
The heap

hic 1

Limitations of the stack

int *table_of(int num, int len) {

int table[len+1];

for (int i=0; i <= len; i++) {

table[i] = i*num;

}

return table; /* an int[] can be used as an int* */

}

What happens if we call the function above, with

int *table3 = table_of(3,10);

printf("5 times 3 is %i\n", *(table3+5));

// we use pointer arithmetic

// to mimic array indexing

hic 2

Limitations of the stack

int *table_of(int num, int len) {

int table[len+1];

for (int i=0; i <= len; i++) {

table[i] = i*num;

}

return table; /* an int[] can be treated as an int* */

}

What happens if we call the function above, with

int *table3 = table_of(3,10);

printf("5 times 3 is %i\n", *(table3+5));

int *table4 = table_of(4,10);

printf("5 times 4 is %i\n", *(table4+5));

printf("5 times 3 is %i\n", *(table3+5));

hic 3

The function table_of is weird, because it returns a reference to a
local variable table, but the memory for this variable is de-
allocated when the function returns...

NB you should never write such code, and any decent compiler will
warn about this. Still, it is legal C...

A cleaner solution would be to let the caller allocate the memory,

and pass in a pointer to that

void table_of(int num, int len, int[] table)

but note this only works because we know the size of the table needed

beforehand.

This is a general limitation of stack-allocated memory:

how can a function allocate some memory that can later still be
used by the caller?

hic 4

the heap – for dynamic memory

(De)allocation of stack memory is very fast, but has its limitations:

• any data we allocate in a function is gone when it returns

Solution: the heap

• The heap is a large piece of scrap paper where functions can create

data that will outlive the current function call.

• Functions can use it to share values, using pointers to data stored

on the heap

• It is up to the program(er) to organise this; the OS will only keep

track of which part of the scrap paper is still unused

hic 5

malloc

The operation to allocate a chunk of memory on the heap is malloc

#include <stdlib>

void* malloc (size_t size)

// size_t is an unsigned integral type

returns an pointer to a contiguous block in memory of size bytes,

or NULL if an error occurs

Example use

int *table = malloc(len*sizeof(int));

// allocates enough memory for len int’s

hic 6

void* ?

Recall that pointers are typed,

eg int* is the type of pointers to an int.

void* is the type of untyped pointers.

malloc just returns a pointer to a blob of memory, and the result does

not have any specific type (yet), so its return type is void*

A void* pointer can be converted into any other pointer type,

without an explicit cast.

hic 7

NULL ?

• NULL is a special value, which is guaranteed to be different from any

legal address

So &p will never return NULL for any properly allocated variable p

• Dereferencing a null pointer, eg

int* ptr = NULL;

int i = *ptr;

leads to undefined behaviour:

the program probably crashes, but basically anything can happen.

So you should never dereference a NULL pointer

hic 8

Check for malloc failure!

Malloc may fail, namely if there is not enough heap space available,

in which case it returns NULL.

Programs should always check the result of malloc!!!

Eg directly after

int *table = malloc(len*sizeof(int));

there should be a line like

if (table == NULL) { exit();}

or

if (!table) { return -1;}

// NULL is interpreted as false,

// so !table will be true when table is NULL.

// Writing table==NULL is probably clearer?

hic 9

free

You, the programmer, are in charge of freeing heap memory that is no

longer needed, by calling

void free (void* p)

Normal usage pattern

long *p = (long*) malloc (10*sizeof(long));

if (p == NULL) { exit();}

... // use p

free(p); // when p is no longer needed

Here free and malloc can be in different functions

hic 10

Heap vs stack

Data can be allocated on the stack

or on the heap (aka dynamic memory)

• Data on the stack is allocated automatically when we do a function call,
and removed when we return

f() { ... int table[len]; }

• Data on the heap must be allocated and de-allocated manually, using
malloc and free

int *table = malloc(len*sizeof(int));

if (table == NULL) { ... // How to proceed? }

...

free(table);

hic 11

Stack, heap & pointers

• To use data on the heap, we must use pointers!

– otherwise the data is lost and we cannot use it

• Pointers to data allocated on the heap can be

– on the stack

– in the heap itself

You can have pointers from the heap to the stack,

but typically you do not need them, or want them!

hic 12

Stack Heap

hic 13

dangerous

pointer from

heap to stack

'lost' memory,

without any references to it

aliasing

Stack & heap issues

hic 14

Memory (security) problems

C(++) does not provide memory-safety

Malicious, buggy, and insecure code can access data anywhere on

the heap and stack

– by doing pointer arithmetic

– by overrunning array bounds

More generally, security problems with memory can be due to

1. running out of memory

2. lack of initialisation of memory

3. bugs in program code

esp for heap, as dynamic memory is more complex & error-prone

Hence MISRA-C guidelines for safety-critical software include

Rule 20.4 (REQUIRED) Dynamic heap allocation shall not be used

hic 15

Running out of stack memory (aka stack overflow)

• Max size of the stack is finite and typically fixed on start-up of a

process

• Normally, stack overflow will simply crash a program

– demo! see .../hic/code/lecture3/stack_overflow.c

• Are there sensible alternatives?

• Are there more dangerous alternatives?

hic 16

Memory initialisation

What will this program print?

int i;

printf(”i is %i .\n”, i); // %i to print int

In C memory is not initialised, so i can have any value.

– Demo: see .../hic/code/lecture4/print_unitinitialsed.c

Some programming language do provide a default initialisation.

Why is that nicer and more secure?

• programs behave more deterministic; a program with uninitialized

variables can behave differently each time it’s run, which is not nice

esp. when debugging

• for security: by reading uninitialized memory, a program can read

confidential memory contents left there earlier

hic 17

Heartbleed bug

• bug in OpenSSL implemetation of SSL/TLS

• CVE identifier: CVE-2014-0160

• The heartbeat functionality in SSL allows you to check if connection

is still alive

• strange input to OpenSSL could make OpenSSL print a large part of

the stack, possible containing private keys

hic 18

hic 19

hic 20

hic 21

Ticketbleed (CVE-2016-9244)

• Bug in TLS implementation of F5 BIG IP firewalls & load balancers

– revealed Feb 11 2017

• allows a remote attacker to extract up to 31 bytes of memory

• root cause the same as Heartbleed

• ironic that flaw in firewall introduces securiy flaw

[https://arstechnica.com/security/2017/02/newly-discovered-flaw-undermines-https-

connections-for-almost-1000-sites]

[https://filippo.io/Ticketbleed]

hic 22

calloc

Memory allocated on the heap with malloc is typically not initialised

• Many OSs will zero out memory for a new process, but recycling of memory

within that process means that malloc-ed memory may contain old junk.

• If OS does not zero out memory for new processes, you can access

confidential information left in memory by other processes by malloc-ing

large chunks of data!

The function calloc will initialise the memory it allocates, to all zeroes

• downside: this is slower

• upside: This is good for security and for avoiding accidential non-

determinism due to missing initialisation in a (buggy) program

• But, in security-sensitive code, you may still want to zero out

confidential information in memory yourself before you free it

hic 23

Stack vs heap allocation

Consider main() {while (true) { f(); } }

Difference in behaviour for the two functions f() below?

void f(){

int x[300]; x[0]=0;

for (int i=1; i<300; i++) {x[i] = x[i-1]+i;}

printf(“Result: %i \n”, x[299]);

}

void f(){

int *x = malloc(300*sizeof(int));

x[0]=0;

for (int i=1; i<300; i++) {x[i] = x[i-1]+i;}

printf(“Result: %i \n”, x[299]);

}

hic 25

memory leak!
the memory for x

is not freed, so main

will crash when heap

memory runs out

malloc may fail;

possible heap overflow

possible stack overflow
(but unlikely for this non-

recursive code)

Heap allocation – and de-allocation, done right

Correct and secure version of function f that uses the heap:

void (f){

int *x = malloc(300*sizeof(int));

if (x==NULL) { exit(); }

x[0]=0;

for (int i=1; i<300; i++) {x[i] = x[i-1]+i;}

printf(“result is %i \n”, x[299]);

free(x); // to avoid memory leaks

}

Moral of the story: heap allocation is more work for the programmer

Btw, the code above is a bit silly: it allocates heap memory that is only
used within one procedure; we might as well use the stack.

hic 27

Heap problems: memory leaks

Memory leaks occur when you forget to use free correctly.

Programs with memory leaks will crash if they run for long enough.

You may also notice programs running slower over time if they leak

memory.

Restarting such a program will help, as it will start with a fresh heap

hic 28

More heap problems: dangling pointers

Never use memory after it has been de-allocated

int *x = malloc (1000);

free (x);

...

print(“Let’s use a dangling pointer %s”, x);

A pointer to memory that has been de-allocated (freed) is called a

dangling pointer. When using dangling pointers, all bets are off...

hic 29

More heap problems: using free incorrectly

• Never free memory that is not dynamically allocated

char *x = ”hello”;

free (x); // error, since ”hello”

// is statically allocated

• Never double free

char *x = malloc (1000);

free (x);

...

free (x); // error

hic 30

Memory management trouble: spot the bug

int *x = malloc (1000);

int *y = malloc (2000);

y = x;

hic 31

memory leak!

we cannot access

the 2000 bytes that y

pointed to, and we

cannot free them!

Aliasing – spot the bug!

Aliasing can make some of these bugs hard to spot

int *x = malloc (1000);

int *y = malloc (2000);

int *z = x;

y = x;

int *w = y;

free (w);

free (z);

Recall: pointers are called aliases if they both point to same address

Aliasing, together with the fact that malloc and free can happen

in different places of the program, make dynamic memory

management extremely tricky!!

hic 32

double free! this

memory is already

de-allocated in

the line above

Heap memory management

The implementations of malloc and free have to keep track of which

parts of heap are still unused.

• Initially, the free memory is one contiguous region.

• As more blocks are malloc-ed and freed, it becomes messier

hic 33

free

free

free free
free

used

initially 1 malloc 4 more

malloc’s

2 free’s 2 more

malloc’s

Heap memory management

The implementations of malloc and free have to keep track of which

parts of heap are still unused.

How would you do this?

hic 34

Example heap management: recording free heap chunks

Inside each free chunk

• a pointer to the next free chunk

• a pointer to the end of the current free chunk

Not very efficient: real malloc and free do more admin for efficiency

hic 35

next end

next end

NULL end

first_free

Heap memory management

One way is to maintain a free list of all the heap chunks that are
unused.

• This info can be recorded on the heap itself, namely in the unused parts of
the heap.

• You can also maintain meta-information in the used chunks on the heap to
help in de-allocation (eg the size of the chunk)

• NB an attacker can try to corrupt any this data!

Padding malloc-ed data to a round number reduces fragmentation.

The programmer can make memory management easier and reduce

fragmentation by often allocating chunks of data of the same size.

Malloc-ed data can not be moved or shifted on the heap, because this

will break pointers to that data!

hic 36

Garbage collection

In modern programming languages (Java, C#, ...), instead of the

programmer having to free dynamic memory, there is a garbage

collector which automatically frees memory that is no longer used.

Advantage: much less error-prone

Disadvantage: performance

• Garbage collection is an expensive operation (it involves analysis of

the entire heap), so garbage collection brings some overhead.

• Moreover, garbage collection may kick in at unexpected moments,

temporarily resulting in a very bad response time.

Still, there are clever garbage collection schemes suitable for real-time

programs.

hic 37

Recap: stack vs heap

Stack

• variables are allocated and de-allocated automatically

• allocation is much faster than for the heap

• data on the stack can be used without pointers

• data needs have to be known at compile time

• stack space may run out, eg. due to infinite recursions

• max size of the stack usually fixed by OS when program starts

Heap

• (de)allocation has to be done manually by the programmer;

this is highly error-prone!

• allocation of heap memory slower than for stack memory

• to access data on the heap, you must use pointers;

this is also error-prone!

• more flexible, and must to be used when data needs are not known at
compile time

• heap space may run out too, but can grow during the lifetime

hic 38

Lack of memory protection

Data is typically not initialised when allocated

• except static global variables, memory allocated by calloc, and possibly
fresh heap memory allocated by malloc the first time it is used

Irrespective of whether we store data on the heap or the stack:

malicious code and buggy (insecure) code

can access data anywhere on heap or stack, eg

• by doing pointer arithmetic

• by overrunning array bounds

Buggy or insecure code acting on malicious input supplied by an

attacker can be used for malicious purposes.

Malicious, buggy or insecure code can be in libraries or in, say,

a browser plugin.

hic 39

