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Abstract. Much recent work on proof-carrying code aims to build certifying
compilers for single-inheritance object-oriented languages, such as Java or C#.
Some advanced object-oriented languages (such as Loom, Moby, and OCaml)
support compiling a derived class without complete information about its base
class. This strategy is necessary for supporting features such as mixins and first-
class classes. Fisher, Reppy, and Riecke designed Links, an untyped intermediate
representation with abstractions suitable for compiling and optimizing a wide
variety of object-oriented languages. Unfortunately, the key abstractions of Links
are not typable in existing typed intermediate languages.
We present a low-level intermediate language inspired by Links, but with a type
system based on the Calculus of Inductive Constructions. It is an appropriate
target for efficient, type-preserving compilation of various forms of inheritance,
even when the base class is unknown at compile time. Moreover, languages (such
as Java) that do not require such flexibility are not penalized for it at run time.

1. Motivation

In most object-oriented languages, programmers factor their implementations over a hi-
erarchy ofclasses. Since the classes in a hierarchy may appear in different compilation
units, one question that the language designer (or implementer) must address is: how
much information about a base class is needed to compile its derived class?

With its emphasis on efficient object layout and method dispatch, C++ [35] re-
quirescompleteinformation about the base class: the number, locations, and types of
all its fields and methods. Indeed, it is because C++ depends on this information that
a seemingly minor change to a base class triggers recompilation of all its descendents.
Java [26] is somewhat more flexible. To support binary compatibility, its class files are
not committed to a particular object layout. A derived class depends only on the names
and types of the base class fields and methods that it uses. Nevertheless, most Java im-
plementations ultimately compile classes to lower-level code using the same layouts
and techniques as C++.

A few modern object-oriented languages allow classes as module parameters (Moby
[17], OCaml [31]) or as first-class values (Loom [6]). Other languages support more
flexible forms of inheritance, such as mixins [27, 4] and traits [32]. If a base class is
not available for inspection when a derived class is compiled, we say the base class is
notmanifest.Implementations of these languages use adictionarydata structure to map



method and field names to their locations in the object layout. The dictionary may be
applied at link time or at run time, as required by the language.

Here is a simple example in OCaml (although it could be expressed just as easily in
Moby). We declare a signature for modules containing acircle class that implements
three methods:center, radius, andarea. The abstract typespec permits different
implementations of this signature to have different constructor arguments.

module type CIRCLE =
sig type spec

class circle : spec ->
object method center : float*float

method radius : float
method area : float

end
end

Below,CircleBBox declares a classbbox that inherits from a (non-manifest) base class
circle, overrides thearea method (using a super call), and defines a new method
bounds.

module CircleBBox = functor (C : CIRCLE) ->
struct
class bbox arg = object (self)
inherit C.circle arg as super
method area = (* of bounding box *)
super#area * 4.0 / pi

method bounds =
let (x,y) = self#center in
let r = self#radius in
((x-r,y-r), (x+r,y+r))

end
end

To compile this functor, we must make do with relatively little information about the
super class. We know it has the three methods specified in the signature, but not their
positions nor whether there are other (hidden) methods, nor even the size of objects. We
will return to this example throughout the paper.

Designing an effectiveintermediate language(IL) for compilers of these languages
is challenging. Although method invocation is atomic at the source level, the IL should
explicitly represent the dictionary search, method dereference, and (indirect) function
call as separate operations. This way the operations may be independently optimized:
combined, inlined, eliminated, or hoisted out of loops. To support such optimizations,
Fisher, Reppy, and Riecke designed Links, a calculus for compiling and linking classes,
based on the untypedλ-calculus. Its primitives can be combined “to express a wide
range of class-based object-oriented features, such as class construction and various
forms of method dispatch.” [19]

In recent years, many researchers have based intermediate languages ontypedλ-
calculi. In addition to supporting type-directed optimizations, typed ILs are suitable



for generating certified object code, such as typed assembly language [28] or proof-
carrying code [29, 2]. Colby et al. [10] and League et al. [24, 25] have developed
certifying compilers for Java, but more advanced class mechanisms are not yet well
supported in this arena.

This paper presents a new intermediate language based on Links, but with a sound
and decidable type system. We adopt the ‘certified binaries’ framework of Shao et al.
[33], in which the types and proofs that govern computations are defined within the
Calculus of Inductive Constructions [12, 13]. Our language has the same primitive op-
erators as Links, so it is an appropriate target for efficient, type-preserving compilation
of various forms of inheritance, even when the base class is unknown at compile time.
Moreover, languages (such as Java) that do not require such flexibility are not penalized
for it at run time.

In the next section, we review the primitives of Links and explain an untyped trans-
lation of our running example. Section 3 introduces the framework of our type language,
and develops the semantics of LITL, our computation language. We revisit the exam-
ple, now in a typed setting, in section 4. Section 5 explores techniques for extending the
encoding to mixins and traits, and a discussion of related work appears in section 6.

2. A review of Links

This section is a summary of the untyped Links representation by Fisher et al. [19].
The syntax of expressions appears in Fig. 1. Apart from the variables (x), abstractions

e ::= x | n | e1 +e2 | λx.e | e1 e2 | 〈e1, ..., en〉 | e1 @e2 | e1 @e2 ← e3

| e # 〈e1, ..., en〉 | {l1 =e1, ..., ln =en} | e # l

Fig. 1.Links expression syntax.

(λx.e), and applications (e e ′) inherited from the untypedλ-calculus, there are three
new features: tuples〈e1, ..., en〉, dictionaries{l1 =e1, ..., ln =en}, and natural numbers
n.

Tuples are indexed by natural numbers (e @i). They also support functional update
and extension. The expressione @i ← e ′ produces a new tuple just likee, but with
the value at offseti replaced bye ′. The expressione # 〈e1, ..., en〉 produces a new tuple
containing all the values in tuplee followed by the valuese1 throughen. Functional
update will be used to implementoverriding,while extension is helpful forinheritance.

Dictionaries maplabels l to values. The expressione # l fetches the value corre-
sponding to labell in dictionarye. Dictionary lookup is a more expensive operation
than fetching a value from a given offset in a tuple. The natural numbersn represent
offsets orslots within tuples. For this purpose, we just need constants and addition.
To write real programs, we would need more data types, conditionals, and recursive
functions. These features are orthogonal, and omitted from the formal presentation for
brevity (although we sometimes use them in examples). The primitive reductions in
Fig. 2 on the next page may help to elucidate these operations. The original paper [19]
includes more details, such as the definition of values (v) and evaluation contexts. We
will recast these details in a typed setting in section 3.



n1 +n2 ; n3 wheren3 = n1 + n2

(λx.e) v ; e[v/x]

〈v0, ..., vn−1〉@i ; vi wherei < n

〈v0, ..., vn−1〉@i← v ′ ; 〈v0, ..., vi−1, v ′, vi+1, ..., vn−1〉
wherei < n

〈v0, ..., vn−1〉 # 〈v ′
0, ..., v ′

m−1〉 ; 〈v0, ..., vn−1, v ′
0, ..., v ′

m−1〉
{l0 =v0, ..., ln−1 =vn−1} # l ; vi wherel = li

Fig. 2.Links reduction rules

The most general strategy for encoding objects is this: represent a method suite
as a tuple of functions (also known as a virtual function table, orvtable), and use a
dictionaryd to map method labels to natural numbers, representing the correspond-
ing slots in the vtable. Objects are tuples with a pointer to the vtable (shared by all
objects created by that class). If the vtable is in the first slot (offset zero) of the ob-
ject x, then the self-application expression for invoking a method namedm would be
((x @0) @(d #m)) x.

There is of course an important connection between the dictionary and the vtable in
this representation, but they need not be packaged together. To compile a language (such
as Moby or OCaml) in which base classes become known at link time, the dictionary
would be a module parameter. All dictionary applications would be lifted to the top level
of each module, so they occur at link time (i.e., functor application time). To compile
Loom, in which classes are first-class values, a dictionary will need to be packaged with
each object and passed around at run time. To compile Java, the dictionary is not needed
at all, because the layout of the super class vtable is completely known at compile time.1

We can represent each class as a triple: the vtable and the dictionary, together with
the sizeof the vtable. The size is needed so that when we extend non-manifest base
classes, we can compute the offsets of new methods added to the vtable. We omit fields
and constructors for convenience, but they pose no additional problems. A class that
inherits from an unknown base class is therefore represented as a function that generates
a new class triple from an existing one. The function is applied once the base class is
provided. Figure 3 on the facing page shows a rough translation of the example from
section 1.

CircleBBox is a function whose argument is a triple representing a super class.
We begin the function by looking up the offsets of all the methods in the super class,
and then constructing the dictionary for the new class we are generating. It has one
new method (bounds), so the new vtable will be larger by one slot. Next, we fetch the
existing implementation ofarea from the super class’s vtablevt; it will be called in the
new implementation ofarea. In the implementation ofbounds, we invoke two methods
on self. We assume that an object is represented as a tuple with a pointer to its vtable
at offset zero. In the final let expression, we create the new vtable using the functional
update and tuple extension operators.

1 Here, we assume compilation to native code, which is done dynamically in many implementa-
tions. The observation is not true when producing JVM class files, which make extensive use
of symbolic references and enjoy binary compatibility.



let CircleBBox= λ〈sz, vt, dc〉.
let centeroffset= dc#centerin
let radius offset= dc# radius in
let area offset= dc#area in
let dc′ = { center= centeroffset, radius= radius offset,

area= area offset, bounds= sz} in
let area super= vt@area offsetin
let area= λself. (area super self) ∗ 4 / PI in
let bounds= λself.

let 〈x, y〉 = ((self @0) @centeroffset) self in
let r = ((self @0) @radius offset) self in
〈〈x − r, y − r〉, 〈x + r, y + r〉〉 in

let vt′ = (vt@area offset← area) # 〈bounds〉 in
〈sz+1, vt′, dc′〉

Fig. 3.Translation of simple class generator into Links. We abuse the syntax a bit in the example:
let x = e in e ′ is the obvious syntactic sugar for((λx.e ′) e), but we also permit pattern-matching
on tuples.

Fisher et al. [19] give further examples and justification for this encoding. Our goal
in this paper is to achieve the benefits of Links in a typed representation. There appear
to be two relatively independent problems here: (1) develop a sound but flexible type
system for the Links primitives, and (2) reflect the various subtype relationships of the
source language into the intermediate language.

Both of these problems are hard. In the first case, it is not just a matter of assigning
standard types—such as those developed by Cardelli and Mitchell [8]—to dictionary
lookup and tuple extension. The way the operators are used in Links, a given dictionary
will map method names to offsets in some set of tuples. Although we know nothing
about the size or structure of a tuple, we can use it anyway because some dictionary told
us where to find the method we need! Subtle invariants govern how these data structures
are linked to each other. To type-check Links, we must capture those invariants in the
type system.

As for the second problem, Links is intended to be a common intermediate language
for various class-based object-oriented languages. Such languages can have wildly dif-
ferent notions of subtyping and subsumption, from the simple name-based class and
interface relationships in Java to explicit upward casts in OCaml to the matching rela-
tion and match types in Loom [6]. One thing working in our favor at the intermediate
language level is that subsumption—where an object of one type may directly be treated
as an object of another (super) type—is not strictly necessary. The compiler may insert
explicit coercions that adjust the types of objects as needed—with no impact on the
run-time behavior—as long as these coercions are proved sound.

3. A new typed intermediate language

Shao et al. [33] introduced a framework “for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.” The set of types that
classify computation terms is defined within the Calculus of Inductive Constructions



(CIC) [13]. The semantics of the computation language can then incorporate proposi-
tions and proofs expressed in CIC.

As an example, Shao et al. define a language with an unchecked array access opera-
tor. One of the operands (apart from the array and the index) is aproof that the index is
less than the length of the array. If both numbers are known at compile-time, generating
these proofs as constants is quite easy. Otherwise, theif expression—used to check the
index against the bound dynamically—provides proofs to its branches that relate to the
semantics of its test expression. This language permits safe bounds check elimination.

The full power of CIC is available in generating the proofs. For example, we may
define and prove a lemma stating that ifi < n then the predecessor ofi is also less
thann. These proofs, however, are (like types) compile-time phenomena only: once an
expression is shown to be well-formed, the proofs and types may be erased and have no
impact on the behavior and performance of the program.

The Calculus of Constructions [12] rests on the most powerful corner of theλ

cube [3]. It can encode Church’s higher-order predicate logic [] via the Curry-Howard
isomorphism [23]. Extended with inductive definitions, it is the basis for the Coq Proof
Assistant [11]. In this paper, we will use a typographically-enhanced variant of Coq 8
syntax.2 In fact, the definitions in this paper are automatically extracted and sent to Coq
for verification.

CIC is most conveniently expressed as a pure type system, where abstractions and
applications at different levels are expressed in a uniform syntax, but classified under
different sorts. The sorts of CIC include SET, PROP, and TYPE. We will use meta-
variablesτ, σ, κ, andf to range over CIC terms, whereτ is usually used for terms
corresponding to traditional types,κ for terms corresponding to traditional kinds,f for
type functions, andσ for everything else. The dependent product type is written as
Πα :σ1. σ2, or asσ1 → σ2 if α does not appear free inσ2. This type is introduced by
abstractions of the formλα :σ1. σ2 and eliminated by applicationsσ1 σ2. The calculus
supports inductive definitions, constructors, and dependent elimination. We freely use
the Coqmatch andFixpoint syntax for eliminations, as well as other syntactic niceties
like implicit arguments.

3.1. Syntax of types and terms

Our first task is to define a set of types for our computation language, LITL.3 We will
need theoption τ datatype of values of typeτ which may exist or not. We will need
natural numbers to reason about the sizes of tuples and the contents of particular slots.
For this, thenat : SET defined in the Coq library will do: it is a standard definition of
natural numbers in terms of zero (O) and the successor function (S). We will also need
sym : SET to represent labels in the dictionary type. Symbols could be represented as
natural numbers, or defined (as in appendix C) as sequences of characters from some
alphabet. Here is the inductive definition of types in LITL:

Inductive Ty : SET ≡
| arw : Ty→ Ty→ Ty

2 With version 8, Coq moved to a weaker, predicative variant of CIC. We need the impredicative
version, which is available with a command-line argument.

3 LITL Is Typed Links.



| snat : nat→ Ty
| tup : nat→ (nat→ Ty)→ Ty
| dict : (sym→ option Ty)→ Ty
| mu′ : Π k : SET. (k→ Ty)→ Ty
| all : Π k : SET. (k→ Ty)→ Ty
| ex : Π k : SET. (k→ Ty)→ Ty.

Definition mu ≡ mu′ (k ≡ Ty).

arw τ1 τ2 is the type of a function mapping values ofτ1 to values ofτ2. snat n̂ is
the singleton type of the natural numbern; that is, the value0 has typesnat Oand
the expression1 +1 has typesnat (S (S O)). tup n̂ f is the type of a tuple of size
n wheref is a type function which maps the index of each field to its type.dict f is
the type of a dictionary wheref is a type function that maps each label to the type of
its corresponding value.mu f, all κ f, andexκ f are thehigher-order abstract syntax
encoding [30] of resp. the iso-recursive typeµx.f x, the universally quantified type
∀x :κ.f x, and the existential type∃x :κ.f x.

To classify an unknown natural number, we hide its value using an existential type:

Definition somenat : Ty ≡ ex snat.

(Thanks to Coq’s implicit arguments feature, thek parameter ofex is inferred from the
type ofsnat.) We can define syntactic sugar for other useful types:

Definition void : Ty ≡ all (λ t. t).
Definition unit : Ty ≡ ex(λ t. t).

The idea is that no values inhabitvoid (more commonly written as∀α : Ty. α), and a
value of typeunit has no property.

Tuples are described by their size, and a (type-level) function that maps indices to
component types. To specify the function, we will often build a list of types and pass it
to theith function:

Definition ith : list Ty→ nat→ Ty ≡
λ l i . nth i l void.

We are usinglist andnth from the Coq library. Lists are constructed fromnil andcons
(::), andnth has typeΠα : SET. snat→ list α → α → α, where theα is implicit. We
usevoid as the default case, for when the index is out of range. Pairs and triples are
used fairly often in our encodings, so it is helpful to define more syntactic sugar:

Definition tup2 : Ty→ Ty→ Ty ≡
λ t u. tup 2(ith (t :: u :: nil)).

Definition tup3 : Ty→ Ty→ Ty→ Ty ≡
λ t u v. tup 3(ith (t :: u :: v :: nil)).

Dictionaries are described by a (partial) function that maps labels to types. The function
relies on theoption : SET→ SET type constructor of Coq, which is eitherNone: Πα :
SET. optionα or Some: Πα :SET. α→ optionα. Again, we specify the function using
a list (in this case a list of pairs, representing a map) and alookupfunction:



Definition map: SET ≡ list (prod sym Ty).
Fixpoint lookup(m : map) (x : sym) {struct m} : option Ty ≡
match m with
| nil ⇒ None
| (y, v) :: m⇒ ifeq x y(Some v) (lookup m x)
end.

The syntax of the type-annotated computation language appears in Fig. 4. It is essen-
tially the same syntax as the untyped version in Fig. 1, but we add a few type operators
and annotations.

e ::= x | n | e1 +e2 | f | e1 e2 | e [τ] | 〈e1, ..., en〉 | e1 @e2 [σ]

| e1 @e2 [σ]← e3 | e # 〈e1, ..., en〉 | {l1 =e1, ..., ln =en} | e # l [σ]

| cast[σ] e | [τ1, e . τ2] | opene1 as[α, x] in e2 | fold e asτ | unfolde

f ::= λx :τ.e | Λα :σ.f

Fig. 4.LITL term syntax.

The tuple selection and update operators now expect a CIC expressionσ, represent-
ing aproof that the index is less than the size of the tuple. (We uselt : nat→ nat→
PROPfrom the Coq library.) The labels in the dictionary construction and lookup syntax
are CIC expressions of setsym. We also added standard type manipulation terms such
as the type abstractionΛα :σ.f and its corresponding type instantiatione [τ], existential
package constructor[τ1, e.τ2] and its corresponding desctructor opene1 as[α, x] in e2,
as well as recursive type folding folde asτ and unfodling unfolde. Finally, there is a
cast expression cast[σ] e. Here,σ should be a proof thateq τ1 τ2. Then, ife has type
τ1, the entire cast expression can be considered to have typeτ2. See the typing rules.

3.2. Dynamic semantics

The dynamic semantics are easy to define. We define values as a subset of the expres-
sions according to the grammar in Fig. 5. Then we define primitive reductions and
congruence rules.

v ::= n | f | 〈v1, ..., vn〉 | {l1 =v1, ..., ln =vn} | [τ1, v . τ2] | fold v asτ

Fig. 5.Values.

Primitive reductions e ; e ′

n1 +n2 ; n3 wheren3 = n1 + n2 (1)

(λx : .e) v ; e[v/x] (2)

(Λα : .f) [τ] ; f[τ/α] (3)

cast[ ] v ; v (4)



open[τ, v . ] as[α, x] in e ; e[v/x][τ/α] (5)

unfold(fold v asτ) ; v (6)

〈v1, ..., vn〉@i [ ] ; vi+1 (7)

〈v1, ..., vn〉@i [ ]← v ′ ; 〈v1, ..., vi, v
′, vi+2, ..., vn〉 (8)

〈v1, ..., vn〉 # 〈v ′
1, ..., v ′

m〉 ; 〈v1, ..., vn, v ′
1, ..., v ′

m〉 (9)

{l1 =v1, ..., ln =vn} # li [ ] ; vi (10)

The remaining congruence rules, describing the order of evaluation, are completely
straightforward; they can be found in the appendix A.

3.3. Static semantics

To specify the semantics of this language, one more definition will be needed:

Fixpoint append(n : nat) (f g : nat→ Ty) (i : nat)
{ struct i } : Ty ≡

match i with
| O⇒ match n with O⇒ g O | ⇒ f O end
| S i⇒ match n with

| O⇒ g (S i)
| S n⇒ append n(λ x. f (S x)) g i
end

end.

Now we get to the static semantics, in the next few subsections. The judgments are
∆ `CIC τ : σ from the type language and∆ ; Γ ` e : τ for term formation. The
environment∆ maps type variables to their kinds, whileΓ maps term variables to their
types.

LITL enjoys the subject reduction and progress properties. Proofs are available in
appendix B.

Term formation ∆ ; Γ ` e : τ

∆ `CIC Γ(x) : Ty

∆ ; Γ ` x : Γ(x)
(11)

∆ ; Γ ` n : snatn̂
(12)

∆ ; Γ ` e1 : snatτ1 ∆ ; Γ ` e2 : snatτ2

∆ ; Γ ` e1 +e2 : snat(plusτ1 τ2)
(13)

∆ `CIC τ : Ty ∆ ; Γ, x :τ ` e : τ ′

∆ ; Γ ` λx :τ.e : arw τ τ ′ (14)

∆ `CIC σ : SET ∆, α :σ ; Γ ` f : τ α 6∈ ∆

∆ ; Γ ` Λα :σ.f : all (λα :σ. τ)
(15)



∆ ; Γ ` e1 : arw τ ′ τ ∆ ; Γ ` e2 : τ ′

∆ ; Γ ` e1 e2 : τ
(16)

∆ ; Γ ` e : all τ ′ ∆ `CIC τ : σ ′

∆ ; Γ ` e [τ] : τ ′ τ
(17)

∆ `CIC σ : eqτ1 τ2 ∆ ; Γ ` e : τ1

∆ ; Γ ` cast[σ] e : τ2
(18)

∆ `CIC τ1 : σ ∆ `CIC τ2 : σ→ Ty
∆ `CIC σ : SET ∆ ; Γ ` e : τ2 τ1

∆ ; Γ ` [τ1, e . τ2] : exτ2
(19)

∆ ; Γ ` e : exτ ∆ `CIC τ ′ : Ty
∆, α :σ ; Γ, x : (τ α) ` e ′ : τ ′

∆ ; Γ ` opene as[α, x] in e ′ : τ ′ (20)

∆ ; Γ ` e : τ (muτ)

∆ ; Γ ` fold e asτ : muτ
(21)

∆ ; Γ ` e : muτ

∆ ; Γ ` unfolde : τ (muτ)
(22)

∆ ; Γ ` ei : τ î ∀ i < n

∆ ; Γ ` 〈e0, ..., en−1〉 : tup n̂ τ
(23)

∆ ; Γ ` e1 : tup σ1 τ1 ∆ ; Γ ` e2 : snatσ2

∆ `CIC σ : lt σ2 σ1

∆ ; Γ ` e1 @e2 [σ] : τ1 σ2
(24)

∆ ; Γ ` e1 : tup σ1 τ1 ∆ ; Γ ` e2 : snatσ2

∆ ; Γ ` e3 : τ1 σ2 ∆ `CIC σ : lt σ2 σ1

∆ ; Γ ` e1 @e2 [σ]← e3 : tup σ1 τ1
(25)

∆ ; Γ ` e : tupτ1 τ2 ∆ ; Γ ` 〈e1, ..., en〉 : tupτ ′
1 τ ′

2

∆ ; Γ ` e # 〈e1, ..., en〉 : tup (plusτ1 τ ′
1) (appendτ1 τ2 τ ′

2)
(26)

∆ ; Γ ` ei : τi ∧ τ l̂i = Someτi ∀ i < n

l 6∈ l⇒ τ l̂ = None

∆ ; Γ ` {l0 =e0, ..., ln−1 =en−1} : dict τ
(27)

∆ ; Γ ` e : dict τ ∆ `CIC σ : eq(τ l̂) (Someτ ′)

∆ ; Γ ` e # l [σ] : τ ′ (28)

∆ ; Γ ` e : τ τ =βηι τ ′

∆ ; Γ ` e : τ ′ (29)



4. Typed compilation of classes

We now return to the running example, whose Links translation was provided in Fig. 3.
In this section, we will develop the typed encoding of that example in stages, showing
additionally how objects are created from classes, and how various implementations of
the base classcircle can be specified.

4.1. Class representation

Recall that in Links,CircleBBoxwas represented as a function that generates a new
class from a given one. The class argument was depicted as a triple〈sz, vt, dc〉. We
know very little about this (non-manifest) base class: the size and layout of the vtable
(vt) are unknown. We just know that the dictionary (dc) contains bindings for the three
known methods:center, radius, andarea. Moreover, the dictionary maps the method
names to offsets that may be applied to thevt to select functions of the correct type.
Many different representations of this base class are possible.

The components of the class triple must be typed, so we begin by supposing thatsz
has typesnat n(for somen), thatvt has typetup n f (for somef ), and finally thatdc
has typedict g (for someg). The precise values of these parameters (n, f , andg) are
not known, but we at least need a way to express constraints on them in CIC. Here is a
definition of the set ofrepresentationsof a class, and three selector functions.

Definition Rep: SET ≡
(nat × (Ty→ nat→ Ty) × (sym→ option Ty)).

Definition size ≡ λ r : Rep.
match r with (n, , )⇒ n end.

Definition tupfn ≡ λ r : Rep.
match r with ( , f , )⇒ f end.

Definition dictfn ≡ λ r : Rep.
match r with ( , , g)⇒ g end.

We have made one small departure from the description above: the type of the tuple
function f includes an extraTy argument. This is because the elements of the tuple are
methods, or functions over an explicitself parameter. TheTy argument is the type of
self. This cannot be fixed in one place, but must be a parameter because the method will
be reused in derived classes with different types for self. We will demonstrate how this
works in section 4.3.

Let us specify two distinct representations ofcircle, the base class in our example.
The methods use floating-point types, which we have not defined formally, but we can
suppose that they exist:

Parameter float : Ty.
Definition fpoint : Ty ≡ tup2 float float.
Definition frect : Ty ≡ tup2 fpoint fpoint.

Additionally, fpoint is a pair of floats, andfrect is a pair of points (for thebounds
method). Here is the simplest representation, where the 3 methods appear in order in
the vtable, with nothing extra:



Definition circA rep : Rep ≡
(3, λ self.

ith (arw self fpoint:: arw self float::
arw self float:: nil),

lookup((center, snat 0) :: (radius, snat 1) ::
(area, snat 2) :: nil)).

With this representation, we have the following equivalences in CIC:

size circArep =βηι 3
dictfn circA rep center=βηι 0

tupfn circA repτ 0 =βηι arw τ fpoint

We can encode a more complex representation, where the methods appear in different
slots, and some slots are taken up by unknown values:

Definition circB rep : Rep ≡
(5, λ self.

ith (arw self (ex snat) :: arw self float::
arw self fpoint:: snat 0::
arw self float:: nil),

lookup((radius, snat 4) :: (area, snat 1) ::
(center, snat 2) :: nil)).

Here, slots 0 and 3 are taken up by other values; one of them is not even a function.
Still, thedictfn tells us where to find the three circle methods.

4.2. Class specification

Now, how do we ensure that the threeRepcomponents (n, f , g) correspond with one
another? The constraint, roughly, is that for each methodm, there exists somej : nat
such thatj < n andg m= Some(snat j) andf j = τ whereτ is the expected type of the
method. We can encode precisely this property in CIC:

Inductive HasMethod(r : Rep) (m : sym) (t : Ty) : SET ≡
method: Π i : nat. lt i (size r)→
eq(dictfn r m) (Some(snat i))→
(Π self. eq(tupfn r self i) (arw self t))→
HasMethod r m t.

Notice that the offseti is specified in themethodconstructor, but does not appear in
theHasMethodterm itself. This is a form ofdependent pair,and thanks to the depen-
dent elimination feature of CIC, we can create selectors that mimic thedot notation
described by Cardelli and Leroy [7]. Here is the term to fetch the offset:

Definition offset ≡ λ r m t. λ p : HasMethod r m t.
match p with method i pf dc tp⇒ i end.

The other selectors have return types that include theoffsetof the parameter itself.



Definition proof ≡ λ r m t. λ p : HasMethod r m t.
match p asq return lt (offset q) (size r)
with method i pf dc tp⇒ pf end.

Definition dicteq ≡ λ r m t. λ p : HasMethod r m t.
match p asq return eq(dictfn r m) (Some(snat(offset q)))
with method i pf dc tp⇒ dc end.

Definition tupeq ≡ λ r m t. λ p : HasMethod r m t.
match p asq return Π s. eq(tupfn r s(offset q)) (arw s t)
with method i pf dc tp⇒ tp end.

So, if we had some evidence that a representationr has a methodcenterreturning an
fpoint, it would be expressed as a termp : HasMethod r m fpoint. We can tuple several
HasMethodterms to create asignaturefor a class:

Definition circ signature≡ λ r.
(HasMethod r center fpoint×
HasMethod r radius float×
HasMethod r area float).

Now we create a term to use as evidence thatcircB rep meets thecirc signature. It
consists of proofs that the indices in the dictionary are less than the tuple size, that the
types in the vtable match the signature, and so on.

Definition self equal ≡ λ t s. refl equal(arw s t).
Definition circB witness: circ signature circBrep ≡

(method circBrep center(le S (le S (le n 3)))
(refl equal ) (self equal fpoint),

method circBrep radius(le n 5)
(refl equal ) (self equal float),

method circBrep area
(le S (le S (le S (le n 2))))
(refl equal ) (self equal float)).

Not all of themethodparameters need to be specified, thanks to Coq’s implicit argu-
ments feature. The offset of each method, for example, is inferred from the proof term.
Thecentermethod appears at offset 2, so we must show that2 < 5. The lt relation in
the Coq library is specified in terms ofle (less than or equal):lt i n ≡ le (S i) n. The
term le n 3 is the proof of3 ≤ 3, and the twole S constructors transform that into a
proof of3≤ 5 or, equivalently,2 < 5.

We may wish to define projections overcirc signaturetypes. These will be used
later in examples:

Definition circ center:
Π r. circ signature r→ HasMethod r center fpoint≡

λ r p. match p with (ce, ra, ar)⇒ ceend.
Definition circ radius :
Π r. circ signature r→ HasMethod r radius float≡

λ r p. match p with (ce, ra, ar)⇒ ra end.



Definition circ area :
Π r. circ signature r→ HasMethod r area float≡

λ r p. match p with (ce, ra, ar)⇒ ar end.

4.3. Object types and method invocation

Now that we can encode class representations (and constraints on them), we are ready
to define the types of objects. In this section, we will represent an object as a pair
containing the dictionary and the vtable. We ignore object fields throughout this work,
because they are orthogonal. Also, we mentioned before that in Moby and OCaml,
where classes can be functor parameters, it is not necessary to package the dictionary
with each object. In section 5, we demonstrate an optimized encoding that separates the
two components, so that dictionary lookups can be hoisted to the module level. Here is
the type of an object tuple, given a class representation and the type of self:

Definition objrep : Rep→ Ty→ Ty ≡ λ r self.
tup2 (dict (dictfn r))

(tup (size r) (tupfn r self)).

The self type is resolved with a fixpoint, meaning that the self parameter must be an
object of exactly the same type as the object containing the method.

Definition selfty: Rep→ Ty ≡
λ r. mu(objrep r).

Finally, we must hide the representation type. Two existential quantifiers are used here.
The outer one hides theRep, while the inner one hides the evidence that the representa-
tion matches some specified signature.

Definition objty′′ : Π sig : Rep→ SET. Π r. sig r→ Ty ≡
λ sig r . selfty r.

Definition objty′ : (Rep→ SET)→ Rep→ Ty ≡
λ sig r. ex(objty′′ sig r).

Definition objty : (Rep→ SET)→ Ty ≡
λ sig. ex(objty′ sig).

So, the type of a circle object isobjty circ signature. In more conventional notation, the
object encoding is:

∃r :Rep.∃p:circ signature r. µα :Ty. objrep r α

(It is not necessary to split the existentials over three Coq definitions, but it allows for
shorter annotations in some programs.)

Now we present a function that invokes theradiusmethod on an objectx. In sec-
tion 2, with untyped terms, this was written simply as((x @1) @((x @0) # radius)) x,
which in A-normal form [20] looks like:

let invokeradius= λx.

let dc = x @0 in
let vt = x @1 in
let j = dc# radius in
let f = vt@ j in
f x



where slot 0 ofx holds the dictionary, and slot 1 the vtable. Justifying all these oper-
ations in a sound type system is clearly more involved. Figure 6 contains a function
that takesx as a parameter, and callsradius. The code is shown in A-normal form for

let invokeradius= λx :objty circ signature.
openx as[r, x1] in
openx1 as[p, x2] in
let x3 = unfoldx2 in
let dc = x3 @0 [lt02] in
let vt = x3 @1 [lt12] in
let j = dc# radius[dicteq(circ radius p)] in
let f = vt@ j [proof (circ radius p)] in
let f = cast[tupeq(circ radius p) (selfty r)] f in
f x2

Fig. 6.Code to invoke theradiusmethod on an objectx.

readability, but this is not essential. Apart from the open-open-unfold sequence in the
beginning, the burden imposed by the type system includes the proof annotations on
tuple selection and dictionary lookup, and the cast expression just before the (virtual)
function call. The termslt02 andlt12 in the select statements refer to these proof con-
stants:

Definition lt02 : lt 0 2 ≡ le S (le n 1).
Definition lt12 : lt 1 2 ≡ le n 2.

If the objects contained fields, then these proofs would depend on the number of fields
in the tuple. To support this, the existential would also need to hide the size of the tuple,
m, and a proof oflt 1 m (from which the proof oflt 0 m could be derived).

These type operators and proof annotations buy quite a lot in terms of flexibility
and safety. In languages that support non-manifest base classes, the representations of
classes and objects have complex invariants that are now enforced by the type system
of the intermediate language.

4.4. Class types and instantiation

The type of a class is slightly more complex because the vtable in the class plays a
different role than the vtable embedded in an object (even though they are the same data
structure at run time). Methods must be inheritable. This means that theself parameter
will have different types at different points in the hierarchy. Therefore, in the class, the
vtable must be parameterized by the type of self. The only restriction is that self must
have at least the methods defined in the class in which the method is defined. We call
this parameterized vtable amethod suite:

Definition methsuite′′ :
Π sig : Rep→ SET. Rep→ Π r ′ : Rep. sig r′ → Ty ≡

λ sig r r ′ . tup (size r) (tupfn r (selfty r′)).
Definition methsuite′ : (Rep→ SET)→ Rep→ Rep→ Ty ≡



λ sig r r ′. all (methsuite′′ sig r r ′).
Definition methsuite: (Rep→ SET)→ Rep→ Ty ≡

λ sig r. all (methsuite′ sig r).

Notice the subtle difference in usage between the representationsr andr ′. The former
is the representation of the current class (and determines the methods that appear in
the tuple), while the latter is the representation of some subclass that is inheriting these
methods. Its only impact is on the type of the self parameter.

We noted previously that each class is represented as a triple. Here is the definition
of the triple, in terms of the class signaturesigand representationr.

Definition classtup: (Rep→ SET)→ Rep→ Ty ≡
λ sig r. tup3 (snat(size r))

(dict (dictfn r)) (methsuite sig r).

As with object types, we must conceal the representation along with the proof that it
meets the specified signature.

Definition classty′′ : Π sig : Rep→ SET. Π r. sig r→ Ty ≡
λ sig r . classtup sig r.

Definition classty′ : (Rep→ SET)→ Rep→ Ty ≡
λ sig r. ex(classty′′ sig r).

Definition classty: (Rep→ SET)→ Ty ≡
λ sig. ex(classty′ sig).

This way, both the ‘A’ and ‘B’ implementations of the circle class can appear to have
the same type:classty circsignature.

Figure 7 contains an implementation of the ‘new’ operator, that creates a new object
from a class. It instantiates the method suite with the representation of the provided

let newcirc = λc0 :classty circsignature.
openc0 as[r, c1] in
openc1 as[p, c2] in
let dc = c2 @1 [lt13] in
let ms= c2 @2 [lt23] in
let vt = ms[r] [p] in
let x = fold 〈dc, vt〉 asobjrep r in
[r, [p, x . objty′′ circ signature r]

. objty′ circ signature]
Fig. 7.Create a new circle object, given a circle class.

class, so that the methods will accept the new object as the self argument. Then, the
dictionary and vtable are paired together, folded, and re-packaged. As before,lt13 and
lt23 stand for constant proof terms.

There is nothing in Fig. 7 that is specific to the circle class, except for the appearance
of circ signaturein type annotations. Indeed, we could easily abstract over this, creating



a generic ‘new’ function—if we defined a TYPE-level universal quantifier inTy:

allT : Πt :TYPE. (t→ Ty)→ Ty

Then the ‘new’ function would have type

allT (λsig:Rep→ SET. arw (classty sig) (objty sig))

and would be instantiated withcirc signatureto create circles, withpoint signatureto
create points, etc. Adding this TYPE-level quantifier is no problem—Shao et al. [33]
have one in their computation language—but in this case it may not be as useful as
it first seems. Once we add support for fields and constructors, the code to construct
objects of different classes wouldnot be identical, as it is in this idealized form.

4.5. Class declarations

These sophisticated representations of class and object types would be for naught if we
are unable to implement a circle class in the first place. In this section, we demonstrate
that the typeclassty circsignatureis habitable. See the definition of the ‘B’ circle class
in Fig. 8. We do not provide complete implementations of the methods: for that, we

let circB =
let dc = {radius=4, area=1, center=2} in
let ms= Λr :Rep.Λp:circ signature r.

〈λs:selfty r. /* code of typeex snat*/ ,
λs:selfty r. /* code of typefloat */ ,
λs:selfty r. /* code of typefpoint */ ,
0,

λs:selfty r. /* code of typefloat */ 〉 in
let c = 〈5, dc, ms〉 in
[circB rep,

[circB witness,
c . classty′′ circ signature circBrep]

. classty′ circ signature]
Fig. 8.An implementation of the circle class signature.

would need to define floating-point operations and fields.
With this class, we can now connect together the code in the two previous figures

like this: invokeradius(newcirc circB). This creates a new circle fromcircB, invokes
the radius method of that object, and returns afloat. We leave it as an exercise for
the reader to define a different implementationcircA, using thecircA rep defined on
page 11.

4.6. Extending an unknown base class

Now we have come to the heart of the whole problem: typed compilation against a non-
manifest base class. Our running example extends some unknown class (that matches
the circle signature) by overridingareaand adding a new methodbounds. In CIC, we
can define a signature for this derived class,bbox:



Definition bboxsignature≡ λ r.
(HasMethod r center fpoint×
HasMethod r radius float×
HasMethod r area float×
HasMethod r bounds frect).

The representation of the derived class will of course depend on the layout of its parent.
Still, we can define a function to produce abboxrepresentation, given another repre-
sentationr that matches thecirc signature:

Definition bbox rep : Π r : Rep. circ signature r→ Rep ≡
λ r p.

(plus 1(size r),
λ self. append(size r) (tupfn r self)

(ith (arw self frect:: nil)),
lookup

((center, snat(offset(circ center p))) ::
(radius, snat(offset(circ radius p))) ::
(area, snat(offset(circ area p))) ::
(bounds, snat(size r)) :: nil)).

This works by retrieving the offsets of the inherited methods from the witnessp, and
placing theboundsmethod in slotn—the size of the parent representation. The tuple
function usesappendto join the type of the new method with the types of the parent.
With this (parameterized) representation, we have the following:

size(bbox rep circB witness) =βηι 6

dictfn (bbox rep circB witness) center=βηι Some(snat2)
dictfn (bbox rep circB witness) bounds=βηι Some(snat5)

tupfn(bbox rep circB witness) τ 2 =βηι arw τ fpoint
tupfn(bbox rep circB witness) τ 5 =βηι arw τ frect

The bbox rep function appears to take just one argument because Coq can infer ther
parameter from the witness.

The next step is to prove that the extended representation matches thebboxsigna-
ture. This is more difficult than it may seem at first. It depends critically on the semantics
of append. Specifically, extending a tuple with new elements does not alter the types of
the existing elements. We will use Coq tactics to prove this, but the resulting proof can
be expressed as a normal term in CIC. The proof refers tolt S n, a lemma in the Coq
library stating that ifS n< S mthenn < m.

Lemma appendsemantics1 :
Π i n. lt i n → Π f g. eq(append n f g i) (f i).

Proof.
induction i. induction n.

intro H; inversionclear H.

intros f g; apply(refl equal(f 0)).
induction n.



intro H; inversionclear H.

intro H; assert(lt i n).
apply lt S n; assumption.
intros f g; exact(IHi n H0 (λ x. f (S x)) g).

2

The following simple lemma will express the same result in a more useful form, so that
it matches one of the properties required byHasMethod.

Lemma extensionokay: Π i n. lt i n → Π f t.
(Π s. eq(f s i) (arw s t))→ Π g self.
eq(append n(f self) (g self) i) (arw self t).

Proof.
intros i n lt f t p g self.
assert(H1 ≡ p self).
assert(H2 ≡ appendsemantics1 lt (f self) (g self)).
exact(trans eq H2 H1).

2

With this result, we can take information about a base class tuple, and transform it into
information about a derived class tuple, to which other methods have been appended.

We will also need to extend thelt proofs withinHasMethod. For a given offset (i),
known to be less than the size of the parent tuple (n), it is also of course less than the
size of the extended tuple:

Lemma lt plus bound: Π i n k. lt i n → lt i (plus k n).
Proof.
intros i n k H.

assert(L ≡ lt plus trans i n k H).
rewrite (plus comm k n).
assumption.

2

This was a simple corollary oflt plus trans in the Coq library, whose result is commu-
tative (plus n k).

These lemmas have helped us prove things about inherited methods. To prove any-
thing about new methods (such asbounds), we will need another lemma about the
semantics ofappend. It describes what happens when the index is≥ n.

Lemma appendsemantics2 : Π k n f g.
eq(append n f g(plus k n)) (g k).

Proof.
induction k. induction n.

intros f g; exact(refl equal(g 0)).
intros f g; exact(IHn (λ x. f (S x)) g).

induction n.
intros f g; exact(f equal g(plus 0 r (S k))).
intros f g.



assert(eq
(append n(λ x. f (S x)) g (plus k(S n)))
(append n(λ x. f (S x)) g (plus(S k) n))).

apply
(f equal(append n(λ x. f (S x)) g)
(symeq(plus SnmnSm k n))).

apply(trans eq H (IHn (λ x. f (S x)) g)).
2

Again, with transitivity of equality, we coerce this into a more usable form.

Lemma extensioneffect: Π k g t.
(Π self. eq(g self k) (arw self t))→ Π n f self.
eq(append n(f self) (g self) (plus k n)) (arw self t).

Proof.
intros k g t p n f self.
assert(L ≡ appendsemantics2 k n (f self) (g self)).
assert(M ≡ p self).
exact(trans eq L M).

2

Finally, we can prove that a representation matchingcirc signaturecan be extended by
bbox rep to a representation matchingbboxsignature. To show how this proof may be
adapted to other class signatures, we have defined tacticals for the two kinds of cases:
inherited methods and new methods.

Definition bboxwitness:
Π r. Π p : circ signature r. bboxsignature(bbox rep p).

Proof.
let inherit ≡ λ name ty sel.

apply(method(bbox rep p) name
(lt plus bound 1(proof (sel r p)))
(refl equal(Some(snat(offset(sel r p)))))
(extensionokay(proof (sel r p)) (tupfn r)

(tupeq(sel r p)) (λ s. ith ))) in
let add ≡ λ name ty k pf.

apply(method(bbox rep p) name
(plus lt compatr k 1 (size r) pf)
(refl equal(Some(snat(plus k(size r)))))
(extensioneffect k

(λ s. ith (arw s frect:: nil))
(λ s. refl equal(arw s ty))
(size r) (tupfn r))) in

(repeat constructor;
[ inherit center fpoint circcenter
| inherit radius float circradius
| inherit area float circarea



| add bounds frect 0(le n 1)
]).

2

The inherit andadd tacticals are specific to thebboxextension only where they include
the literal 1 (representing the number of methods added bybbox) and refer to the types
of the new methods (arw s frect). This is important because, in practice, a compiler
would produce this proof. It must be automatically derivable from the base and derived
class signatures.

Just one more definition is needed to extend a non-manifest base class. We instanti-
ate the super class dictionary with the representation of the derived class. This is what
permits us to passbboxobjects to thosecircle methods. To do this, we must prove that
the derived representation still matches the super class signature. Fortunately, this is
trivial: just a repackaging of theHasMethodproperties, to drop the one referring to the
boundsmethod:

Definition bbox2circ:
Π r. bboxsignature r→ circ signature r ≡

λ r p. match p with (ce, ra, ar, bo)⇒ (ce, ra, ar) end.

Figure 9 contains the complete code for extending an unknown base class. It corre-
sponds to the OCaml functor given in the introduction, and is a typed version of the
Links code in section 2. Most of the non-trivial typing aspects have already been ex-
plained. Look for occurrences ofbbox rep, bboxwitness, andbbox2circin the typing
annotations. In our example, theareamethod included a super call. We omitted the call
itself in the figure (along with the rest of the method bodies), but it works very simply.
At the point where we definearea m′, we have already selected the area method from
vt, the super class vtable. Within the body ofarea m′, we would applyarea m to s to
call the super-class method.

Also, notice the cast applied to the overridden area method before updating the
vtable. It is the inverse of the cast used when selecting a method from the vtable. We
just definedarea m′, so it has an arrow type to begin with. But the designated slot of
the vtable has an opaque type, literallytupfn r (selfty r′′) (offset(circ area p)), which
cannot be reduced becauser is a variable. But we can use (a symmetric version of) the
tupeqproperty to cast from the concrete to the opaque, and then update that slot of the
vtable.

5. Extensions

This section explores ways to extend the basic techniques in several directions, giving
some idea of the versatility of LITL.

5.1. Encoding subsumption as type coercions

Object-oriented languages enjoysubsumption:a context expecting an object of type
t will be satisfied with an object of somesubtypeof t. The precise rules about what
constitutes a subtype, and where subsumption may be used, differ with each language.

Our intermediate language does not directly support subtyping. Nevertheless, if we
examine object types of two classes in a subclass relationship, we notice they differ



let circle bbox= λc:classty circsignature.
openc as[r, c] in
openc as[p, c] in
let sz= c@0 [lt03] in
let dc = c@1 [lt13] in
let ms= c@2 [lt23] in
let ci = dc#center[dicteq(circ center p)] in
let ri = dc# radius[dicteq(circ radius p)] in
let ai = dc#area[dicteq(circ area p)] in
let dc′ = {center= ci, radius= ri , area= ai, bounds= sz} in
let ms′ = Λr ′′ :Rep.Λp′′ :bboxsignature r′′.

let vt = ms[r ′′] [bbox2circ p′′] in
let boundsm = λs :selfty r′′. /* code of typefrect */ in
let area m = vt@ai [proof (circ area p)] in
let area m = cast[tupeq(circ area p) (selfty r′′)] area m in
let area m′ = λs :selfty r′′. /* code of typefloat */ in
let area m′ =

cast[symeq(tupeq(circ area p) (selfty r′′))] area m′ in
let vt′ = vt@ai [proof (circ area p)]← area m′ in
vt′ # 〈boundsm〉 in

let c′ = 〈1 + sz, dc′, ms′〉 in
let c′ = [bboxwitness p,

c′ . classty′′ bboxsignature(bbox rep p)] in
[bbox rep p, c′ . classty′ bboxsignature]

Fig. 9.Code to extend a non-manifest base class.



only in what is known about the (hidden) representation. It is always possible to open
and repackage the object withlessinformation about its representation. The example in
Fig. 10 casts a bbox object to a circle (its super class). This is done entirely with type

let upcast= λx :objty bboxsignature.
openx as[r, x] in
openx as[p, x] in
[r, [bbox2circ p, x . objty′′ circ signature r]

. objty′ circ signature]
Fig. 10.To upcast a bbox to a circle, we open and repackage the object.

coercions, so it has no cost at run time. Thebbox2circoperator, defined on page 21,
coerces the witness from typebboxsignature rto typecirc signature r, by dropping
the information about theboundsmethod.

This alone is sufficient to support many object-oriented languages, in which sub-
sumption is really justforgetting information about some of the methods or fields in
the object. This is equivalent to so-calledwidth subtyping on records. Some languages
(including OCaml) support limited forms ofdepthsubtyping, where the types of the
fields or methods themselves can change, in a co- or contra-variant manner.

Subtyping can always be encoded using explicit coercions, but that would have a
negative impact on the efficiency of our object code—unless the coercions are just type-
level operators, like the open and pack in Fig. 10. We believe it would be possible to
define an inductive relationsubtype: Ty → Ty → SET in CIC, whose constructors
implement the usual subtyping rules. A term that inhabitssubtypeτ1 τ2 would thus be
equivalent to a meta-logical derivation ofτ1 ≤ τ2. Ourcastoperator would be extended
to accept proofs ofsubtypeτ1 τ2 rather than justeq τ1 τ2. This is reminiscent of the
explicit coercion techniques proposed by Crary [15], but formulating the techniques
within our framework remains an avenue for future work.

5.2. Removing the dictionary from object representations

One of the advantages of Links, as a common IL for object-oriented languages, is its
pay-as-you-go efficiency. Languages that do not need dictionaries to find method offsets
at run time are not required to use them. For example, if method offsets are known at
compile time, they can be hard-coded into the object types, without needing dictionaries
or even symbols. Here are updates to some of the definitions from the last section.

Definition FixedRep: SET ≡
(nat × (Ty→ nat→ Ty)).

Inductive FixedMethod(r : FixedRep) (i : nat) (t : Ty) : SET ≡
fmethod: lt i (fst r)→
(Π self : Ty. eq(snd r self i) (arw self t))→
FixedMethod r i t.

We have just removed the dictionary function from the representation. The offseti now
appears in theFixedMethod, rather than remaining hidden. The signature for a circle can
be expressed as follows—note the replacement of method names by method offsets:



Definition circ fsig : FixedRep→ SET ≡ λ r.
(FixedMethod r 0 fpoint×
FixedMethod r 1 float×
FixedMethod r 2 float).

The object type is the same as before, but with offsets now exposed in the bound of one
of the existential quantifiers. Supporting link-time (but not run-time) use of dictionaries
is more involved. If classes can be module parameters, but modules are not recursive,
then all the dictionary lookups ought to be lifted to the top level in each module, outside
of any loops. In this case, dictionaries should not be packaged within objects, but should
just be module parameters.

5.3. Supporting mixins and traits

Bracha and Cook [4] define a mixin as an “abstract subclass; i.e., a subclass definition
that may be applied to different super classes to create a related family of modified
classes.” This seems similar in spirit to the parameterized class we defined. The techni-
cal difference is that “mixins properly extend the class that they are applied to” [19]. In
our example, base class methods not specified in theCIRCLE signature remain hidden
in the derived class. In contrast, a mixin can extend an unknown base class, where any
methods unspecified by the mixin are preserved in the interface of the derived class.

To adapt mixins to our example, aBboxMixin could take any class withcenterand
radiusmethods, and add aboundsmethod. Any other super class methods (area, move,
enlarge, etc.) would be preserved in the sub class. A mixin thus defines a representation
transformerthat overlays an existing dictionary with some new methods.

With simple parameterized classes, the signature can be specified as part of the
definition. With mixins, this is not so simple. The signature will not be known until the
point of instantiation. We do, however, need to know a few things about the transformed
representation. First, it must have aboundsmethod, which returns a pair of points (type
frect). Second, any methods it previously defined arepreserved.There is one exception:
if it had a boundsmethod previously, that one isshadowedby the newer definition.
Thus, we must be able to say that a method label is not equal tobounds:

Definition noteq: sym→ sym→ PROP ≡ λ m1 m2.
Π k : SET. Π f g : k.
ifeq m1 m2 f g= g.

Definition bbmixsig : (Rep→ TYPE)→ Rep→ TYPE ≡
λ sig r. Π r ′. (HasMethod r′ bounds frect→

Π m t. noteq m bounds→
HasMethod r m t→ HasMethod r′ m t)→ sig r′.

The above definition plays the role of a signature for the mixin, where thesigparameter
is the ultimate signature, provided when the mixin is applied to a super class;r is the
super class representation, andr’ is the subclass representation.

Traits are another, similar mechanism for code reuse [32]. A trait is just a set of
named methods, that can depend on some other (specified) methods. “The main differ-
ence between mixins and traits is that mixins force a linear order in their composition”
[18]. We have not yet determined whether our encoding of mixins extends to traits, but
we intend to pursue this as future work.



6. Related work

There is a long history of encoding objects and classes in typedλ-calculi and other non-
object-based representations [5]. Several recent encodings are specifically designed for
use in certifying compilers, where run-time efficiency is a concern [9, 14, 22, 24]. They
each have their advantages—see [9] or [24] for comparisons—but none of them support
separating offset determination from method retrieval.

The encoding presented in this paper is a natural generalization of the one developed
by League et al. [24] for Java. They specified tuples as sequences ofrows [31], where
the tail of a sequence could be abstracted by a type variable. An object with a method
in slot zero returningτ would have the type:

∃ρ :Ty→ R1. µα :Ty. 〈α→ τ ; ρ α〉

where the quantified variableρ conceals the types of any additional methods. Compare
that to the encoding introduced in this paper:

∃n :nat.∃f :Ty→ nat→ Ty.
∃p : (0 < n ∧ (∀β :Ty. f β 0 = arw β τ)).
µα :Ty. tup n (f α)

This is the ‘fixed’ representation from section 5.2. In both cases, an existential hides a
specification of the elements of the tuple (ρ above,f below), parameterized by the type
of the explicit self argument. Both encodings use a recursive type in the same way: to
equate the type of the self argument with the type of the object containing the methods.
Finally, both encodings reveal (in different ways) the types of known methods in the
tuple.

Stone [34] developed a Calculus of Objects and Indices (COI) which has some
similarities to our work. Although it is anobjectcalculus (method invocation is atomic)
Stone says, “it may be possible to use the ideas here to obtain a typed variant [of Links].”
Like our language, COI supports dictionaries and first-class indices. Rather than single-
ton types, indices “have types of the formτ⇒σ; this type classifies offsets that access
a component of typeσ within an object of typeτ.”

As specified, COI is not suitable as an intermediate language for compilers, or as a
target language for proof-carrying code. It takes objects and object extension as primi-
tive, and encodes classes in terms of objects. The class encoding does not supportsuper
calls, though it seems possible to add them. Due to the granularity of the calculus, op-
timizations like caching method pointers and devirtualization are not expressible.

Pushing COI to a lower level while maintaining soundness may be challenging. As
is, its soundness relies on distinguishing between exact and inexact object types. What
becomes of these concepts when objects are no longer primitive? Often, decomposing
objects into tuples and functions opens up unintended ways of accessing them, leading
to unsoundness [25]. It would be very interesting to see the impact of the COI design at
a lower level.

7. Conclusion and future directions

We have developed LITL, a sound, low-level intermediate language with dictionaries,
tuples, functional update, and tuple extension. Fisher et al. [19] showed that these prim-
itives are useful for compiling various object-oriented languages, with different object



models and notions of inheritance. Dictionaries support link-time or run-time determi-
nation of method offsets, for languages where the layout of a base class may not be
known at compile time.

Following Shao et al. [33], the type system of LITL is embedded in the Calculus of
Inductive Constructions [13]. Our reliance on CIC permits flexible reasoning about the
offsets of methods, which are now first-class values with singleton types constructed
from natural numbers.

We proposed a simple example in OCaml—where a super class is provided as a
functor parameter—and showed by example how to encode objects, classes, method
dispatch,new, and inheritance from a non-manifest base class. Our technique supports
width (but not depth) subtyping using type coercions. Alternative representations are
possible, where the dictionary is omitted (because offsets are already known) or passed
separately from the object.

In the future, we expect to support depth subtyping, using a technique outlined in
section 5.1. Furthermore, we intend to choose a small source language with several of
these advanced object-oriented features and specify a complete type-preserving trans-
lation. Candidates includeMICROMoby [16], Loom [6, 36], MIXEDJAVA [21], Jam [1],
and the typed trait calculus by Fisher and Reppy [18].
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A. Congruence rules

e1 ; e ′
1

e1 +e2 ; e ′
1 +e2

e ; e ′

v +e ; v +e ′

e1 ; e ′
1

e1 e2 ; e ′
1 e2

e ; e ′

v e ; v e ′
e ; e ′

e [τ] ; e ′ [τ]

e ; e ′

fold e asτ ; fold e ′ asτ

e ; e ′

unfolde ; unfolde ′
e ; e ′

cast[σ] e ; cast[σ] e ′
e ; e ′

[τ1, e . τ2] ; [τ1, e ′ . τ2]

e1 ; e ′
1

opene1 as[α, x] in e2 ; opene ′
1 as[α, x] in e2

ei ; e ′
i

〈v1, ..., vi−1, ei, ei+1, ..., en〉 ; 〈v1, ..., vi−1, e ′
i, ei+1, ..., en〉

e1 ; e ′
1

e1 @e2 [σ] ; e ′
1 @e2 [σ]

e ; e ′

v @e [σ] ; v @e ′ [σ]

e1 ; e ′
1

e1 @e2 [σ]← e3 ; e ′
1 @e2 [σ]← e3

e1 ; e ′
1

v @e1 [σ]← e2 ; v @e ′
1 [σ]← e2

e ; e ′

v1 @v2 [σ]← e ; v1 @v2 [σ]← e ′
e ; e ′

e # 〈e1, ..., en〉 ; e ′ # 〈e1, ..., en〉

ei ; e ′
i

v # 〈v1, ..., vi−1, ei, ei+1, ..., en〉
; v # 〈v1, ..., vi−1, e ′

i, ei+1, ..., en〉

e ; e ′

e # l [σ] ; e ′ # l [σ]

ei ; e ′
i

{l1 =v1, ..., li−1 =vi−1, li =ei, li+1 =ei+1, ..., ln =en}

; {l1 =v1, ..., li−1 =vi−1, li =e ′
i, li+1 =ei+1, ..., ln =en}



B. Properties of the typing rules

The decidability of typing is almost immediate because the typing rules are mostly
syntax directed. The places where the type derivation does not follow trivially from the
syntax are:

– Rule 29 has no corresponding syntax. This does not prevent type checking from
being decidable since CIC guarantees that every expression can be reduced to a
normal form. We simply need to always normalize our type expressions.

– Rules 23 and 27 leave open the choice ofτ. This actually makes type checking
undecidable. So when we type check a program we use a restriction of the above
rules such that either the type of a tuple〈e1, ..., en〉 is inferred to be of the form
tup n̂ (ith (τ1 :: ... :: τn :: nil)) or the programmer has to annotate the tuple with its
type functionτ.

Lemma 1 (Canonical forms).If v is a value and◦ ; ◦ ` v : τ, thenv must have the
form indicated by its type:

– τ =βηι snatτ1 implies thatv = n

– τ =βηι arw τ1 τ2 implies thatv = λx :τ1.e

– τ =βηι all τ1 implies thatv = Λα :σ.f

– τ =βηι exτ1 implies thatv = [τ2, v ′ . τ1]
– τ =βηι muτ1 implies thatv = foldv ′ asτ1

– τ =βηι tupτ1 τ2 implies thatτ1 = n andv = 〈v1, ..., vn〉
– τ =βηι dict τ1 implies thatv = {l1 = v1, ..., ln = vn}

Proof. is by induction on the structure ofv, and by adequacy of inductive definitions in
an empty context for the natural number and tuple cases. ut

Theorem 1 (Progress).If ◦ ; ◦ ` e : τ then eithere is a value, or there existse ′ such
thate ; e ′.

Proof. is by induction on the derivation of◦ ; ◦ ` e : τ. All the cases where the toplevel
subexpressions aren’t simple values can be trivially reduced using the corresponding
congruence rule.

Case 1.varvariable Impossible case, because environment is empty.

Case 2.natnatural number A numeric literal is a value.

Case 3.addadditione = e1 +e2. By induction, eithere1 is a value, or there exists
e ′

1 such thate1 ; e ′
1. Likewise, eithere2 is a value, or there existse ′

2. If both are
values, then they must be natural numbers (by canonical forms lemma), and we pro-
ceed with the primitive reduction for addition. Otherwise, we use the congruence
rules.

Case 4.fnfunctional abstractione = λx :σ.e0. This is a value.

Case 5.tfntype abstraction Also a value.



Case 6.appapplicatione = e1 e2. Similar to addition case; by induction, eithere1

is a value, or there existse ′
1 such thate1 ; e ′

1. If both are values,e1 must have the
form λx : τ.e0 (by canonical forms lemma), so it matches the primitive reduction
rule. Otherwise the inductive reduction goes through the congruence rules.

Case 7.tapptype application Similar.

Case 8.castcast Either goes through the congruence rule or primitive reduction of
cast[σ] v0 to v0. (Trivial.)

Case 9.packexistential introductione = [τ ′, e0 .τ ′]. Eithere0 is a value, in which
case so is the package, ore0 can be reduced, in which case we apply the reduction
through the package congruence rule.

Case 10.openexistential elimination Similar to application and type application,
including use of canonical form of existential value.

Case 11.foldfold Becomes a value if the sub-expression is a value, or goes through
fold congruence rule.

Case 12.unfoldunfold Go through unfold congruence rule, or if sub-expression is
a value, it must be a fold (due to canonical forms lemma) in which case the primitive
reduction matches.

Case 13.tuptuple Either is a value, or goes through one of the congruence rules.

Case 14.seltuple selection Two congruence rules are available. If both sub-expres-
sions are values then we need several prerequisites to use the primitive reduction.
First, the left-hand side must be a tuple value of lengthn (by canonical forms).
Next, the right-hand side must be a natural number (by canonical forms). Finally,
the index must be less than the length. Here we rely on the adequacy of arithmetic
andlt in an empty context. Follow the arguments in TSCB paper.

Case 15.updfunctional update Similar to previous case.

Case 16.exttuple extension Canonical forms guarantees the left side is a tuple, so
the primitive reduction applies.

Case 17.dictdictionary construction Either a value or use a congruence rule.

Case 18.lookdictionary lookup Ife is not a value, we use the congruence rule.
Otherwise, by canonical formse has to be a dictionary. By the typing rule of the dic-
tionary constructor, we know that the dictionary typing functionτ returnssomeτi

iff applied to one of the labels in the dictionary. Sinceσ is a proof thatτ returns
someτ ′, it follows thatl is indeed one of theli of the dictionary and the primitive
reduction applies.

Case 19.betaetatype conversion Trivial: the inductive hypothesis already gives us
our conclusion. ut



Lemma 2 (Substitution).
If ∆ ; Γ, x :v ` e : τ then∆ ; Γ ` e[v/x] : τ.
If ∆, α :τ ; Γ ` e : τ ′ then∆ ; Γ [τ/α] ` e[τ/α] : τ ′[τ/α].

Proof. is straightforward, by induction on the typing derivation. ut

Theorem 2 (Subject reduction).If ◦ ; ◦ ` e : τ ande ; e ′, then◦ ; ◦ ` e ′ : τ.

Proof. is by induction on the derivation ofe ; e ′. All the congruence rules are proved
trivially from the induction hypothesis because they all reduce the subexpression in the
same empty context.

Case 20.raddaddition The typing rule of the redex is #13, soτ =βηι snat(plusτ1 τ2).
So we need to show thatn3 has that type, using rule #12.

Case 21.rappbeta reduction The typing derivation of the redex uses rule #16 pre-
ceded by #14, andτ =βηι arw τ1 τ2. We use the value substitution lemma.

Case 22.rtapptype application Same situation except we use the type substitution
lemma.

Case 23.rcastcast This is a critical case. We know cast[ ] e has typeτ2, ande has
typeτ1. This follows from the fact that we know ‘eq τ1 τ2’ and that in an empty
context this can only be true ifτ1 =βηι τ2 so we can use the typing rule #29.

Case 24.ropenopen This uses both substitution lemmas.

Case 25.runfoldunfold Trivial.

Case 26.rselselect Trivial.

Case 27.rupdupdate Trivial as well.

Case 28.rextextend We can prove thateq appendτ1 τ2 τ ′
2 î τ2 î for all i smaller

thanτ1, and that it is equal toτ ′
2 î otherwise. The rest follows trivially, except that

we need to use the typing rule #29 to account for the fact that we only know equality
in terms ofeq, as was the case for cast.

Case 29.rlooklookup Straightforward since the core of the proof is provided as an
annotation. ut

C. Representing symbols

Inductive char : SET ≡
A | B | C | D | E | F | G.

Definition ifeqc ≡
λ x y : char. λ k : SET. λ t f : k.
match x, y with
| A, A⇒ t | B, B⇒ t
| C, C⇒ t | D, D⇒ t



| E, E⇒ t | F, F ⇒ t
| G, G⇒ t | , ⇒ f
end.

Definition sym: SET ≡ list char.

Fixpoint ifeq (x y : sym) (k : SET) (t f : k) {struct x} : k ≡
match x, y with
| nil, nil ⇒ t
| c :: cs, d :: ds⇒ ifeqc c d(ifeq cs ds t f) f
| , ⇒ f
end.

Definition center ≡ C :: E :: nil.
Definition radius ≡ A :: D :: nil.
Definition area ≡ A :: E :: nil.
Definition bounds≡ B :: D :: nil.

D. Encoding terms in Coq

Inductive Exp : Ty→ SET ≡
| enat : Π n. Exp(snat n)
| eadd: Π n m. Exp(snat n)→ Exp(snat m)→

Exp(snat(plus n m))
| eabs′ : Π (R : Ty→ SET) (t v : Ty). (R t→ Exp v)→

Exp(arw t v)
| etabs: Π (k : SET) (s : k→ Ty). (Π j : k. Exp(s j))→

Exp(all s)
| eapp: Π s t : Ty. Exp(arw s t)→ Exp s→ Exp t
| etapp: Π (k : SET) (s : k→ Ty). Exp(all s)→

Π t : k. Exp(s t)
| ecast: Π s t : Ty. eq s t→ Exp s→ Exp t
| epack: Π (s0 : SET) (t1 : s0→ Ty) (t0 : s0).

Exp(t1 t0)→ Exp(ex t1)
| eopen′ : Π R : Ty→ SET. Π s0 : SET.

Π t1 : s0→ Ty. Π t2 : Ty. Exp(ex t1)→
(Π a : s0. R (t1 a)→ Exp t2)→ Exp t2

| efold : Π (s : Ty→ Ty). Exp(s (mu s))→ Exp(mu s)
| eunfd: Π (s : Ty→ Ty). Exp(mu s)→ Exp(s (mu s))
(* This is more restrictive than the typing rules, but *)
(* it ensures we stick to a decidable subset. *)
| etup: Π (n : nat) (ts : list Ty). Es n ts→

Exp(tup n(ith ts))
(× An alternative tuple constructwith a type annotation for when
× you want more flexibility×)
| etup′ : Π (n : nat) (f : nat→ Ty). Es′ f n→ Exp(tup n f)



| esel: Π (j n : nat) (f : nat→ Ty). Exp(tup n f)→
Exp(snat j)→ lt j n → Exp(f j)

| eupd: Π (j n : nat) (f : nat→ Ty). Exp(tup n f)→
Exp(snat j)→ Exp(f j)→ lt j n → Exp(tup n f)

| eext: Π (n n′ : nat) (f f ′ : nat→ Ty).
Exp(tup n f)→ Exp(tup n′ f ′)→
Exp(tup (plus n′ n) (append n f f′))

| edict : Π m : map. Ds m→ Exp(dict (lookup m))
| elook : Π (g : sym→ option Ty). Exp(dict g)→

Π (s : sym) (t : Ty). eq(g s) (Some t)→ Exp t
| efix′ : Π (R : Ty→ SET) (t v : Ty). (R (arw t t)→ R t→ Exp v)→ Exp(arw t v)
| ecmp: Π n m. Exp(snat n)→ Exp(snat m)→ Exp(snat(if (beqnat n m) then 1 else 0))

with Es′ : (nat→ Ty)→ nat→ SET ≡
| enil′ : Π f . Es′ f 0
| econs′ : Π n f . Es′ f n→ Exp(f n)→ Es′ f (S n)

with Es : nat→ list Ty→ SET ≡
| enil : Es O nil
| econs: Π (t : Ty) (n : nat) (ts : list Ty).

Exp t→ Es n ts→ Es(S n) (t :: ts)

with Ds : map→ SET ≡
| dnil : Ds nil
| dcons: Π (s : sym) (t : Ty) (m : map).

Exp t→ Ds m→ Ds ((s, t) :: m).

(× We could actually build etup and Es separately on top of etup′ and Es′,
But I haven′t bothered to do it(yet) because it′s a bit cumbersome
because the list of elements is reversed between the two. ×)

Definition eabs≡ eabs′ Exp.
Definition efix ≡ efix′ Exp.
Implicit Arguments eabs[v].

Definition eopen≡ eopen′ Exp.

Definition elet ≡ λ s t : Ty.
λ e : Exp s. λ body: Exp s→ Exp t.
eapp(eabs s body) e.

Definition dcons′ ≡
λ t m (x : sym× Exp t) (xs : Ds m).



dcons(t ≡ t) (m≡ m) (fst x) (snd x) xs.

Notation" ′λ ′ x : t. e" ≡ (eabs t(λ x. e)) (at level 200, x ident).
Notation" ′Open′ x y = e1 ′in ′ e2" ≡ (eopen e1(λ x y. e2))

(at level 200, x ident, y ident).
Notation" ′Let′ x = e1 ′in ′ e2" ≡ (elet e1(λ x. e2))

(at level 200, x ident).
Notation" ′Λ ′ x : t. e" ≡ (etabs(λ x : t. ) (λ x. e)) (at level 200, x ident).
Notation" ′〈 ′ x , .. , y ′〉 ′" ≡ (etup(econs x.. (econs y enil) ..)).
Notation"x ′ 7→ ′ y" ≡ (x, y) (at level 100).
Notation"{ x , .. , y }" ≡ (edict (dcons′ x .. (dcons′ y dnil) ..)).
Notation" ′〈| ′ f | x , .. , y ′〉 ′" ≡ (etup′ (econs′ ..(econs′ (enil′ f ) x).. y)).
(× For some reason neither[U+25B7] nor . seem to be acceptable for Coq.

Maybe the corresponding utf8 binary sequence is incorrectly lexed. ×)
Notation" � w , e | t � " ≡ (epack t w e) (at level 200).
Notation"e1@ e2 [ t ]" ≡ (esel e1 e2 t) (at level 99).
Notation"e # l [ t ]" ≡ (elook e l t) (at level 99).

Definition testsm≡ 〈|λ i. snat i| enat 0, enat 1〉.

Here is the encoding of the function that invokes the radius method on a circle, from
Fig. 6 on page 15:

Definition invokeradius : Exp(arw (objty circ signature) float) ≡
λ x : objty circ signature.
Openr x1 = x in
Openp x2 = x1 in
Let x3 = eunfd x2 in
Let dc = esel x3 (enat 0) lt02 in
Let vt = esel x3 (enat 1) lt12 in
match p with ( , pr, )⇒
Let j = elook dc radius(dicteq pr) in
Let fp′ = esel vt j(proof pr) in
Let fp = ecast(tupeq pr(selfty r)) fp′ in
eapp fp x2

end.

And the function to create a new circle, from Fig. 7:

Definition lt03 : lt 0 3 ≡ le S (le S (le n 1)).
Definition lt13 : lt 1 3 ≡ le S (le n 2).
Definition lt23 : lt 2 3 ≡ le n 3.
Definition newcirc :
Exp(arw (classty circsignature) (objty circ signature)) ≡

λ c0 : classty circsignature.
Openr c1 = c0 in



Openp c2 = c1 in
Let dc = esel c2 (enat 1) lt13 in
Let ms = esel c2 (enat 2) lt23 in
Let vt = etapp(etapp ms r) p in
Let x = 〈dc, vt〉 in
epack(objty′ circ signature) r
(epack(objty′′ circ signature r) p
(efold (objrep r) x)).

Here is the ‘B’ circle class, to demonstrate that theclasstyis habitable (Fig. 8).

Parameter methodbody: Π t : Ty. Exp t.
Definition circB : Exp(classty circsignature) ≡

Let dc = {radius 7→ enat 4, area 7→ enat 1, center 7→ enat 2} in
Let ms = Λ r : Rep.

Λ p : circ signature r.
〈λ s : selfty r. methodbody(ex snat),
λ s : selfty r. methodbody float,
λ s : selfty r. methodbody fpoint,
enat 0,
λ s : selfty r. methodbody float〉 in

epack(classty′ circ signature) circB rep
(epack(classty′′ circ signature circBrep) circB witness
〈enat 5, dc, ms〉).

Definition createand invoke: Exp float ≡
eapp invokeradius(eapp newcirc circB).

The following corresponds to Fig. 9.

Parameter area formula : Exp(arw float float).
Definition circle bbox:
Exp(arw (classty circsignature) (classty bboxsignature)) ≡

λ c0 : classty circsignature.
Openr0 c0 = c0 in
Openp0 c0 = c0 in
Let sz0 = esel c0 (enat 0) lt03 in
Let dc0 = esel c0 (enat 1) lt13 in
Let ms0 = esel c0 (enat 2) lt23 in
Let ci = elook dc0 center(dicteq(circ center p0)) in
Let ri = elook dc0 radius(dicteq(circ radius p0)) in
Let ai = elook dc0 area(dicteq(circ area p0)) in
Let dc1 = {center 7→ ci, radius 7→ ri , area 7→ ai, bounds7→ sz0} in
let r1 ≡ bbox rep p0 in
Let ms1 =

Λ r2 : Rep.
Λ p2 : bboxsignature r2.

Let vt0 = etapp(etapp ms0 r2) (bbox2circ p2) in



Let ar = esel vt0 ai (proof (circ area p0)) in
Let ar = ecast(tupeq(circ area p0) (selfty r2)) ar in
Let ar ′ = λ s : selfty r2. eapp areaformula(eapp ar s) in
Let ar ′ = ecast(symeq(tupeq(circ area p0) (selfty r2))) ar ′ in
Let bo = λ s : selfty r2. methodbody frectin
Let vt1 = eupd vt0 ai ar ′ (proof (circ area p0)) in
eext vt1 〈bo〉 in

epack(classty′ bboxsignature) r1

(epack(classty′′ bboxsignature r1) (bboxwitness p0)
〈eadd(enat 1) sz0, dc1, ms1〉).

The upcast in Fig. 10:

Definition bboxupcast:
Exp(arw (objty bboxsignature) (objty circ signature)) ≡

λ x : objty bboxsignature.
Openr x = x in
Openp x = x in
epack(objty′ circ signature) r
(epack(objty′′ circ signature r) (bbox2circ p) x).

Defining dict/lookup directly within the language:

Definition dict′ (m : list (nat × Ty)) : Ty ≡
tup (length m)

(λ i. let x ≡ nth i m(0, void) in tup2 (snat(fst x)) (snd x)).

Fixpoint lookup′ (A : SET) (m : list (nat × A)) (l : nat) {struct m} : option A ≡
match m with
| nil ⇒ None
| cons x m′ ⇒ if beq nat l (fst x) then Some(snd x) else lookup′ m′ l
end.

Definition Tbool ≡ ex(λ (x : sig (λ b. lt b 2))⇒
snatmatch x with exist b p⇒ b end).

Definition toto : sig (λ b. lt b 2) ≡
exist(λ b. lt b 2) 0 lt02.

Definition efalse: Exp Tbool≡
� exist(λ b. lt b 2) 0 lt02,
enat 0| (λ x. snatmatch x with exist b p⇒ b end) � .

Definition etrue: Exp Tbool≡
� exist(λ b. lt b 2) 1 lt12,
enat 1| (λ x. snatmatch x with exist b p⇒ b end) � .

Definition depfst(A : SET) (F : A→ PROP) (x : sig F) ≡
match x with exist b ⇒ b end.



Definition depsnd(A : SET) (F : A→ PROP) (x : sig F) ≡
match x return F (depfst x) with
exist p⇒ p end.

Definition eqboolsel(i : nat) (f : nat→ Ty) (p : lt i 2)
: eq(ith (f 0 :: f 1 :: nil) i) (f i).

Proof.
intro.

case i.
intros.
apply reflequal.

intro.

case n.
intros.
apply reflequal.

intros.
inversion p.
inversion H0.
inversion H2.

2

Definition eif ′ : Exp(all (λ (f : nat→ Ty).
(all (λ (x : sig (λ b. lt b 2))⇒
arw (snat(depfst x))

(arw (arw (snat 0) (f 0))
(arw (arw (snat 1) (f 1))

(f (depfst x))))))))
≡
Λ f : nat→ Ty.
Λ x : sig (λ b. lt b 2)⇒
λ b : snat(depfst x).
λ e0 : arw (snat 0) (f 0).
λ e1 : arw (snat 1) (f 1).
eapp(ecast(eqboolsel(λ i. arw (snat i) (f i)) (depsnd x))

(esel〈 e0, e1〉 b (depsnd x)))
b.

Definition eif (× : Exp(all (λ (f : nat→ Ty).
arw Tbool

(arw (arw (snat 0) (f 0))
(arw (arw (snat 1) (f 1))

(ex f))))) ×)
≡

Λ f : nat→ Ty.
λ b : Tbool.



λ e0 : arw (snat 0) (f 0).
λ e1 : arw (snat 1) (f 1).
Openx b = b in
� depfst x, (eapp(eapp(eapp(etapp(etapp eif′ f ) x) b) e0) e1) | f � .

Inductive PtoS(P : PROP) : SET ≡ ptos: Π (x : P). PtoS P.
Definition stop(P : PROP) (p : PtoS P) ≡ match p with ptos p⇒ p end.

Fixpoint lt0n n : lt 0 (S n) ≡
match n return lt 0 (S n) with
| 0⇒ le n 1
| S n⇒ le S (lt0n n)
end.

Fixpoint nthcdr (A : SET) (n : nat) (xs : list A) {struct xs} : list A ≡
match xs, n with
| nil, ⇒ nil
| , 0⇒ xs
| x :: xs′, S n′ ⇒ nthcdr n′ xs′

end.

(× Proof that if the key we′re looking for isin the rest of dictionary,
× then we haven′t gone past theend of the tuple that represents the
× dictionary. ×)
Fixpoint indict inbound(A : SET) (m : list (nat × A)) (i l : nat) (t : A) {struct i}
: (lookup′ (nthcdr i m) l = Some t)→ lt i (length m) ≡
match m, i return (lookup′ (nthcdr i m) l = Some t)→ lt i (length m) with
| nil, ⇒ (λ p. match p in = z

return (match z with None⇒ True
| ⇒ lt i (length nil)

end)
with refl equal⇒ I end)

| :: m′, 0⇒ (λ p. lt0n (length m′))
| :: m′, S i′ ⇒ (λ p. lt n S (indict inbound m′ i ′ l p))

end.

Fixpoint lookupnext(t : ) (m : list (nat × )) (l i : nat) {struct i} :
Π (p : eq(beqnat l (fst (nth i m(0 7→ void)))) false)

(p′ : eq(lookup′ (nthcdr i m) l) (Some t)),
eq(lookup′ (nthcdr (S i) m) l) (Some t) ≡

match m, i
return Π (p : eq(beqnat l (fst (nth i m(0 7→ void)))) false)

(p′ : eq(lookup′ (nthcdr i m) l) (Some t)),
eq(lookup′ (nthcdr (S i) m) l) (Some t)

with



| nil, ⇒ λ p p′. p′

| x :: m′, S i′ ⇒ lookupnext m′ l i ′

| x :: m′, 0⇒
λ p (* (p: eq (beqnat l (fst x)) false) *)
(* (p’ : eq (lookup’ (x::m’) l) (Some t)) *)
(* : eq (lookup’ m’ l) (Some t) *)⇒
match (symeq p) in = f , m′

return (eq(if f then Some(snd x) else lookup′ m′ l) (Some t))→ (eq(lookup′ (nthcdr 1(x :: m′)) l) (Some t)) with
| refl equal, nil ⇒ (λ x. x)
| refl equal, :: ⇒ (λ x. x)
end

end.

(× Definition testsm2(i l l ′ : nat) m
(x : beqnat l (fst (nth i m(0, 0))) = false) :
((λ i : nat.

(beqnat l (fst (nth i m(0, 0))) =
match i with
| O⇒ false
| S ⇒ true
end)) 0)

≡ x. ×)

(* Work in progress *)
(× Definition elookup′ (× : Exp(all (λ m, (all (λ l, (all (λ t,

(all (λ (p : eq(lookup′ m l) (Some t)),
(arw (dict′ m) (arw (snat l) t)))))))))) ×) ≡

Λ m : list (nat × Ty). Λ l : nat. Λ t : Ty.
λ label : snat l.
efix(v≡ all (λ (i : nat).
all (λ (p : PtoS(eq(lookup′ (nthcdr i m) l) (Some t))).

arw (snat i) t)))
(λ recurse(d : Exp(dict′ m)).

Λ i : nat. Λ p : PtoS(eq(lookup′ (nthcdr i m) l) (Some t)).
λ index: snat i.
Let pair = esel d index(indict inbound m i l(let (p) ≡ p in p)) in
Let label′ = (esel pair(enat 0) lt02) in
Let b = ecmp label label′ in
Let rec branch = Λ p′ :

(* PtoS (eq (beqnat l (fst (nth i m (07→ void)))) false) *).
eapp(etapp(etapp(eapp recurse d) (S i))

(ptos(lookupnext m l i(stop p′) (stop p))))
(eadd(enat 1) index) in



Let imm branch = Λ p′ :
(* PtoS (eq (beqnat l (fst (nth i m (07→ void)))) true) *).

esel pair(enat 1) lt12 in

Let f = esel〈|λ i.
all (λ (p′ : PtoS(eq(beqnat l (fst (nth i m(0 7→ void))))

(match i with 0⇒ false
| ⇒ true end)))⇒ t)|

rec branch, imm branch〉 b
(match (beqnat l (fst (nth i m(0 7→ void)))) asx

return lt (if x then 1 else 0) 2
with true⇒ lt12 | ⇒ lt02 end) in

(* eapp f *) (enat 0)
). ×)

(×
× Local Variables:
× coq− prog− name: "coqtop − emacs− impredicative− set"
× End :
×)


