Typed Compilation Against
Non-Manifest Base Classes

Christopher Leagueand Stefan Monniér

' Long Island University
christopher.league@liu.edu
2 Universié de Montgal
monnier@iro.umontreal.ca

Abstract. Much recent work on proof-carrying code aims to build certifying
compilers for single-inheritance object-oriented languages, such as Java or C#.
Some advanced object-oriented languages (such as Loom, Moby, and OCaml)
support compiling a derived class without complete information about its base
class. This strategy is necessary for supporting features such as mixins and first-
class classes. Fisher, Reppy, and Riecke designed Links, an untyped intermediate
representation with abstractions suitable for compiling and optimizing a wide
variety of object-oriented languages. Unfortunately, the key abstractions of Links
are not typable in existing typed intermediate languages.

We present a low-level intermediate language inspired by Links, but with a type
system based on the Calculus of Inductive Constructions. It is an appropriate
target for efficient, type-preserving compilation of various forms of inheritance,
even when the base class is unknown at compile time. Moreover, languages (such
as Java) that do not require such flexibility are not penalized for it at run time.

1. Motivation

In most object-oriented languages, programmers factor their implementations over a hi-
erarchy ofclassesSince the classes in a hierarchy may appear in different compilation
units, one question that the language designer (or implementer) must address is: how
much information about a base class is needed to compile its derived class?

With its emphasis on efficient object layout and method dispatch, C++ [35] re-
guirescompleteinformation about the base class: the number, locations, and types of
all its fields and methods. Indeed, it is because C++ depends on this information that
a seemingly minor change to a base class triggers recompilation of all its descendents.
Java [26] is somewhat more flexible. To support binary compatibility, its class files are
not committed to a particular object layout. A derived class depends only on the names
and types of the base class fields and methods that it uses. Nevertheless, most Java im-
plementations ultimately compile classes to lower-level code using the same layouts
and techniques as C++.

A few modern object-oriented languages allow classes as module parameters (Moby
[17], OCaml [31]) or as first-class values (Loom [6]). Other languages support more
flexible forms of inheritance, such as mixins [27, 4] and traits [32]. If a base class is
not available for inspection when a derived class is compiled, we say the base class is
notmanifestimplementations of these languages usétonarydata structure to map

method and field names to their locations in the object layout. The dictionary may be
applied at link time or at run time, as required by the language.

Here is a simple example in OCaml (although it could be expressed just as easily in
Moby). We declare a signature for modules containingecle class that implements
three methodstenter, radius, andarea. The abstract typepec permits different
implementations of this signature to have different constructor arguments.

module type CIRCLE =
sig type spec
class circle : spec ->
object method center : float*float
method radius : float
method area : float
end
end

Below,CircleBBox declares a clagsbox that inherits from a (non-manifest) base class
circle, overrides thearea method (using a super call), and defines a new method
bounds.

module CircleBBox = functor (C : CIRCLE) ->
struct
class bbox arg = object (self)
inherit C.circle arg as super
method area = (* of bounding box *)
super#area * 4.0 / pi
method bounds =
let (x,y) = self#center in
let r = self#radius in
((x-r,y-r), (x+r,y+r))
end
end

To compile this functor, we must make do with relatively little information about the
super class. We know it has the three methods specified in the signature, but not their
positions nor whether there are other (hidden) methods, nor even the size of objects. We
will return to this example throughout the paper.

Designing an effectivintermediate languag@L) for compilers of these languages
is challenging. Although method invocation is atomic at the source level, the IL should
explicitly represent the dictionary search, method dereference, and (indirect) function
call as separate operations. This way the operations may be independently optimized:
combined, inlined, eliminated, or hoisted out of loops. To support such optimizations,
Fisher, Reppy, and Riecke designed Links, a calculus for compiling and linking classes,
based on the untypeklcalculus. Its primitives can be combined “to express a wide
range of class-based object-oriented features, such as class construction and various
forms of method dispatch.” [19]

In recent years, many researchers have based intermediate languagpsdit
calculi. In addition to supporting type-directed optimizations, typed ILs are suitable

for generating certified object code, such as typed assembly language [28] or proof-
carrying code [29, 2]. Colby et al. [10] and League et al. [24, 25] have developed
certifying compilers for Java, but more advanced class mechanisms are not yet well
supported in this arena.

This paper presents a new intermediate language based on Links, but with a sound
and decidable type system. We adopt the ‘certified binaries’ framework of Shao et al.
[33], in which the types and proofs that govern computations are defined within the
Calculus of Inductive Constructions [12, 13]. Our language has the same primitive op-
erators as Links, so it is an appropriate target for efficient, type-preserving compilation
of various forms of inheritance, even when the base class is unknown at compile time.
Moreover, languages (such as Java) that do not require such flexibility are not penalized
for it at run time.

In the next section, we review the primitives of Links and explain an untyped trans-
lation of our running example. Section 3 introduces the framework of our type language,
and develops the semantics of LITL, our computation language. We revisit the exam-
ple, now in a typed setting, in section 4. Section 5 explores techniques for extending the
encoding to mixins and traits, and a discussion of related work appears in section 6.

2. A review of Links

This section is a summary of the untyped Links representation by Fisher et al. [19].
The syntax of expressions appears in Fig. 1. Apart from the variabjeal{stractions

ex=x|nler+ex|Ax.e|er ez (er,....en) |1 @e2|e1 @ez — e3
les(er,....,en) | {li=er,..,ln=en}le#l
Fig. 1. Links expression syntax.

(Ax.e), and applicationse(e’) inherited from the untyped-calculus, there are three
new features: tuple&, ..., e,), dictionarieql; =ey, ..., L, =en}, and natural numbers
n.
Tuples are indexed by natural numbesi). They also support functional update
and extension. The expressie®@1i « e’ produces a new tuple just like but with
the value at offset replaced by’. The expressions (eq, ..., en) produces a new tuple
containing all the values in tupke followed by the valueg; throughe,. Functional
update will be used to implemeaterriding,while extension is helpful foinheritance.
Dictionaries magdabelsl to values. The expressiat¥l fetches the value corre-
sponding to label in dictionary e. Dictionary lookup is a more expensive operation
than fetching a value from a given offset in a tuple. The natural numbeepresent
offsets orslots within tuples. For this purpose, we just need constants and addition.
To write real programs, we would need more data types, conditionals, and recursive
functions. These features are orthogonal, and omitted from the formal presentation for
brevity (although we sometimes use them in examples). The primitive reductions in
Fig. 2 on the next page may help to elucidate these operations. The original paper [19]
includes more details, such as the definition of valeg@s(d evaluation contexts. We
will recast these details in a typed setting in section 3.

ni+nz; ~ ns wheren; =n; +n»
(Ax.e) v ~ elv/x]
(Voy ey V1) @1~ V4 wheret < n
(Vo, ey Vn—1) @1 = v~ (Vo .o, Vie 1,V Vig 1, ey V1)
wherei < n
(Vo oy V1) § VG, ey Vin1) ~ (Vo ey Ve 1, VG ooy Vi1)
{].o :Vo,...,lnf] :an]}#l ~ Vi WheI’EIZIi

Fig. 2. Links reduction rules

The most general strategy for encoding objects is this: represent a method suite
as a tuple of functions (also known as a virtual function tableytable, and use a
dictionary d to map method labels to natural numbers, representing the correspond-
ing slots in the vtable. Objects are tuples with a pointer to the vtable (shared by all
objects created by that class). If the vtable is in the first slot (offset zero) of the ob-
jectx, then the self-application expression for invoking a method namedould be
(x@0) @(d#m)) x.

There is of course an important connection between the dictionary and the vtable in
this representation, but they need not be packaged together. To compile a language (such
as Moby or OCaml) in which base classes become known at link time, the dictionary
would be a module parameter. All dictionary applications would be lifted to the top level
of each module, so they occur at link time (i.e., functor application time). To compile
Loom, in which classes are first-class values, a dictionary will need to be packaged with
each object and passed around at run time. To compile Java, the dictionary is not needed
at all, because the layout of the super class vtable is completely known at compite time.

We can represent each class as a triple: the vtable and the dictionary, together with
the sizeof the vtable. The size is needed so that when we extend non-manifest base
classes, we can compute the offsets of new methods added to the vtable. We omit fields
and constructors for convenience, but they pose no additional problems. A class that
inherits from an unknown base class is therefore represented as a function that generates
a new class triple from an existing one. The function is applied once the base class is
provided. Figure 3 on the facing page shows a rough translation of the example from
section 1.

CircleBBox is a function whose argument is a triple representing a super class.
We begin the function by looking up the offsets of all the methods in the super class,
and then constructing the dictionary for the new class we are generating. It has one
new methodljound$, so the new vtable will be larger by one slot. Next, we fetch the
existing implementation cdreafrom the super class’s vtablg; it will be called in the
new implementation adirea In the implementation diounds we invoke two methods
on self We assume that an object is represented as a tuple with a pointer to its vtable
at offset zero. In the final let expression, we create the new vtable using the functional
update and tuple extension operators.

! Here, we assume compilation to native code, which is done dynamically in many implementa-
tions. The observation is not true when producing JVM class files, which make extensive use
of symbolic references and enjoy binary compatibility.

let CircleBBox= A(sz vt, dc).
let centeroffset= dc#centerin
let radius offset= dc#radiusin
let area offset= dc#areain
let dc’ = { center=centeroffset radius=radius offset
area=areaoffset bounds=sz} in
let area_super= vt @ area offsetin
let area= Aself. (areasuper self « 4 / Plin
let bounds= Aself.
let (x,y) = ((self @0) @ centeroffse} self in
letr = ((self @0) @radius.offset self in
(x—7r,y—"),(x+1,y+1))in
letvt’ = (vt @ areaoffset— area) 3 (bounds$ in
(sz+1,vt’, dc’)
Fig. 3. Translation of simple class generator into Links. We abuse the syntax a bit in the example:
letx = e in e’ is the obvious syntactic sugar fiAx.e’) e), but we also permit pattern-matching
on tuples.

Fisher et al. [19] give further examples and justification for this encoding. Our goal
in this paper is to achieve the benefits of Links in a typed representation. There appear
to be two relatively independent problems here: (1) develop a sound but flexible type
system for the Links primitives, and (2) reflect the various subtype relationships of the
source language into the intermediate language.

Both of these problems are hard. In the first case, it is not just a matter of assigning
standard types—such as those developed by Cardelli and Mitchell [8]—to dictionary
lookup and tuple extension. The way the operators are used in Links, a given dictionary
will map method names to offsets in some set of tuples. Although we know nothing
about the size or structure of a tuple, we can use it anyway because some dictionary told
us where to find the method we need! Subtle invariants govern how these data structures
are linked to each other. To type-check Links, we must capture those invariants in the
type system.

As for the second problem, Links is intended to be a common intermediate language
for various class-based object-oriented languages. Such languages can have wildly dif-
ferent notions of subtyping and subsumption, from the simple name-based class and
interface relationships in Java to explicit upward casts in OCaml to the matching rela-
tion and match types in Loom [6]. One thing working in our favor at the intermediate
language level is that subsumption—where an object of one type may directly be treated
as an object of another (super) type—is not strictly necessary. The compiler may insert
explicit coercions that adjust the types of objects as needed—with no impact on the
run-time behavior—as long as these coercions are proved sound.

3. A new typed intermediate language

Shao et al. [33] introduced a framework “for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.” The set of types that
classify computation terms is defined within the Calculus of Inductive Constructions

(CIC) [13]. The semantics of the computation language can then incorporate proposi-
tions and proofs expressed in CIC.

As an example, Shao et al. define a language with an unchecked array access opera-
tor. One of the operands (apart from the array and the index)iisa that the index is
less than the length of the array. If both numbers are known at compile-time, generating
these proofs as constants is quite easy. Otherwise ftegpression—used to check the
index against the bound dynamically—provides proofs to its branches that relate to the
semantics of its test expression. This language permits safe bounds check elimination.

The full power of CIC is available in generating the proofs. For example, we may
define and prove a lemma stating that ik n then the predecessor ofis also less
thann. These proofs, however, are (like types) compile-time phenomena only: once an
expression is shown to be well-formed, the proofs and types may be erased and have no
impact on the behavior and performance of the program.

The Calculus of Constructions [12] rests on the most powerful corner ol the
cube [3]. It can encode Church’s higher-order predicate logic [] via the Curry-Howard
isomorphism [23]. Extended with inductive definitions, it is the basis for the Coq Proof
Assistant [11]. In this paper, we will use a typographically-enhanced variant of Coq 8
syntax? In fact, the definitions in this paper are automatically extracted and sent to Coq
for verification.

CIC is most conveniently expressed as a pure type system, where abstractions and
applications at different levels are expressed in a uniform syntax, but classified under
different sorts The sorts of CIC include 81, PROP, and TvPE. We will use meta-
variablest, o, k, andf to range over CIC terms, whereis usually used for terms
corresponding to traditional types for terms corresponding to traditional kindsfor
type functions, and for everything else. The dependent product type is written as
Mx:07.032, 0raso; — o3 if & does not appear free . This type is introduced by
abstractions of the forfva: o1. 02 and eliminated by applications; o,. The calculus
supports inductive definitions, constructors, and dependent elimination. We freely use
the Cogratch andFixpoint Syntax for eliminations, as well as other syntactic niceties
like implicit arguments.

3.1. Syntax of types and terms

Our first task is to define a set of types for our computation language, $.\ve. will

need theoption t datatype of values of type which may exist or not. We will need
natural numbers to reason about the sizes of tuples and the contents of particular slots.
For this, thenat : SET defined in the Coq library will do: it is a standard definition of
natural numbers in terms of zer®) and the successor functiof)(We will also need

sym: SET to represent labels in the dictionary type. Symbols could be represented as
natural numbers, or defined (as in appendix C) as sequences of characters from some
alphabet. Here is the inductive definition of types in LITL:

Inductive Ty: SET =
larw: Ty — Ty — Ty

2 With version 8, Coq moved to a weaker, predicative variant of CIC. We need the impredicative
version, which is available with a command-line argument.
3 LITL Is Typed Links.

| snat: nat — Ty

|tup: nat— (nat— Ty) — Ty

| dict: (sym— option Ty) — Ty

Imu :TTk: SET.(k - Ty) — Ty

lall : TTk: SET. (k = Ty) —» Ty

|ex: TTk: SET. (k — Ty) — Tv.
Definition mu = mu (k= Ty).

arw 1 T, is the type of a function mapping values of to values oft,. snath is
the singleton type of the natural number that is, the valu® has typesnat Oand
the expressior +1 has typesnat (S (S Q). tup i f is the type of a tuple of size
n wheref is a type function which maps the index of each field to its tygiet f is
the type of a dictionary wheréis a type function that maps each label to the type of
its corresponding valuenu f, all k f, andexk f are thehigher-order abstract syntax
encoding [30] of resp. the iso-recursive type.f x, the universally quantified type
vx:k.f x, and the existential typéx: k.f x.

To classify an unknown natural number, we hide its value using an existential type:

Definition somenat: Ty = ex snat

(Thanks to Cog’s implicit arguments feature, thparameter oéxis inferred from the
type ofsnat) We can define syntactic sugar for other useful types:

Definition void: Ty = all (At. t).
Definition unit: Ty = ex(At. t).

The idea is that no values inhalibid (more commonly written aSw : Ty.), and a
value of typeunit has no property.

Tuples are described by their size, and a (type-level) function that maps indices to
component types. To specify the function, we will often build a list of types and pass it
to theith function:

Definition ith : list Ty —» nat — Ty =
Ali.nthilvoid

We are usindist andnth from the Coq library. Lists are constructed framh andcons
(), andnth has typeTa: SET. shat — list « — « — «, where thex is implicit. We
usevoid as the default case, for when the index is out of range. Pairs and triples are
used fairly often in our encodings, so it is helpful to define more syntactic sugar:

Definition tup, : Ty—» Ty — Ty =
Atu. tup 2(ith (t:uznil)).

Definition tup; : Ty = Ty—>Ty— Ty =
Atuv tup 3(ith (tzuzvnil)).

Dictionaries are described by a (partial) function that maps labels to types. The function
relies on theoption: SET — SET type constructor of Coq, which is eithBione: TTo:

SET. option oc or Some TTx: SET. o« — option . Again, we specify the function using

a list (in this case a list of pairs, representing a map) alodleupfunction:

Definition map: SET = list (prod sym TV.
Fixpoint lookup(m: map (x: sym {struct n} : option Ty =
match m with
| nil = None
| (y,Vv) : m=ifeq x y(Some Yy (lookup m %
end.

The syntax of the type-annotated computation language appears in Fig. 4. It is essen-
tially the same syntax as the untyped version in Fig. 1, but we add a few type operators
and annotations.

ex=x[nler+ex|flerez|elt]|{er,....en) | e1 @e2 [0]
le1 @ez (0] —e3|es(er,...,en) [{li=er,..,ln=en}|e#llo]
| castio] e | [T1, e>T2] | opene; as[x,x]ine; | folde ast | unfolde
fu=A:T.e | Ax:o.f
Fig. 4. LITL term syntax.

The tuple selection and update operators now expect a CIC expressepresent-
ing aproof that the index is less than the size of the tuple. (Welus@at — nat —
PropPfrom the Coq library.) The labels in the dictionary construction and lookup syntax
are CIC expressions of sg¢ym We also added standard type manipulation terms such
as the type abstractiof: o.f and its corresponding type instantiatiefr], existential
package constructdr,, e>1,] and its corresponding desctructor operas(«, x] in e3,
as well as recursive type folding fotdas T and unfodling unfolc. Finally, there is a
cast expression cast] e. Here,o should be a proof thaqt; 2. Then, ife has type
T1, the entire cast expression can be considered to havertyf8ee the typing rules.

3.2. Dynamic semantics

The dynamic semantics are easy to define. We define values as a subset of the expres-
sions according to the grammar in Fig. 5. Then we define primitive reductions and
congruence rules.

vai=nlf|vi,.,vn) [{Li=vi, . ln=va} | [t1,v>T2] | foldv ast
Fig. 5. Values.
Primitive reductions e~ e’
n;+n; ~ ns3 wherensz = nq; +n, Q)
(Ax:_.e) v~ e[v/x] (2
(Aoc: 1) [T] ~ flt/ad 3)

casti_] v~ v (4)

open[t,v > _] as[x, x]ine ~ e[v/x][t/«] (5)

unfold(foldv ast) ~ v (6)

(V15 ey V) @[]~ Vi ()

(V1) Vi) @11 V'~ (V1,0 Vi, VI Vi, ey Vi) (8)
V1, ey V) 3 (V1 e, VI~ (V1 ey Vi, Ve Vi) 9)
{Li=vi, b =va t#L L~ v (20)

The remaining congruence rules, describing the order of evaluation, are completely
straightforward; they can be found in the appendix A.

3.3. Static semantics

To specify the semantics of this language, one more definition will be needed:

Fixpoint append(n: nat) (f g: nat— Ty) (i : nat)
{structi}: Ty =
match i with
| O = matchnwith O=gO|_=f Oend
| S i= match nwith
|O=g(Si)
|Sn=append NAXx.f (SX)gi
end
end.

Now we get to the static semantics, in the next few subsections. The judgments are
A F®¢ 1 : o from the type language amf; ' e : T for term formation. The
environmentA maps type variables to their kinds, whilenaps term variables to their
types.

LITL enjoys the subject reduction and progress properties. Proofs are available in
appendix B.

Term formation

AFCCT(x) : Ty

A;TEx:T(x) (11)
12
A;TFn :snatn (12)
A;TFep @ snattg A;TFE e @ snatt, (13)
A;TFEej+ey : snat(plusty t2)
ARCC T Ty A;Txithe: T
(14)
A;THAM:T.e: arwT T/
AFCC o SET Ao THf: T x & A
(15)

A;THAx:of : all (Ax:o.71)

A;The tarwt’ T A;They: 1
AsThHejrex: T

A;Thke:allt ARCC T o
A;Trheltl i1/t

AFCC 0o :eqm T2 A:TEe: T
A; T castlole : 12

ARt s 0o AR T 0= Ty
AFCC o SET A;The: 11

A;TE[Ty,e>T2] @ exTs

A;THe: ext ARCC T Ty
Ao x:(ta)e’ o1/
A; T+ opene as[x, x]ine’ : T/

A;THe: t(mut)
A;THfoldeast : mut

A;THe: mut
A; T Funfolde : T (mur)

A:The :Ti Vi<n
A;TH{eo,...,en1) : tupn T

A;THer s tupoy T A;TH ey :snatoy
AFCC o : It oy 07

A;Tke @ezlo] : T 02

A;THep :tupor T A;THey :snatoy
A;Thesz:T 0y AFCC oIt oy 01
A;THe @ezfo] «e3 :tupor

A;THe :tupt 12 A;TE(er,...,eq) s tUPT] T4

A;THes(er,...,en) @ tup(plusT T7) (appendr; T2 T5)

A;The it A tli=Somer; Vi<n
lZ1= 11l=None
A;TH{ly=eq,...,ln_1=en_1} : dictT

-~

A;Tke:dictT AFYC o :eq(Tl) (Somer’)
A;TFe#llo] : 1/

AsTRe: 1 1= T
A;ThHe: 1

(16)

17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

4. Typed compilation of classes

We now return to the running example, whose Links translation was provided in Fig. 3.

In this section, we will develop the typed encoding of that example in stages, showing

additionally how objects are created from classes, and how various implementations of
the base classircle can be specified.

4.1. Class representation

Recall that in Links,CircleBBoxwas represented as a function that generates a new
class from a given one. The class argument was depicted as a(siplt dc). We
know very little about this (non-manifest) base class: the size and layout of the vtable
(vt) are unknown. We just know that the dictionadgc) contains bindings for the three
known methodscenter radius, andarea Moreover, the dictionary maps the method
names to offsets that may be applied to th¢o select functions of the correct type.
Many different representations of this base class are possible.

The components of the class triple must be typed, so we begin by supposisg that
has typesnat n(for somen), thatvt has typetup n f (for somef), and finally thatdc
has typedict g (for someg). The precise values of these parameterd (andg) are
not known, but we at least need a way to express constraints on them in CIC. Here is a
definition of the set ofepresentationsf a class, and three selector functions.

Definition Rep: SET =
(nat x (Ty— nat— Ty) x (sym— option Ty).
Definition size = Ar: Rep
match r with (n,_, _) = nend.
Definition tupfn = Ar: Rep
match r with (_,f,) = f end.
Definition dictfn = Ar : Rep
match r with (_, _,g) = gend.

We have made one small departure from the description above: the type of the tuple
functionf includes an extrdy argument. This is because the elements of the tuple are
methods, or functions over an explisielf parameter. Th@y argument is the type of
self. This cannot be fixed in one place, but must be a parameter because the method will
be reused in derived classes with different types for self. We will demonstrate how this
works in section 4.3.

Let us specify two distinct representationsatcle, the base class in our example.
The methods use floating-point types, which we have not defined formally, but we can
suppose that they exist:

Parameterfloat: Ty.
Definition fpoint: Ty = tup, float float
Definition frect: Ty = tup, fpoint fpoint

Additionally, fpoint is a pair of floats, andrect is a pair of points (for thébounds
method). Here is the simplest representation, where the 3 methods appear in order in
the vtable, with nothing extra:

Definition circA_rep: Rep =
(3, Aself.
ith (arw self fpoint: arw self float:
arw self float: nil),
lookup((center, snat Q :: (radius snat J ::
(area snat 2 : nil)).

With this representation, we have the following equivalences in CIC:

size circArep =g, 3
dictfn circArep center=g,,, 0
tupfn circArept 0 =g, arw T fpoint

We can encode a more complex representation, where the methods appear in different
slots, and some slots are taken up by unknown values:

Definition circB_rep: Rep =
(5, Aself.
ith (arw self (ex sna} :: arw self float:
arw self fpoint: snat 0O::
arw self float: nil),
lookup((radius, snat 4 : (area shat] :
(center, snat 2 : nil)).

Here, slots 0 and 3 are taken up by other values; one of them is not even a function.
Still, the dictfntells us where to find the three circle methods.

4.2. Class specification

Now, how do we ensure that the thrRepcomponentsr f, g) correspond with one
another? The constraint, roughly, is that for each methpthere exists somg: nat
such thaj < nandg m= Some(snat j andf j = T wheret is the expected type of the
method. We can encode precisely this property in CIC:

Inductive HasMethod(r : Rep (m:sym (t: Ty): SET =
method: TTi : natlti (size) —
eq (dictfn r m) (Some(snat i)) —
(TTself. eq(tupfn r self) (arw self §) —
HasMethod r m t

Notice that the offset is specified in thanethodconstructor, but does not appear in
the HasMethodterm itself. This is a form oflependent paiand thanks to the depen-
dent elimination feature of CIC, we can create selectors that mimicdheotation
described by Cardelli and Leroy [7]. Here is the term to fetch the offset:

Definition offset = Armt. Ap: HasMethod r m t
match p with method i pf dc tp= i end.

The other selectors have return types that includeffsetof the parameter itself.

Definition proof = Armt. Ap: HasMethod r m.t
match p asqreturn It (offset q (size 1)
with method i pf dc tp= pf end.

Definition dicteq = Armt. Ap: HasMethod r m t
match p asqreturn eq(dictfn r m) (Some(snat(offset q))
with method i pf dc tp= dcend.

Definition tupeq = Armt Ap: HasMethod r m t
match p asqreturn TTs. eq(tupfn r s(offset q) (arw s 1)
with method i pf dc tp= tp end.

So, if we had some evidence that a representatibas a methodenterreturning an
fpoint, it would be expressed as a tepmHasMethod r m fpointWe can tuple several
HasMethoderms to create signaturefor a class:

Definition circ_signature = Ar.
(HasMethod r center fpoink
HasMethod r radius floak
HasMethod r area float

Now we create a term to use as evidence thiB_rep meets thecirc_signature It
consists of proofs that the indices in the dictionary are less than the tuple size, that the
types in the vtable match the signature, and so on.

Definition selfequal = At s. refl_equal(arw s t).
Definition circB_witness: circ_signature circBrep =
(method circBrep center(le_S (le_S (le_n 3)))

(refl_equal_) (selfequal fpoini,
method circBrep radius(le_n 5)
(refl_equal_) (selfequal float,
method circBrep area
(le_S(le_S(le_S(len 2))))
(refl_equal_) (selfequal float).

Not all of themethodparameters need to be specified, thanks to Coq’s implicit argu-
ments feature. The offset of each method, for example, is inferred from the proof term.
The centermethod appears at offset 2, so we must show2hat5. Thelt relation in
the Coq library is specified in terms & (less than or equal)t in = le (Si) n. The
termle_n 3is the proof of3 < 3, and the twde_S constructors transform that into a
proof of 3 < 5 or, equivalently? < 5.

We may wish to define projections oveirc_signaturetypes. These will be used
later in examples:

Definition circ_center:

Tr. circ_signature r— HasMethod r center fpoint=
At p. match p with (cera,ar) = ceend.

Definition circ_radius:

TTr. circ_signature r— HasMethod r radius float=
Ar p. match pwith (cera,ar) = ra end.

Definition circ_area:
ITr. circ_signature r— HasMethod r area float=
Ar p. match p with (cera,ar) = ar end.

4.3. Object types and method invocation

Now that we can encode class representations (and constraints on them), we are ready
to define the types of objects. In this section, we will represent an object as a pair
containing the dictionary and the vtable. We ignore object fields throughout this work,
because they are orthogonal. Also, we mentioned before that in Moby and OCaml,
where classes can be functor parameters, it is not necessary to package the dictionary
with each object. In section 5, we demonstrate an optimized encoding that separates the
two components, so that dictionary lookups can be hoisted to the module level. Here is
the type of an object tuple, given a class representation and the type of self:

Definition objrep: Rep— Ty — Ty = Ar self.
tup, (dict (dictfnr))
(tup (size 1 (tupfn r self)).

The self type is resolved with a fixpoint, meaning that the self parameter must be an
object of exactly the same type as the object containing the method.

Definition selfty: Rep— Ty =
Ar. mu(objrepr).

Finally, we must hide the representation type. Two existential quantifiers are used here.
The outer one hides thiRep while the inner one hides the evidence that the representa-
tion matches some specified signature.

Definition objty” : TTsig: Rep— SET.TIr.sigr — Ty =
Asigr_. selfty r.

Definition objty’ : (Rep— SET) — Rep— Ty =
Asig r. ex (objty” sig r).

Definition objty: (Rep— SET) — Ty =
A sig. ex (objty’ sig).

So, the type of a circle object @bjty circ_signature In more conventional notation, the
object encoding is:

Jr:Rep dp:circ_signature t poc: Ty. objrep r o

(It is not necessary to split the existentials over three Coq definitions, but it allows for
shorter annotations in some programs.)

Now we present a function that invokes ttaalius method on an object. In sec-
tion 2, with untyped terms, this was written simply(@s @ 1) @ ((x @ 0) #radius)) x,
which in A-normal form [20] looks like:

let invokeradius= Ax.
letdc=x@0 in
letvt=x@1 in
letj = dc#radiusin
letf =vt@j in
fx

where slot 0 ofx holds the dictionary, and slot 1 the vtable. Justifying all these oper-
ations in a sound type system is clearly more involved. Figure 6 contains a function
that takesc as a parameter, and caitldius The code is shown in A-normal form for

let invokeradius = Ax:objty circ_signature
openx aslr, x;]in
openx; as[p, x2]in
let x3 = unfoldx; in
letdc=x3 @O0 [It02] in
letvt=x; @1 [It12] in
letj = dc#radius(dicteq(circ_radius p)] in
letf = vt@j [proof (circ_radius p)] in
let f = casttupeq(circ_radius p (selfty n]f in
f X2
Fig. 6. Code to invoke theadiusmethod on an objeact.

readability, but this is not essential. Apart from the open-open-unfold sequence in the
beginning, the burden imposed by the type system includes the proof annotations on
tuple selection and dictionary lookup, and the cast expression just before the (virtual)
function call. The term#02 andlt12 in the select statements refer to these proof con-
stants:

Definition 1t02:1t 02 = le.S(le.n 1).
Definition [t12:1t12 = len 2

If the objects contained fields, then these proofs would depend on the number of fields
in the tuple. To support this, the existential would also need to hide the size of the tuple,
m, and a proof oft 1 m (from which the proof oft 0 m could be derived).

These type operators and proof annotations buy quite a lot in terms of flexibility
and safety. In languages that support non-manifest base classes, the representations of
classes and objects have complex invariants that are now enforced by the type system
of the intermediate language.

4.4. Class types and instantiation

The type of a class is slightly more complex because the vtable in the class plays a
different role than the vtable embedded in an object (even though they are the same data
structure at run time). Methods must be inheritable. This means thaethgarameter

will have different types at different points in the hierarchy. Therefore, in the class, the
vtable must be parameterized by the type of self. The only restriction is that self must
have at least the methods defined in the class in which the method is defined. We call
this parameterized vtablemaethod suite:

Definition methsuité :

TTsig: Rep— SET.Rep— TTr’ : Repsigr’ — Ty =
Asigrr’ _. tup (size n (tupfn r (selfty r')).

Definition methsuité: (Rep— SET) — Rep— Rep— Ty =

Asigrr’. all (methsuité sig rr’).
Definition methsuite (Rep— SET) —» Rep— Ty =
Asig r. all (methsuité sig r).

Notice the subtle difference in usage between the representatardy ’. The former
is the representation of the current class (and determines the methods that appear in
the tuple), while the latter is the representation of some subclass that is inheriting these
methods. Its only impact is on the type of the self parameter.

We noted previously that each class is represented as a triple. Here is the definition
of the triple, in terms of the class signatusig and representation

Definition classtup. (Rep— SET) — Rep— Ty =
Asig r. tup; (snat(size 1)
(dict (dictfn r)) (methsuite sig).

As with object types, we must conceal the representation along with the proof that it
meets the specified signature.

Definition classty’ : TTsig: Rep— SET.TIr.sigr — Ty =
Asigr _. classtup sig r

Definition classty : (Rep— SET) — Rep— Ty =
Asig r. ex(classty’ sigr).

Definition classty: (Rep— SET) —» Ty =
Asig. ex (classty sig).

This way, both the ‘A’ and ‘B’ implementations of the circle class can appear to have
the same typeclassty circsignature

Figure 7 contains an implementation of the ‘new’ operator, that creates a new object
from a class. It instantiates the method suite with the representation of the provided

let newc.circ = Aco : classty circsignature

openco aslr, ci]in

openc; as[p, cz2]in

letdc=c, @1 [It13] in

letms=c, @2 [It23] in

let vt = msir] [p] in

let x = fold (dc, vt) asobjrep rin
[r, [p, x > objty” circ_signature t

> objty’ circ_signature
Fig. 7. Create a new circle object, given a circle class.

class, so that the methods will accept the new object as the self argument. Then, the
dictionary and vtable are paired together, folded, and re-packaged. As beifdrend
[t23 stand for constant proof terms.

There is nothing in Fig. 7 that is specific to the circle class, except for the appearance
of circ_signaturein type annotations. Indeed, we could easily abstract over this, creating

a generic ‘new’ function—if we defined ayPE-level universal quantifier ity
allT : TIt:TYPE. (t = Ty) —» Ty
Then the ‘new’ function would have type
allT (Asig:Rep— SET. arw (classty sig (objty sig)

and would be instantiated wittirc_signatureto create circles, witpoint.signatureto

create points, etc. Adding thisyPE-level quantifier is no problem—Shao et al. [33]
have one in their computation language—but in this case it may not be as useful as
it first seems. Once we add support for fields and constructors, the code to construct
objects of different classes woutit be identical, as it is in this idealized form.

4.5. Class declarations

These sophisticated representations of class and object types would be for naught if we
are unable to implement a circle class in the first place. In this section, we demonstrate
that the typeclassty circsignatureis habitable. See the definition of the ‘B’ circle class

in Fig. 8. We do not provide complete implementations of the methods: for that, we

let circB =
let dc = {radius=4, area=1, center=2} in
let ms= Ar:RepAp:circ_signature t
(As:selfty r. /* code of typeex snat*/,
As:selfty r. /* code of typefloat*/,
As:selfty r. /* code of typefpoint*/,
O)
As:selfty r. /* code of typefloat*/) in
letc=(5,dc,ms in
[circB_rep,
[circB_witness
¢ classty’ circ_signature circBrep]
> classty circ_signature
Fig. 8. An implementation of the circle class signature.

would need to define floating-point operations and fields.

With this class, we can now connect together the code in the two previous figures
like this: invokeradius (newcirc circB). This creates a new circle fropircB, invokes
the radius method of that object, and returnsflaat We leave it as an exercise for
the reader to define a different implementatmrcA, using thecircA_rep defined on
page 11.

4.6. Extending an unknown base class
Now we have come to the heart of the whole problem: typed compilation against a non-
manifest base class. Our running example extends some unknown class (that matches

the circle signature) by overridingreaand adding a new methdzbunds In CIC, we
can define a signature for this derived cldgsox

Definition bboxsignature = Ar.
(HasMethod r center fpoink
HasMethod r radius floak
HasMethod r area floak
HasMethod r bounds fregt

The representation of the derived class will of course depend on the layout of its parent.
Still, we can define a function to producebboxrepresentation, given another repre-
sentatiorr that matches theirc_signature

Definition bboxrep: TTr : Rep circ_signature r— Rep =
AT p.
(plus 1(size 1,
A self. append(size 1 (tupfn r self)
(ith (arw self frect: nil)),
lookup
((center snat(offset(circ_center g)) ::
(radius, snat(offset(circ_radius p))) ::
(area, snat(offset(circ_area p)) =
(bounds snat(size 1) : nil)).

This works by retrieving the offsets of the inherited methods from the witpeasd
placing theboundsmethod in sloin—the size of the parent representation. The tuple
function usesappendto join the type of the new method with the types of the parent.
With this (parameterized) representation, we have the following:

size(bboxrep circB.witness =g, 6
dictfn (bboxrep circB.witness center=g,,, Some(snat2)
dictfn (bboxrep circB.witnesg bounds=g,,, Some(snat5)
tupfn (bboxrep circB.witnesg T 2 =g,,, arw T fpoint
tupfn (bboxrep circB.witnesg © 5 =g,,, arw T frect

The bboxrep function appears to take just one argument because Coq can infer the
parameter from the witness.

The next step is to prove that the extended representation matchesaksigna-
ture. This is more difficult than it may seem at first. It depends critically on the semantics
of append Specifically, extending a tuple with new elements does not alter the types of
the existing elements. We will use Coq tactics to prove this, but the resulting proof can
be expressed as a normal term in CIC. The proof refells $m, a lemma in the Coq
library stating that ifS n< S mthenn < m.

Lemma appendsemantics :
Min.ltin —TIf g.eq(append nf gji (f i).
Proof.
induction i induction n
intro H; inversionclear H.
intros _ f g; apply (refl_equal(f 0)).
induction n

intro H; inversionclear H.
intro H; assert(ltin).
apply It S.n; assumption
intros f g exact(IHin HO (Ax. f (SX) g).
O

The following simple lemma will express the same result in a more useful form, so that
it matches one of the properties requiredHgsMethod

Lemma extensionokay: TTin.Itin — TTf t.
(Ms.eq(f si) (arw s t)) — TTg self.
eq (append n(f self) (g self) i) (arw self 1.
Proof.
introsinltftpgself
assert(H1 = p self).
assert(H2 = appendsemantics It (f self) (g self)).
exact(transeq H2 H1).
O

With this result, we can take information about a base class tuple, and transform it into
information about a derived class tuple, to which other methods have been appended.

We will also need to extend tHeproofs withinHasMethod For a given offseti,
known to be less than the size of the parent tup)eif is also of course less than the
size of the extended tuple:

Lemmallt_plusbound: TTink.Itin — Iti (plus k n.
Proof.

intros i n k H.

assert(L = It_plustransink H).

rewrite (plus.comm k n.

assumption
O

This was a simple corollary df_plus transin the Coq library, whose result is commu-
tative (plus n R.

These lemmas have helped us prove things about inherited methods. To prove any-
thing about new methods (such bBsund3, we will need another lemma about the
semantics oppend It describes what happens when the index is.

Lemma appendsemantics: TTknf g
eq(append n f gplus k n) (g k).
Proof.
induction k induction n
intros f g exact(refl_equal(g 0)).
intros f g exact(IHn (Ax. f (SX) g).
induction n
intros f g exact(f_equal g(plus.O_r (S K)).
intros f g

assert(eq
(append NAX. f (SX) g (plus k(S n))
(append NAX. f (S ¥) g (plus(S K n))).

apply
(f_equal(append NAX. f (S X)) g)

(symeq (plusSnmnSm k n)).
apply (transeq H (IHn (Ax. f (SX) g)).
O

Again, with transitivity of equality, we coerce this into a more usable form.

Lemma extensioneffect: TTk g t.
(TTself.eq(g self K (arw self §)) — TTn f self.
eq (append n(f self) (g self) (plus k n) (arw self 1.
Proof.
intoskgtpnf self
assert(L = appendsemantics k n (f self) (g self)).
assert(M = p self).
exact(transeq L M).
O

Finally, we can prove that a representation matcluing signaturecan be extended by
bboxrepto a representation matchitdpox signature To show how this proof may be
adapted to other class signatures, we have defined tacticals for the two kinds of cases:

inherited methods and new methods.

Definition bboxwitness:
ITr.TTp: circ_signature t bboxsignature(bboxrep p).
Proof.
let inherit = Aname ty sel
apply (method(bboxrep p) name
(It_plus_.bound 1(proof (sel r p)))
(refl_equal (Some(snat (offset(sel r p)))))
(extensionokay (proof (sel r p)) (tupfnr)
(tupeq(selr p)) (As.ith _))) in
let add = Aname ty k pf
apply (method(bboxrep p) name
(pluslt_compatr k 1 (size 1) pf)
(refl_equal (Some(snat (plus k(size 1))))
(extensioneffect k
(As. ith (arw s frect: nil))
(As. refl_equal(arw s ty))
(size 1 (tupfnr))) in
(repeat constructar
[inherit center fpoint circcenter
| inherit radius float circradius
| inherit area float circarea

| add bounds frect Qle_n 1)
1).

O

Theinherit andaddtacticals are specific to tH#boxextension only where they include

the literal 1 (representing the number of methods adddubioy and refer to the types

of the new methodsafw s frec). This is important because, in practice, a compiler
would produce this proof. It must be automatically derivable from the base and derived
class signatures.

Just one more definition is needed to extend a non-manifest base class. We instanti-
ate the super class dictionary with the representation of the derived class. This is what
permits us to passboxobjects to thoseircle methods. To do this, we must prove that
the derived representation still matches the super class signature. Fortunately, this is
trivial: just a repackaging of theasMethodoroperties, to drop the one referring to the
boundsmethod:

Definition bbox2circ:
ITr. bboxsignature r— circ_signature r =
Ar p. match pwith (cera,ar,bo) = (cgra,ar) end.

Figure 9 contains the complete code for extending an unknown base class. It corre-
sponds to the OCaml functor given in the introduction, and is a typed version of the
Links code in section 2. Most of the non-trivial typing aspects have already been ex-
plained. Look for occurrences tboxrep, bboxwitness andbbox2circin the typing
annotations. In our example, theeamethod included a super call. We omitted the call
itself in the figure (along with the rest of the method bodies), but it works very simply.
At the point where we definaream’, we have already selected the area method from
vt, the super class vtable. Within the bodyaséa.m’, we would applyareamto s to

call the super-class method.

Also, notice the cast applied to the overridden area method before updating the
vtable. It is the inverse of the cast used when selecting a method from the vtable. We
just definedarea.m’, so it has an arrow type to begin with. But the designated slot of
the vtable has an opaque type, literdlpfn r (selfty r'’) (offset(circ_area p)), which
cannot be reduced becausis a variable. But we can use (a symmetric version of) the
tupeqproperty to cast from the concrete to the opaque, and then update that slot of the
vtable.

5. Extensions

This section explores ways to extend the basic techniques in several directions, giving
some idea of the versatility of LITL.

5.1. Encoding subsumption as type coercions

Object-oriented languages enjeybsumptiona context expecting an object of type

t will be satisfied with an object of sonmibtypeof t. The precise rules about what

constitutes a subtype, and where subsumption may be used, differ with each language.
Our intermediate language does not directly support subtyping. Nevertheless, if we

examine object types of two classes in a subclass relationship, we notice they differ

let circle_bbox= Ac:classty circsignature
openc aslr, c]in
openc aslp, c]in
letsz=c@O [It03] in
letdc=c@1 [It13] in
letms=c@?2 [It23] in
let ci = dc# center{dicteq(circ_center g] in
let ri = dc#radius[dicteq(circ_radius p] in
let ai = dc#arealdicteq(circ_area p)] in
let dc’ = {center=ci, radius=ri, area=ai, bounds=sz in
letms' = Ar”:RepAp” :bboxsignature r’.
let vt = ms[r”’] [bbox2circ @] in
let boundsm = As:selfty r’. /* code of typefrect*/ in
let aream = vt @ ai [proof (circ_area p)] in
let aream = cast{tupeq(circ_area p) (selfty r’)] areamin
letaream’ = As:selfty r’. /* code of typefloat*/ in
let aream’ =
castisymeq (tupeq(circ_area p (selfty r’))] aream’ in
let vt’ = vt @ ai [proof (circ_area p)] « aream’ in
vt’ s (boundsm) in
letc’ = (1+szdc’,ms) in
let ¢’ = [bboxwitness p
¢’ > classty’ bboxsignature(bboxrep p)] in
[bboxrep p, ¢’ > classty bboxsignaturé
Fig. 9. Code to extend a non-manifest base class.

only in what is known about the (hidden) representation. It is always possible to open
and repackage the object wigssinformation about its representation. The example in
Fig. 10 casts a bbox object to a circle (its super class). This is done entirely with type

let upcast= Ax:objty bboxsignature
openx aslr, x] in
openx as[p, x] in
[r, [bbox2circ px > objty” circ_signature t
> objty’ circ_signaturé
Fig. 10.To upcast a bbox to a circle, we open and repackage the object.

coercions, so it has no cost at run time. T®x2circoperator, defined on page 21,
coerces the witness from tygox signature rto typecirc_signature ¢ by dropping
the information about thboundsmethod.

This alone is sufficient to support many object-oriented languages, in which sub-
sumption is really jusforgettinginformation about some of the methods or fields in
the object. This is equivalent to so-calleitith subtyping on records. Some languages
(including OCaml) support limited forms afepthsubtyping, where the types of the
fields or methods themselves can change, in a co- or contra-variant manner.

Subtyping can always be encoded using explicit coercions, but that would have a
negative impact on the efficiency of our object code—unless the coercions are just type-
level operators, like the open and pack in Fig. 10. We believe it would be possible to
define an inductive relatiosubtype: Ty — Ty — SET in CIC, whose constructors
implement the usual subtyping rules. A term that inhagistyper; T, would thus be
equivalent to a meta-logical derivationof < t,. Ourcastoperator would be extended
to accept proofs o$ubtypet; T, rather than juseqt; T,. This is reminiscent of the
explicit coercion techniques proposed by Crary [15], but formulating the techniques
within our framework remains an avenue for future work.

5.2. Removing the dictionary from object representations

One of the advantages of Links, as a common IL for object-oriented languages, is its
pay-as-you-go efficiency. Languages that do not need dictionaries to find method offsets
at run time are not required to use them. For example, if method offsets are known at
compile time, they can be hard-coded into the object types, without needing dictionaries
or even symbols. Here are updates to some of the definitions from the last section.

Definition FixedRep SET =
(nat x (Ty — nat— Ty)).
Inductive FixedMethod(r : FixedRep (i : nat) (t: Ty): SET =
fmethod: Iti (fstr) —
(TTself: Ty.eq(snd r self | (arw self) —
FixedMethod r i t

We have just removed the dictionary function from the representation. The ioffsat
appears in thEixedMethodrather than remaining hidden. The signature for a circle can
be expressed as follows—note the replacement of method names by method offsets:

Definition circ_fsig: FixedRep— SET = Ar.
(FixedMethod r O fpointx
FixedMethod r 1 floatx
FixedMethod r 2 float

The object type is the same as before, but with offsets now exposed in the bound of one
of the existential quantifiers. Supporting link-time (but not run-time) use of dictionaries

is more involved. If classes can be module parameters, but modules are not recursive,
then all the dictionary lookups ought to be lifted to the top level in each module, outside
of any loops. In this case, dictionaries should not be packaged within objects, but should
just be module parameters.

5.3. Supporting mixins and traits

Bracha and Cook [4] define a mixin as an “abstract subclass; i.e., a subclass definition
that may be applied to different super classes to create a related family of modified
classes.” This seems similar in spirit to the parameterized class we defined. The techni-
cal difference is that “mixins properly extend the class that they are applied to” [19]. In
our example, base class methods not specified iICIRELE signature remain hidden

in the derived class. In contrast, a mixin can extend an unknown base class, where any
methods unspecified by the mixin are preserved in the interface of the derived class.

To adapt mixins to our example BaoxMixin could take any class wittenterand
radiusmethods, and addt@mundsmethod. Any other super class methodseg move
enlarge etc.) would be preserved in the sub class. A mixin thus defines a representation
transformerthat overlays an existing dictionary with some new methods.

With simple parameterized classes, the signature can be specified as part of the
definition. With mixins, this is not so simple. The signature will not be known until the
point of instantiation. We do, however, need to know a few things about the transformed
representation. First, it must havéaundsmethod, which returns a pair of points (type
frect). Second, any methods it previously defined@eservedThere is one exception:
if it had aboundsmethod previously, that one ghadoweddy the newer definition.
Thus, we must be able to say that a method label is not eqbaltods

Definition noteq: sym— sym— PROP = Aml m2
Mk : SET.TTf g: k.
ifeqmlm2fg= g.
Definition bbmixsig: (Rep— TYPE) — Rep— TYPE =
Asig r. TTr’. (HasMethod f bounds frect—
ITm t noteq m bounds»
HasMethod r m t- HasMethod f m t) — sig r’.

The above definition plays the role of a signature for the mixin, whersithgarameter
is the ultimate signature, provided when the mixin is applied to a super clasthe
super class representation, ahdk the subclass representation.

Traits are another, similar mechanism for code reuse [32]. A trait is just a set of
named methods, that can depend on some other (specified) methods. “The main differ-
ence between mixins and traits is that mixins force a linear order in their composition”
[18]. We have not yet determined whether our encoding of mixins extends to traits, but
we intend to pursue this as future work.

6. Related work

There is a long history of encoding objects and classes in typeadculi and other non-
object-based representations [5]. Several recent encodings are specifically designed for
use in certifying compilers, where run-time efficiency is a concern [9, 14, 22, 24]. They
each have their advantages—see [9] or [24] for comparisons—but none of them support
separating offset determination from method retrieval.

The encoding presented in this paper is a natural generalization of the one developed
by League et al. [24] for Java. They specified tuples as sequences®f31], where
the tail of a sequence could be abstracted by a type variable. An object with a method
in slot zero returning would have the type:

Jp:Ty— R o Ty (x = T35 p &)

where the quantified variableconceals the types of any additional methods. Compare
that to the encoding introduced in this paper:

In:nat 3f: Ty — nat — Ty.
Fp:(0O<nAVR:TY.fR0O=arwp 1)).
poe: Ty, tupn (f «)

This is the ‘fixed’ representation from section 5.2. In both cases, an existential hides a
specification of the elements of the tupteabove,f below), parameterized by the type

of the explicit self argument. Both encodings use a recursive type in the same way: to
equate the type of the self argument with the type of the object containing the methods.
Finally, both encodings reveal (in different ways) the types of known methods in the
tuple.

Stone [34] developed a Calculus of Objects and Indices (COIl) which has some
similarities to our work. Although it is aabjectcalculus (method invocation is atomic)
Stone says, “it may be possible to use the ideas here to obtain a typed variant [of Links].”
Like our language, COI supports dictionaries and first-class indices. Rather than single-
ton types, indices “have types of the form: o; this type classifies offsets that access
a component of type within an object of typer.”

As specified, COl is not suitable as an intermediate language for compilers, or as a
target language for proof-carrying code. It takes objects and object extension as primi-
tive, and encodes classes in terms of objects. The class encoding does notsipport
calls, though it seems possible to add them. Due to the granularity of the calculus, op-
timizations like caching method pointers and devirtualization are not expressible.

Pushing COl to a lower level while maintaining soundness may be challenging. As
is, its soundness relies on distinguishing between exact and inexact object types. What
becomes of these concepts when objects are no longer primitive? Often, decomposing
objects into tuples and functions opens up unintended ways of accessing them, leading
to unsoundness [25]. It would be very interesting to see the impact of the COI design at
a lower level.

7. Conclusion and future directions

We have developed LITL, a sound, low-level intermediate language with dictionaries,
tuples, functional update, and tuple extension. Fisher et al. [19] showed that these prim-
itives are useful for compiling various object-oriented languages, with different object

models and notions of inheritance. Dictionaries support link-time or run-time determi-
nation of method offsets, for languages where the layout of a base class may not be
known at compile time.

Following Shao et al. [33], the type system of LITL is embedded in the Calculus of
Inductive Constructions [13]. Our reliance on CIC permits flexible reasoning about the
offsets of methods, which are now first-class values with singleton types constructed
from natural numbers.

We proposed a simple example in OCaml—where a super class is provided as a
functor parameter—and showed by example how to encode objects, classes, method
dispatchnew, and inheritance from a non-manifest base class. Our technique supports
width (but not depth) subtyping using type coercions. Alternative representations are
possible, where the dictionary is omitted (because offsets are already known) or passed
separately from the object.

In the future, we expect to support depth subtyping, using a technique outlined in
section 5.1. Furthermore, we intend to choose a small source language with several of
these advanced object-oriented features and specify a complete type-preserving trans-
lation. Candidates includeicrRoMoby [16], Loom [6, 36], MXEDJAVA [21], Jam [1],
and the typed trait calculus by Fisher and Reppy [18].

Bibliography

[1] D. Ancona, G. Lagorio, and E. Zucca. Jam: A smooth extension of Java with
mixins. InProc. European Conf. Object-Oriented Programmiuglume 1850 of
LNCS 2000.

[2] A. W. Appel. Foundational proof-carrying code. Rtoc. IEEE Symp. on Logic in
Computer Science (LICS)ages 247-258, June 2001.

[3] H. Barendregt. Typed lambda calculi. In S. Abramsky, D. Gabbay, and
T. Maibaum, editorsiHandbook of Logic in Computer Scieneelume 2. Oxford,
1992.

[4] G. Bracha and W. Cook. Mixin-based inheritance. Hroc. Conf. on Object-
Oriented Programming Systems, Languages, and Applicatjmages 303—-311,
October 1990.

[5] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodirgfor-
mation and Computatigri55(1-2):108-133, 1999.

[6] K.B. Bruce, A. Fiech, and L. Petersen. Subtyping is not a good ‘Match’ for object-
oriented languages. Proc. European Conf. Object-Oriented Prpgolume 1241
of LNCS pages 104-127, Berlin, 1997. Springer-Verlag.

[7] L. Cardelli and X. Leroy. Abstract types and the dot notation. Phoc. IFIP
Working Conf. on Programming Concepts and Methagugjes 466-491, Israel,
April 1990.

[8] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter and J. C.
Mitchell, editors,Theoretical Aspects of Object-Oriented ProgrammiRgunda-
tions of Computing Series. MIT Press, 1994.

[9] J. Chen and D. Tarditi. A simple typed intermediate language for object-oriented
languages. IfProc. Symp. on Principles of Programming Languag&sSM, Jan-
uary 2005.

[10] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and M. Plesko. A certifying
compiler for Java. IProc. Conf. on Programming Language Design and Imple-
mentation Vancouver, June 2000. ACM.

[11] Coq Development TeamThe Coq Proof Assistant Reference ManulNRIA,
version 8.0 edition, June 2004.

[12] T. Coquand and G. Huet. The calculus of constructidm&rmation and Compu-
tation, 76:95-120, 1988.

[13] T. Coquand and C. Paulin-Mohring. Inductively defined typerrceedings of
Colog '88 volume 417 ol ecture Notes in Computer Scien&pringer, 1990.

[14] K. Crary. Simple, efficient object encoding using intersection types. Technical
Report CMU-CS-99-100, Carnegie Mellon University, Pittsburgh, January 1999.

[15] K. Crary. Typed compilation of inclusive subtyping. Rvoc. Int'l Conf. Func-
tional Programming September 2000.

[16] K. Fisher and J. Reppy. Foundations for moby classes. Technical report, Bell
Labs, December 1998.

[17] K. Fisherand J. Reppy. The design of a class mechanism for Mol®rom Conf.
on Programming Language Design and Implementatidew York, 1999. ACM.

[18] K. Fisher and J. Reppy. A typed calculus for traits. Piroc. Int’l Workshop on
Foundations of Object-Oriented Languagéanuary 2004.

[19] K. Fisher, J. Reppy, and J. G. Riecke. A calculus for compiling and linking classes.
In Proc. European Symp. on Programmjmgges 135-149, 2000.

[20] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compil-
ing with continuations. IrProc. Conf. on Programming Language Design and
Implementationpages 237-247, Albuguerque, June 1993.

[21] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction seman-
tics for classes and mixins. In J. Alves-Foss, ediformal Syntax and Seman-
tics of Javavolume 1523 of_ecture Notes in Computer Scienpages 241-269.
Springer, 1999.

[22] N. Glew. An efficient class and object encoding. Rroc. Conf. on Object-
Oriented Programming Systems, Languages, and Applicatid@$/1, October
2000.

[23] W. A. Howard. The formulae-as-types notion of constructionstdid.B. Curry:
Essays on Computational Logic, Lambda Calculus, and Formalistademic
Press, 1980.

[24] C. League, Z. Shao, and V. Trifonov. Type-preserving compilation of Feather-
weight Java.ACM Trans. on Programming Languages and Sysi&#§?):112—
152, March 2002.

[25] C.League, Z. Shao, and V. Trifonov. Precision in practice: A type-preserving Java
compiler. In G. Hedin, editoRroc. Int'l Conf. on Compiler Constructigwolume
2622 ofLecture Notes in Computer Scienpages 106—120, Warsaw, April 2003.
Springer.

[26] T. Lindholm and F. Yellin. The Java Virtual Machine SpecificatiorAddison-
Wesley, 2nd edition, 1999.

[27] D. A. Moon. Object-oriented programming with Flavors. MBmoc. Conf. on
Object-Oriented Programming Systems, Languages, and Applicapags 1-8,
November 1986.

[28] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Trans. on Programming Languages and Syste2t§3), May
1999.

[29] G.C. Necula. Proof-carrying code. Rroc. Symp. on Principles of Programming
Languagespages 106-119, Paris, January 1997. ACM.

[30] F. Pfenning and C. Elliot. Higher-order abstract syntax.Ptac. Conf. on Pro-
gramming Language Design and Implementatioeiges 199—-208, 1988.

[31] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension
to ML. Theory and Practice of Object Systers1998.

[32] N. Scharli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units
of behaviour. InProc. European Conf. Object-Oriented Programmidgly 2003.

[33] z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type system for certified
binaries. InProc. Symp. on Principles of Programming Languadesiuary 2002.

[34] C. A. Stone. Extensible objects without labelaCM Trans. on Programming
Languages and Systen®6(5):805-835, September 2004.

[35] B. Stroustrup.The C++ Programming LanguageAddison-Wesley, 3rd edition,
1997.

[36] J. C. Vanderwaart. Typed intermediate representations for compiling object-
oriented languages. Williams College Senior Honors Thesis, 1999.

A. Congruence rules

er ~ e} e~ e’
ejtey~ej+er v+e~ v+e’
! Vi / !
e~ e e~ e e~ e e~ e
ej ey~ e e ve~ve’ elt] ~ e’ [1] fold e ast ~ fold e’ ast
! i !
e~ e e~ e e~ e

unfolde ~» unfolde’ cast{o] e ~ cast{o] e’ [T1,e>T2] ~ [T7,e’ > T2]

er ~ ej
opene; asfe, x| ine, ~ opene; aslx, x]in ey

ei ~ e/
<V],...,V1'_7],ei,ei+],...,en> > <V],...,Vif],e{,ei+],...,en>
e ~ e} e~ e’
e1@ez [0l ~e] @exlo] v@elo]l~v@e'lo]

li /
€1~ € €1 ~ €

e1 @ey[0] —e3~e] @ey[0] —e3 v@e [o] —ex~v@ej[o] e

e~ e’ e~ e’

v @V, [0] «— e~ vi @V, [0] — e’ eg(er,...,en)~e’g{er,...,en)

e~ e/ e~ e’
V3 {V1, .y Vio1, €1, €41,y €n) e#llo] ~ e’ #l[o]
A% <v1,...,vi,1,ei’,eiﬂ,...,en)
/
€y~ e

Li=vi,. s =vicn, i=e, lig1 =eiqt1, ., ln=en)
—_ —_ —_ !/ —_ —_
~{lr=vi, L licr=vic =el i =eigr, o ln=en)

B. Properties of the typing rules

The decidability of typing is almost immediate because the typing rules are mostly
syntax directed. The places where the type derivation does not follow trivially from the
syntax are:

— Rule 29 has no corresponding syntax. This does not prevent type checking from
being decidable since CIC guarantees that every expression can be reduced to a
normal form. We simply need to always normalize our type expressions.

— Rules 23 and 27 leave open the choicerofThis actually makes type checking
undecidable. So when we type check a program we use a restriction of the above
rules such that either the type of a tugls, ..., e,) is inferred to be of the form
tupn (ith (t7 = ... 22 T4, 2 nil)) or the programmer has to annotate the tuple with its
type functionr.

Lemma 1 (Canonical forms).If v is a value and; o - v : T, thenv must have the
form indicated by its type:

— T =pn, Shatt; implies thaty =n

— T =pn, @MW T T2 implies thatv = Ax:t;.e

— T =gy, all Ty implies thatv = Ax:o.f

— T =gy, X1y implies thatv = [12,v' > 1]

— T =gy, MuUT; implies thatv = foldv’ as;

— T =gy, tupT; T2 implies thatt; =n andv = (vq, ..., vn)
— T =pn, dictty implies thaty = {l; = v1,...,ln = v}

Proof. is by induction on the structure of and by adequacy of inductive definitions in
an empty context for the natural number and tuple cases. O

Theorem 1 (Progress)If o; o e : T then eithere is a value, or there exists’ such
thate ~ e’.

Proof. is by induction on the derivation of; o I e : 1. Allthe cases where the toplevel
subexpressions aren’t simple values can be trivially reduced using the corresponding
congruence rule.

Case l.varvariable Impossible case, because environment is empty.
Case 2.natnatural number A numeric literal is a value.

Case 3.addadditiore = e; +e,. By induction, eithee; is a value, or there exists

e; such thake; ~ ef. Likewise, either; is a value, or there exists. If both are
values, then they must be natural numbers (by canonical forms lemma), and we pro-
ceed with the primitive reduction for addition. Otherwise, we use the congruence
rules.

Case 4.fnfunctional abstractior = Ax:0.ey. This is a value.

Case 5.tfntype abstraction Also a value.

Case 6.appapplicatiore = e; e;,. Similar to addition case; by induction, eithgr

is a value, or there existg such thae; ~ ej. If both are valuesg; must have the
form Ax : t.eo (by canonical forms lemma), so it matches the primitive reduction
rule. Otherwise the inductive reduction goes through the congruence rules.

Case 7.tapptype application Similar.

Case 8.castcast Either goes through the congruence rule or primitive reduction of
cast{o] vo tovg. (Trivial.)

Case 9.packexistential introductioa = [t’, eo>1’']. Eitherey is a value, in which
case so is the package, &y can be reduced, in which case we apply the reduction
through the package congruence rule.

Case 10.openexistential elimination Similar to application and type application,
including use of canonical form of existential value.

Case 11.foldfold Becomes a value if the sub-expression is a value, or goes through
fold congruence rule.

Case 12.unfoldunfold Go through unfold congruence rule, or if sub-expression is
avalue, it must be a fold (due to canonical forms lemma) in which case the primitive
reduction matches.

Case 13.tuptuple Either is a value, or goes through one of the congruence rules.

Case 14.seltuple selection Two congruence rules are available. If both sub-expres-
sions are values then we need several prerequisites to use the primitive reduction.
First, the left-hand side must be a tuple value of lengtfby canonical forms).

Next, the right-hand side must be a natural number (by canonical forms). Finally,
the index must be less than the length. Here we rely on the adequacy of arithmetic
andlt in an empty context. Follow the arguments in TSCB paper.

Case 15.updfunctional update Similar to previous case.

Case 16.exttuple extension Canonical forms guarantees the left side is a tuple, so
the primitive reduction applies.

Case 17.dictdictionary construction Either a value or use a congruence rule.

Case 18.lookdictionary lookup Ife is not a value, we use the congruence rule.
Otherwise, by canonical formshas to be a dictionary. By the typing rule of the dic-
tionary constructor, we know that the dictionary typing functioreturnssomer;

iff applied to one of the labels in the dictionary. Sincés a proof thatr returns
somet’, it follows thatl is indeed one of th&; of the dictionary and the primitive
reduction applies.

Case 19.betaetatype conversion Trivial: the inductive hypothesis already gives us
our conclusion. O

Lemma 2 (Substitution).
IfA;T,x:vEe: tthenA; T+ elv/x] : T
IfAyoc:t; THe: 1t/ thenA; Tt/ F e[t/a] : T/[t/«].

Proof. is straightforward, by induction on the typing derivation. O

Theorem 2 (Subject reduction).lf o; o e : Tande ~ e’, theno; ok e’ : 1.

Proof. is by induction on the derivation af~» e’. All the congruence rules are proved
trivially from the induction hypothesis because they all reduce the subexpression in the
same empty context.

Case 20.raddaddition The typing rule of the redex is #13gse g, snat(plusT; T2).
So we need to show that; has that type, using rule #12.

Case 21.rappbeta reduction The typing derivation of the redex uses rule #16 pre-
ceded by #14, and =g,,, arw T; T2. We use the value substitution lemma.

Case 22.rtapptype application Same situation except we use the type substitution
lemma.

Case 23.rcastcast This is a critical case. We know ¢ake has typer,, ande has
type t;. This follows from the fact that we knoweq t; T’ and that in an empty
context this can only be truef; =g, T2 SO we can use the typing rule #29.

Case 24.ropenopen This uses both substitution lemmas.
Case 25.runfoldunfold Trivial.

Case 26.rselselect Trivial.

Case 27.rupdupdate Trivial as well.

Case 28.rextextend We can prove that] appendr; T, T4 11,1 for all i smaller
thant;, and that it is equal ta) 1 otherwise. The rest follows trivially, except that
we need to use the typing rule #29 to account for the fact that we only know equality
in terms ofeq as was the case for cast.

Case 29.rlooklookup Straightforward since the core of the proof is provided as an
annotation. O

C. Representing symbols

Inductive char: SET =
A|/B|C|D|E|F|G.

Definition ifeqc =
AXy:char. Ak: SET. Atf:k
match x, y with

|A, A=t |B B=>t
|C,C=1t|D, D=t

|E,E=t|F F=t

|G, Gt |, _=f
end.
Definition sym: SET = list char.

Fixpoint ifeq (x y: sym (k: SET) (tf : k) {struct ¥ : k =
match x, y with

| nil, nil =t

|c:cs d:ds=ifeqccd(ifeqecsdstif
|, —=f

end.

Definition center = C: E : nil.
Definition radius = A: D : nil.
Definition area = A: E : nil.

Definition bounds= B: D : nil.

D. Encoding terms in Coq

Inductive Exp: Ty — SET =

| enat: TTn. Exp (shat n

| eadd: TTn m Exp(shat i — Exp(snat m) —
Exp (shat(plus n m)

|eabs : TT(R: Ty — SET) (tv:Ty). (Rt—= Exp Vv —
Exp (arw t v)

| etabs: TT (k: SET) (s: k — Ty). (TTj : k. Exp(s])) —
Exp(all s)

| eapp: TTst: Ty.Exp(arwst) — Exps— Exp t

| etapp: TT (k: SET) (s: k — Ty).Exp(all s) —
Mt:k.Exp(st)

|ecast: TTst: Ty.eqst— Exps— Expt

| epack: TT(s0: SET) (t1:s0— Ty) (t0: s0).
Exp (t1 t0) — Exp (ex t])

| eopert : TTR: Ty — SET.TTs0: SET.
TMtl:s0— Ty.TTt2: Ty. Exp (ex t3) —
(TTa:sOR(tla) —» Expt2 — Expt2

| efold: TT(s: Ty — Ty).Exp(s(mug) — Exp(mu g

|eunfd: TT(s: Ty — Ty).Exp(mu g — Exp(s(mu g)

(* This is more restrictive than the typing rules, but *)

(* it ensures we stick to a decidable subset. *)

| etup: TT (n: nat) (ts: list Ty). Es n ts—
Exp (tup n(ith ts))

(x An alternative tuple construatith a type annotation for when

x you want more flexibilityx)

| etup : TT(n: nat) (f : nat — Ty).ES' f n — Exp (tup n f)

|esel: TT(jn:nat) (f : nat— Ty).Exp(tupnf) —
Exp(snatj — Itjn — Exp(f j)
|eupd:TT(jn:nat) (f :nat— Ty).Exp(tupnf) —
Exp(snat) — Exp(fj) —» Itjn — Exp(tupnf)
| eext: TT(n n’ : nat) (f ' : nat — Ty).
Exp(tupnf) — Exp(tup ' ') —
Exp (tup (plus ' n) (append n f f))
| edict: TTm: map Ds m— Exp (dict (lookup mj)
| elook: TT (g : sym— option Ty). Exp (dict g) —
TM(s:sym (t:Ty).eq(g s (Some}t — Expt
|efiX :TT(R: Ty— SET) (tv:Ty). (R(arwtt) = Rt— Exp V)
— Exp(arw tv)
| ecmp: TTn m Exp (snat 0 — Exp (shat mj
— Exp(snat(if (begnat n m then 1 else D

with Es': (nat— Ty) — nat— SET =
|enil’ :TIf.ES' f 0O
|econg:TInf.ES' fn— Exp(fn) - ES'f (Sn

with Es: nat — list Ty — SET =
| enil: Es O nil
|econs TT (t: Ty) (n: nat) (ts: list Ty).
Expt— Esnts— Es(Sn (t:ts)

with Ds: map— SET =
| dnil : Ds nil
| dcons: TT(s:sym (t: Ty) (m: map.
Expt— Ds m— Ds((s,t) = m).

(x We could actually build etup and Es separately on top of ‘eamu ES,
But | haverit bothered to do i{yet) because fis a bit cumbersome
because the list of elements is reversed between the xwo

Definition eabs = eabs Exp
Definition efix = efixX' Exp.
Implicit Arguments eabg/].

Definition eopen= eoper Exp.

Definition elet = Ast: Ty.
Ae:Exp sAbody: Exps— Expt
eapp(eabs s bodye.

Definition dcons =
Atm(x:sym x Expt) (xs: Ds m).

dcons(t=1t) (m=m) (fst X) (snd X xs

Notation"A’ x: t. € = (eabs t(Ax. e)) (at level 200 x iden{.
Notation"’Operi xy = el’in’ €2 = (eopen elAxYy. e2))
(at level 200 x ident y ident).
Notation"’Let’ x = el’in’ e2 = (elet el(Ax. e2))
(at level 200 x ident).

Notation” A’ x:t. € = (etabs(Ax:t. _) (Ax. €)) (at level 200 x ident).
Notation"' (' x, .., y’)" = (etup(econs x. (econs y enil..)).
Notation'x ' —' y' = (x, y) (at level 100.
Notation'{ x, .., y}' = (edict(dcons x .. (dcong y dnil) ..)).
Notation" (|’ f [x, .., y /)" = (etup (econs ..(econs (enil’ f) x)..y)).
(x For some reason neitheU+25B7] nor > seem to be acceptable for Coq

Maybe the corresponding utf8 binary sequence is incorrectly lexed
Notation" <« w, e|t >" = (epack tw & (at level 200.
Notation"'el@ e2[t]'" = (esel el e2)t(at level 99.
Notation"e#1 [t]" = (elook e | { (at level 99.

Definition testsm= (|Ai. snat|enatQ enat 1.

Here is the encoding of the function that invokes the radius method on a circle, from
Fig. 6 on page 15:

Definition invokeradius: Exp (arw (objty circ_signaturg float) =

A X : objty circ_signature

Openr x; = Xxin

Openp x; = X in

Letxs = eunfd % in

Letdc = esel % (enat Q It02in

Letvt = esel % (enat] It12in

match p with (_,pr,_) =
Letj = elook dc radiugdicteq pn in
Letfp’ = esel vt j(proof pr) in
Letfp = ecast(tupeq pr(selfty) fp’ in
eapp fp x

end.

And the function to create a new circle, from Fig. 7:

Definition 1t03:1t 0 3
Definition 1t13:1t 1 3
Definition 1t23:1t 2 3
Definition newcirc :
Exp (arw (classty circsignature (obijty circ_signaturg) =
A Co : classty circsignature
Openrc; = ¢yin

leS(leS(le.n1)).
le_S (le_n 2).
le.n 3.

Openpc, = ¢pin

Letdc = esel ¢ (enat] It13in
Letms = esel ¢ (enat 2 It23in
Letvt = etapp(etapp ms}pin
Letx = (dc, vt} in

epack(obijty’ circ_signaturg r

(epack(obijty” circ_signature § p
(efold (objrep 1) x)).

Here is the ‘B’ circle class, to demonstrate that theesstyis habitable (Fig. 8).

Parameter methodbody: Tt : Ty. Exp t
Definition circB : Exp (classty circsignaturg =

Letdc = {radius — enat4 area — enat 1 center — enat 2 in
Letms = Ar:Rep

/A p: circ_signature t
(A s: selfty . methodbody (ex snaj,
A s: selfty . methodbody float
A s: selfty . methodbody fpoint
enat Q
A s: selfty r. methodbody floaj} in
epack(classty circ_signaturg circB_rep
(epack(classty’ circ_signature circBrep) circB_witness
(enat § dc, mg).
Definition createand.invoke: Exp float =
eapp invokeadius (eapp newcirc circB).

The following corresponds to Fig. 9.

Parameter area formula: Exp (arw float floaj.
Definition circle_bbox:
Exp (arw (classty circsignaturg (classty bboxsignaturg) =
A G : classty circsignature
Openry ¢y = Coin
Openp, ¢y = Cp in
Letsz = esel g (enat 0 ItO3in
Letdcy = esel g (enat] It13in
Letmg = esel ¢ (enat 2 1t23in
Letci = elook dg center(dicteq(circ_center)) in
Letri = elook dg radius (dicteq(circ_radius p,)) in
Letai = elook dg area(dicteq(circ_area ,)) in

Letdc; = {center— ci, radius+— ri, area— ai, bounds— sz} in
letr; = bboxrepp, in
Letms =

ATz :Rep

A p, : bboxsignature p.
Letvty, = etapp(etapp ms r;) (bbox2circ g) in

Letar = esel vp ai (proof (circ_area ,)) in
Letar = ecast(tupeq(circ_area) (selfty 1z)) ar in
Letar’ = A s:selfty r,. eapp areaformula(eapp ar $ in

Letar’ = ecast(symeq (tupeq(circ_area) (selfty r,))) ar’ in
Letbo = A s: selfty . methodbody frectin
Letvt;y = eupd vp ai ar’ (proof (circ_area fy)) in

eext vi (bo) in
epack(classty bboxsignaturg r;
(epack(classty’ bboxsignature k) (bboxwitness g)
(eadd(enat 1) sz, dc;, ms)).

The upcast in Fig. 10:

Definition bboxupcast:
Exp (arw (objty bboxsignature (obijty circ_signaturg) =
A X : objty bboxsignature
Openr x = xin
Openp x = xin
epack(obijty’ circ_signaturg r
(epack(objty” circ_signature § (bbox2circ g X).

Defining dict/lookup directly within the language:

Definition dict’ (m: list (nat x Ty)): Ty =
tup (length m
(Ai.letx = nthim(0, void) in tup, (snat(fst x)) (snd X).

Fixpoint lookug (A: SET) (m: list (nat x A)) (I : nat) {struct nj : option A =
match m with
| nil = None
| cons x M = if beg.nat | (fst X) then Somésnd X else lookupm’ |
end.

Definition Thool = ex(A (x:sig(Ab.ltb 2)) =
snatmatch x with exist b p= b end).

Definition toto: sig (Ab.ltb 2) =
exist(Ab. It b 2) 0 [t02

Definition efalse: Exp Thool =
< exist(Ab. It b 2) 01t02,
enat 0| (A x. snatmatch x with exist b p= bend) > .
Definition etrue: Exp Thool =
< exist(Ab.Itb2) 11t12
enat 1| (Ax. snatmatch x with exist b p= bend) > .
Definition depfst(A: SET) (F: A— Prop) (x:sigF) =
match x with exist b_ = b end.

Definition depsnd(A: SET) (F : A— PROP) (X:sSigF) =
match x return F (depfst ¥ with
exist_p = pend.

Definition egboolseli : nat) (f : nat— Ty) (p:Iti2)
ceq(ith (FO:f Lanil)i) (Fi).
Proof.
intro.
case i
intros.
apply reflequal
intro.
casen
intros.
apply reflequal
intros.
inversion p
inversion HO
inversion H2
O

Definition eif’ : Exp (all (A (f : nat — Ty).
(all (A(x:sig(Ab.ltb2))=
arw (snat(depfst %)

(arw (arw (snat Q (f 0))
(arw (arw (snat 1) (f 1))
(f (depfst ¥)))))))

Af:nat— Ty.

AX:sig(Ab. ltb2) =

A b:snat(depfst .

AeO0:arw (snatQ (f 0).

Ael:arw (snat] (f 1).

eapp(ecast(egboolselAi. arw (snat i) (f i)) (depsnd X)

(esel{ e0 el) b (depsnd X))
b.

Definition eif (x : Exp (all (A (f : nat — Ty).
arw Tbool
(arw (arw (snat Q (f 0))
(arw (arw (snat 1) (f 1))

(ex))))) x)

Af:nat— Ty.
A b: Thool

A e0:arw (snatQ (f 0).

Ael:arw (snat] (f 1).

Openx b = bin

< depfst x (eapp(eapp(eapp(etapp(etapp eif f) x) b) e0) el) | f > .

Inductive PtoS(P : PROP) : SET = ptos: T (x: P). PtoS P
Definition stop(P : PROP) (p: PtoS B = match p with ptos p= p end.

Fixpoint tOn n: 1t 0 (Sn =
match nreturn It O (S n with
|0=len1
| S n= le_S (ItOn n)
end.

Fixpoint nthedr (A: SET) (n: nat) (xs: list A) {struct xg : list A =
match xs, n with
| nil, _ = nil
| .,0=Xxs
| Xz xs', S = nthedr ' xs'
end.

(x Proof that if the key w&e looking for isin the rest of dictionary
x then we have gone past thend of the tuple that represents the
x dictionary. x)
Fixpoint indict.inbound(A: SET) (m: list (nat x A)) (il : nat) (t: A) {struct i}
: (lookup' (nthedrim) | = Some}t—lti (lengthm =
match m,i return (lookug (nthedrim) | = Some}t — Iti (length M with
| nil, _= (Ap. matchpin _ = z
return (match zwith None= True
| —=Iti (length nil
end)
with refl_equal= | end)
| _=m’,0= (Ap. ItOn (length ni))
| _=m’,Si = (Ap. [t_n_.S_ _ (indict.inbound mi i’ | p))
end.

Fixpoint lookupnextt: _) (m:list (nat x _)) (I'i: nat) {struct i} :
IT(p:eq(begnatl (fst(nthim(0 — void)))) false
(p’ : eq(lookupg (nthedrim) 1) (Some}),
eq (lookug (nthcdr (S i) m) 1) (Some} =
match m; i
return TT(p: eq(begnat | (fst(nthim(0 — void)))) falsg

(p’ : eq(lookup (nthedrim) 1) (Some}),
eq (lookug (nthedr (Si) m) 1) (Some }

with

Inil, _=App.p’
| xzm',Si = lookupnext mli’
[X:m' 0=
Ap (* (p: eq (begnat | (fst x)) false) *)
(* (p’: eq (lookup’ (x::m") I) (Some t)) *)
(* : eq (lookup’ m’) (Some t) *)=
match (symeqp in_ = f, m
return (eq (if f then Somesnd X else lookupm’ 1) (Some })
— (eq(lookup (nthedr 1(x = m’)) 1) (Some }) with
| refl_equal nil = (AX. x)
| reflLequal _:: _ = (AX. X)
end
end.

(x Definition testsm2i |1’ : nat) m
(x:begnat| (fst(nthim(0, 0))) = false :

((Ai:nat
(begnat | (fst (nthim (0, 0))) =
match i with
| O = false
| S_ = true
end)) 0)
= X. X)

(* Work in progress *)
(x Definition elookug (x : Exp(all (Am, (all (Al, (all (At,
(all (A (p:eq(lookug ml) (Some}l),
(arw (dict’ m) (arw (snat) 1)))))))))) x) =
Am:list (nat x Ty). Al:nat At:Ty.
A label: snat |
efix(v=all (A (i: nat).
all (A (p: PtoS(eq(lookug (nthcdrim) 1) (Some})).
arw (snat i) t)))
(Arecurse(d : Exp (dict’ m)).
Ai:nat A p:PtoS(eq(lookug (nthcdrim) 1) (Some}).
Aindex: snat i
Let pair = esel d indeXindict.inbound miil(let (p) = pinp))in
Letlabel' = (esel pair(enat Q 1t02) in
Letb = ecmp label labélin
Letrecbranch = A p’:
_ (* PtoS (eq (bemat | (fst (nth i m (0— void)))) false) *)
eapp(etapp(etapp(eapp recurse f(S i))
(ptos (lookupnext m | i{stop g) (stop p)))
(eadd(enat 1 indeX in

Letimmbranch = A p’:
_ (* PtoS (eq (bemat | (fst (nth i m (0— void)))) true) *).
esel pair(enat) 1t12in

Letf = esel(]Ai.
all (A (p’: PtoS(eq(begnat I (fst(nthim(0 — void))))
(matchi with 0 = false
| - = trueend))) = t)|
rec_branch imm.branch) b
(match (beqnat | (fst (nthim(0 — void)))) asx
return It (if x then 1 else P2
with true = It12 | _ = It02 end) in
(*eapp f*) (enat Q
). X)

(x

x Local Variables

X €0g— prog— name: "cogtop — emacs— impredicative— set
x End:

x)

