
Hacking in C

hic 1

About this course: topics & goals

• Standard ways in which software can be exploited

– understanding how such attacks work

– understanding what makes these attacks possible

– doing some attacks in practice

• Root cause analysis: why are things so easy to hack?

• This involves understanding

– programming languages, compilers, and operating systems,

and the abstractions that they provide

– the languages, representations, and interpretations involved

– the potential for trouble – in the form of software vulnerabilities -

all this introduces

hic 2

Hacking in C

• security problems in machine code compiled from C(++) source code

running on standard CPU and operating system.

• to understand this, we need to know how

– the data representations involved

– the memory management that the programmer has to do

hic 3

Prerequisites

• Imperatief Programmeren

– we won’t use C++, but C

– biggest change: using printf instead of >> ?

• Processoren

– what is the functionality that a typical CPU offers, on which we

have to run our software written in higher-level languages?

Eg. fetch-execute cycle of the CPU, with Program Counter (PC)

registers where in the code we are, which is modified for a JUMP

instruction and incremented for the other instructions

hic 4

Lectures & lab sessions

• Lectures Mondays 13:45-15:30 in HG00.304

• Lab sessions Thursdays 10:45-12:30 in HG00.137 & HG00.625

Aanstaande woensdag: als je al bekend met Linux command line

ga dan naar HG00.625

• All course material will be on

http://www.cs.ru.nl/~erikpoll/hic

hic 5

Lab exercises

Weekly lab session with weekly programming/hacking exercise

• Exercises to be done in pairs

• Doing the exercises is obligatory to take part in the exam;

• Exercises will be lightly graded to provide feedback,

with nsi-regeling:

you can have only one exercise niet-serieus-ingeleverd

• You learn stuff in the exercises that you won't learn at the lectures,

and vv.

• Beware: exercises of one week will build on knowledge & skills from

the previous week

• Also: turning up for the lab sesions might be crucial to sort out

practical problems (with C, gcc, Linux, ...)

hic 6

Lab exercises

We use

• C as programming language, not C++

• Linux from the command line aka shell

• the compiler gcc

So no fancy graphical user interfaces (GUIs)

for the operating system (OS) or the compiler

Why?

• GUIs are nice, but hide what OS and compiler are doing

• the command line is clumsy at first,

– using commands instead of pointing & clicking

but gives great power

– we can write shell scripts: programs that interact with the OS

hic 7

‘to hack’

NB several meaning and connotations, incl.

1. To write software in a clever way

– to really exploit all the capabilities a system offers

2. To break into a computer system.

3. To fix some problem in a quickly & ugly way

Focus of this course 1 & 2.

hic 8

How do you break into a computer system?

1. Using user credentials – username/password

How do you get those?

– default passwords

hic 9

Default passwords exploited by Mirai botnet

hic 10

Default passwords exploited by Mirai botnet

hic 11

How do you break into a computer system?

1. Using user credentials – username/password

How do you get those?

– default passwords

– phishing

– brute forcing

– eavesdropping,

• on unsecured network connection,

• with keylogger hardware or software keylogger

– using stolen password files

• which may need to be brute forced, if passwords are hashed

– ...

2 Using flaws in the software

– Focus of this course & web security next quarter

hic 12

Security problems in software

Terminology can be confusing:

(security) weakness, flaw, vulnerability, bug, error, coding defect, ...

Important distinction:

1. security weakness/flaw:

something that is wrong or could be better

2. security vulnerability

weakness/flaw that can actually be exploited by an attacker,

This requires the flaw to be

1. accessible - attacker has to be able to get at it

2. exploitable – attacker has to be able to do some damage with it

Eg by unplugging your network connection, many vulnerabilities become flaws

Warning: there is no standardised terminology for the distinction above!

hic 13

Software security prices (2015)

hic 14

design vs implementation flaws

Software vulnerabilities can be introduced at different “levels”

• design flaws

– fundamental error in the design

• implementation flaws or coding error

– introduced when implementing

The precise border is not precise

it can be debatable whether a flaws is a design or implementation flaw

To understand implementation flaws, we need to look 'under the hood'

of how a programming language works

hic 15

focus of

this course

To understand implementation flaws

hic 16

