
and virtual classes, without changing the core level (that is, keeping pure Java
as core language).

There are two main directions for further research we want to explore. On
the one hand, we plan to investigate in a more formal way how derived con-
structs, such as mixin classes, virtual classes and traits, can be encoded in
SmartJavaMod.

On the other hand, much remains to be investigated on the side of the imple-
mentation, in particular if one wants (as it seems desirable) to obtain a running
extension actually constructed on top of Java. In particular, as already said in
the paper, the verification of constraints is complete only in case of closed mod-
ules, so enhancing the algorithm in order to capture inconsistencies as soon as
possible deserves future work.

Furthermore, a drawback of pure constraint inference is that there is no way
to discover trivial typing errors, such as invoking the wrong method name, be-
fore linking since any reference to a missing component is just interpreted as
a constraint. To avoid this, constraint inference should be in practice comple-
mented by additional instruments to improve the practicality of the approach.
For instance, compilers could print partial information extracted from the in-
ferred constraints (which are heavy in their complete form) that can be checked
by programmers, who should also be allowed to explicitly add constraints to the
inferred ones.
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Typing rules for classes [1] are formally defined in Fig.8. Constraints have
the following informal meaning:

– t ≤ t′ means “t is a subtype of t′”.
– ∃ n means “n is defined”.
– φ(t, f, t′) means “t provides field f with type t′”.
– µ(t,m, t̄, (t′, t̄′)) means “t provides method m applicable to arguments of type

t̄, with return type t′ and parameters of type t̄′.
– κ(n, t̄, t̄′) means “n provides constructor applicable to arguments of type t̄,

with parameters of type t̄′”.
– n ∼ t means “n and t are comparable” (this constraint is generated when

compiling a cast).

Note that both the constraints µ(t,m, t̄, (t′, t̄′)) and κ(n, t̄, t̄′) implicitly include
the constraint t̄ ≤ t̄′.

We write type(fds) and type(mds) to denote the set of field signatures and
the set of method signatures extracted from the field declarations fds and from
the method declarations mds, respectively. The straightforward definition of type
has been omitted.
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γ ::= t ≤ t′ | ∃ n | φ(t, f, t′) | µ(t, m, t̄, (t′, t̄′)) | κ(n, t̄, t̄′) | n ∼ t constraint
t ::= n | α expression type
t̄ ::= t1 . . . tn expression types

fss ::= fs1 . . . fsn field signatures
fs ::= n f field signature

mss ::= ms1 . . . msn method signatures
ms ::= n m(n̄) method signature
n̄ ::= n1 . . . nn class names
ᾱ ::= α1 . . . αn type variables
Π ::= (x1, n1) . . . (xn, nn) local environment

(class)
` fds : Γ c ` mds : Γ ′

` class c extends n { fds mds } : Γ, Γ ′,∃ n | (c, n, fss, mss)

type(mds) = mss
type(fds) = fss

(fields)
` fdi : Γi ∀i ∈ 1..n

` fd1 . . . fdn : Γ1 . . . Γn
n 6= 1 (field)` n f; : ∃ n

(methods)
c ` mdi : Γi ∀i ∈ 1..n

c ` md1 . . . mdn : Γ1 . . . Γn
n 6= 1

(method)
x1:n1 . . . xn:nn, this:c ` e : t | Γ

c ` n0 m(n1 x1 . . . nn xn) {return e;} : Γ, t ≤ n0,∃ ni
i∈0..n

(parameter)
Π ` x : ni | Λ

Π = (x1, n1) . . . (xn, nn)
x = xi

(field access)
Π ` e : t | Γ

Π ` e.f : α | Γ, φ(t, f, α)
α fresh

(meth call)

Π ` e0 : t0 | Γ0

Π ` ei : ti | Γi ∀i ∈ 1..n

Π ` e0.m(e1 . . . en) : β | Γ0Γ1 . . . Γn, µ(t0, m, t1 . . . tn, (β, ᾱ))
β,ᾱ fresh

(new)
Π ` ei : ti | Γi ∀i ∈ 1..n

Π ` new n(e1, . . . , en) : n | Γ1 . . . Γn, κ(n, t1 . . . tn, ᾱ)
ᾱ fresh

(cast)
Π ` e : t | Γ

Π ` (n)e : n | Γ, n ∼ t

Fig. 8. Typing rules for classes
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