
Learning to Learn from Mistakes: Robust
Optimization for Adversarial Noise

Alex Serban1, Erik Poll1, and Joost Visser2

1 Radboud University, The Netherlands
2 Leiden University, The Netherlands

a.serban@cs.ru.nl

Abstract. Sensitivity to adversarial noise hinders deployment of ma-
chine learning algorithms in security-critical applications. Although many
adversarial defenses have been proposed, robustness to adversarial noise
remains an open problem. The most compelling defense, adversarial
training, requires a substantial increase in processing time and it has
been shown to overfit on the training data. In this paper, we aim to
overcome these limitations by training robust models in low data regimes
and transfer adversarial knowledge between different models. We train
a meta-optimizer which learns to robustly optimize a model using ad-
versarial examples and is able to transfer the knowledge learned to new
models, without the need to generate new adversarial examples. Exper-
imental results show the meta-optimizer is consistent across different
architectures and data sets, suggesting it is possible to automatically
patch adversarial vulnerabilities.

Keywords: Adversarial Examples · Meta Learning · Machine Learning.

1 Introduction

Machine learning (ML) algorithms exhibit low robustness against intentionally
crafted perturbations [8] or high invariance for distinct inputs [12]. From a se-
curity standpoint this means an attacker can craft inputs that look similar but
cause ML algorithms to misbehave or find distinct inputs that give the same
result. From a safety standpoint, this means that ML algorithms are not ro-
bust against perturbations close to an input or are inflexible to changes in the
operational environment.

Creating defenses (or finding robust counterparts for ML models) has received
increased attention, in particular in the field of adversarial examples. Although
many defenses have been proposed, with the most notable results using formal
methods to guarantee robustness [10] most solutions overfit on the training data
and behave poorly against data outside this distribution [30, 20]. Theoretical
investigations suggest these results are expected because training robust models
requires more data [6], more computational resources [3] or accepting a trade off
between accuracy and robustness [24]. Moreover, solutions to one vulnerability
have a negative impact on others [11].

2 Alex Serban, Erik Poll, and Joost Visser

On a different path, designing ML algorithms capable to rapidly adapt to
changes in the operational environment, to adapt to distribution shifts or capable
to learn from few samples is an active research field. Particularly, the field of
meta-learning investigate optimization algorithms learned from scratch for faster
training [1], with less resources [19] and capable of rapid adaptation [7].

In this paper, we show that meta-learning algorithms can be used to extract
knowledge from a model’s vulnerability to adversarial examples and transfer it to
new models. We train a meta-optimizer to learn how to robustly optimize other
models using adversarial training. Later, when asked to optimize new models
without seeing adversarial examples, the trained meta-optimizer can do it ro-
bustly. This process is analogous to learning a regularization term for adversarial
examples, instead of manually designing one. The experimental results suggest a
broader horizon, in which algorithms learn how to automatically repair or treat
vulnerabilities without explicit human design.

The rest of the paper is organized as follows. In Section 2 we introduce prereq-
uisites and related work. Section 3 formalizes meta-learning and the adversarial
training problems and gives implementation details. Section 4 presents experi-
mental results on two distinct data sets, followed by a discussion in Section 5
and conclusions in Section 6.

2 Background and Related Work

We focus on the task of supervised classification, i.e. given a set of inputs from
the input space X and a set of labels from the space Y a ML algorithm attempts
to find a mapping from f : X → Y which minimizes the number of misclassified
inputs. We assume that X is a metric space such that a distance function d(·)
between two points of the space exists. The error made by a prediction f(x) = ŷ
when the true label is y is measured by a loss function l : Y ×Y → R with non-
negative values when the labels are different and zero otherwise. f(·) is defined
over a hypothesis space F which encompasses any mapping from X to Y and
can take any form – e.g. a linear function or a neural network. Through learning,
a ML algorithm selects f∗(·) from F such that the expected empirical loss on a
training set S consisting of pairs of samples (xi, yi) ∼ Z = X × Y is minimal.

A robust solution to the minimization problem above involves immunizing
it against uncertainties in the input space. In the adversarial examples setting,
uncertainties are modeled in the space around an input xu: Ux = {x|d(x,xc) ≤
ε}, where d(·) is a distance function defined on the metric space X . The robust
counterpart of the learning problem is defined as:

f = arg min
f∈F

E(x,y)∼S [max
xu∈Ux

l(f(xu), y)], (1)

where xu is a realization of x in the uncertainty set described by d(·). A common
distance function used in the field of adversarial examples is the lp-norm. Ar-
guably, this metric can not capture task-specific semantic information, but it is

Learning to Learn from Mistakes 3

suitable for comparative benchmarks. Moreover, the lack of robust p-norm solu-
tions for complex tasks makes it hard to believe that other notions of robustness
can lead to better results [4]. In this paper we use the l∞-norm distance.

Finding models robust to adversarial examples is an open question, spanning
two research directions: (1) finding solutions robust to an upper bound on the
perturbation size ε (i.e. no perturbation higher than ε can cause a misclassifi-
cation) [8, 16] and (2) finding lower bounds on robustness (i.e. no adversarial
example can be found in a space around an input) [26, 17].

Notable results are obtained by solving the inner maximization problem from
Eq. (1) with projected gradient descent (PGD) [16], by training with over-
approximations of the input [17] or extensively searching for spaces where no
adversarial examples can be found using exact solvers [13]. In all cases, the
benchmarks show overfitting on the training distribution and can be bypassed
by samples outside it [30].

Until recently, solving the outer minimization objective from Eq. (1) relied on
static, hand designed algorithms, such as stochastic gradient descent or ADAM.
This line of research is driven by the no free lunch theorem of optimization which
states that, on average, in combinatorial optimization no algorithm can do better
than a random strategy; suggesting that designing specific algorithms for a class
of problems is the only way to improve performance.

Recent advancements in the field of meta-learning have taken a different
approach, posing the problem of algorithm design dynamically and modeling it
with neural networks [1] or as a reinforcement learning (RL) problem [14]. In
both cases, the algorithms show empirically faster convergence and the ability
to adapt to different tasks.

For example, in [1] the hand designed update rules are replaced with a pa-
rameterized function modeled with a recurrent neural network (RNN). During
training, both the optimizer and the optimizee parameters are adjusted. The al-
gorithm design now becomes a learning problem, allowing to specify constraints
through data examples. The method has roots in previous research [22], where
initial RNNs were designed to update their own weights. The results of back-
probagation from one network were only later fed to a second network which
learns to update the first [28]. Andrychowicz et al. build on previous work using
a different learning architecture. Similarly, [19] used this paradigm to train neu-
ral networks in a few shot regime and [21] augmented it with memory networks.
Meta-learning has also shown promising results in designing algorithms for fast
adaptation using gradient information [7].

Instead of using RNNs, [14] formulate the optimization problem as a RL
problem where the reward signal represents successful minimization and train
an agent using guided policy search. Later, the authors refine their method for
training neural networks [15]. In both cases the agent learns to optimize faster
than hand designed algorithms and exhibits better stability.

Recent research in adversarial examples has also tackled the need to decrease
training resources by either accumulating perturbations [23, 27] or by restricting
back-propagation to some layers of the model [29]. While the latter method re-

4 Alex Serban, Erik Poll, and Joost Visser

quires forward and backward passes, the former reduces the need to do backward
passes in order to generate adversarial examples. and not to abstract or transfer
information from adversarial training.

3 Learning to Optimize Robustly

Meta-learning frames the learning problem at two levels: acquiring higher level
(meta) information about the optimization landscape and applying it to op-
timize one task. In this paper, we are interested to learn robust update rules
and transfer this knowledge to new tasks without additional constraints. We
focus on training robust ML models through adversarial training, which is one
of the most effective defenses against upper bounded adversarial examples [16].
Because generating adversarial examples during training is time consuming, es-
pecially for iterative procedures and can only provide robustness for the inputs
used during training [30], through meta-learning we learn to optimize robustly
without explicit regularization terms and transfer the knowledge to new tasks,
without the need to generate new adversarial examples.

At a high level, adversarial training discourages local sensitive behavior – in
the vicinity of each input in the training set – by guiding the model to behave
constantly in regions surrounding the training data. The regions are defined by
a chosen uncertainty set (as in Eq. (1)). This procedure is equivalent to adding a
prior that defines local constancy, for each model we want to train. In most cases,
specifying this prior is not trivial and requires the design of new regularization
methods [18], new loss functions [26] or new training procedures [17]. In this
paper we take a different approach and try to learn a regularization term au-
tomatically, using meta-learning. During the meta-knowledge acquisition phase,
the meta-optimizer learns to perform the updates robustly using adversarial
training. Later, the knowledge acquired is transferred to new models using the
meta-optimizer to train new models, without generating adversarial examples.
In the next paragraphs we describe the meta-optimizer, some implementation
details and the adversarial training procedure.

Learning to Optimize. The classification function defined in Section 2, f(·), is
parametrized by a set of parameters θ. Upon seeing new data, we update the
parameters in order to minimize the prediction errors. The update consists in
moving one step in the opposite direction of the gradient:

θt+1 = θt − η∇θt l(·), (2)

where η (the learning rate) determines the size of the step. Different choices of
η or ways to automatically adapt it results in different optimization algorithms
such as stochastic gradient descent or ADAM.

In order to avoid overfitting or impose additional constraints such as con-
stancy around inputs, it is common to add a regularization term to the loss
function which will be back-propagated and reflected on all parameter updates.

Learning to Learn from Mistakes 5

Instead of looking for regularization terms manually, we use a method to auto-
matically learn robust update steps with regularization included.

As discussed in Section 2, a parameterized update rule has been previously
represented with a RNN [1, 19] or as a RL problem [14]. In this paper, we follow
an approach similar to [1] and model the update rule with a RNN with long
short-term memory (LSTM) cells:

θt = θt−1 + ct,

where :
ct = ftct−1 + it−1c̃t, (3)

is the output of an LSTM network m with input ∇θt(l(·)):[
ct
ht+1

]
= m(∇t, ht, φ), (4)

and φ are the LSTM’s parameters.
In [19], the authors consider each term in Eq. (3) equivalent to each term

in Eq. (2) – e.g. ft = 1, ct−1 = θt – and disentangle the internal state of the
LSTM, ht, with special terms for individual updates of ft and it. This type
of inductive bias brings benefits in some cases and will be further discussed in
Section 5. However, in this paper we try to avoid such biases whenever possible.

Parameters Sharing and Gradient Preprocessing. In order to limit the number of
parameters of the optimizer, we follow a procedure similar to [1, 19] in which for
each parameter of the function we want to optimize, θi:n, we keep an equivalent
internal state of the optimizer, hi:n, but share the weights φ between all states.
This procedure allows a more compact optimizer to be used and makes the
update rule dependent only on its respective past representation, thus being
able to simulate hand designed optimization features such as momentum.

Moreover, since gradient coordinates can take very distinct values, we apply a
common normalization step in which the gradients are scaled and the information
about their magnitude and their direction is separated:

∇ →

{(
log(|∇|)

p , sign(∇)
)

if |∇| ≥ e−p

(−1, ep∇) otherwise.
(5)

We experiment with different values for p by grid search and observe that in-
creasing the size of p yields better results when the perturbations are larger.
However, for consistency, we use p = 10 for all experiments.

The meta-optimizer’s parameters are updated using an equivalent to Eq. (2).
Since its inputs are based on the gradient information of the function to be opti-
mized (also called the optimizee) the updates will require second order informa-
tion about it (taking the gradient of the gradient). This information is commonly
used for meta-learning – e.g. in [7, 25] – and will be further discussed in Section 5.
However, in this paper only first order information is used, corresponding to lim-
iting the propagation of the optimizer’s gradient on the optimizee parameters
(or stopping the gradient flow in the computational graph).

6 Alex Serban, Erik Poll, and Joost Visser

Adversarial Training. Adversarial training is still one of the most effective de-
fenses against adversarial examples. This procedure is equivalent to adding a
regularization term to the loss function of the optimizee, corresponding to:

l̃(·) = αl(θ,x, y) + (1− α)l(θ,x′, y), (6)

where x′ is an adversarial example generated from input x and α is a parameter
which controls the contribution of the adversarial loss. In some cases adversarial
training is performed using only the adversarial loss, corresponding to α = 0 in
Eq. (6), e.g. when training with the worst adversarial loss as in Eq. (1).

Several methods to generate adversarial examples have been proposed, rang-
ing from fast, less precise, attacks [8] to strong, adaptive attacks [5]. However,
due to processing constraints, only some algorithms are used in adversarial train-
ing: the fast gradient sign method (FGSM) attack – which moves one step in the
direction of the gradient – and the PGD attack – which approximates the uncer-
tainty set Ux running several steps of the FGSM and projecting the outcomes
on the norm ball surrounding an input, defined by ε.

In this paper, we use both FGSM and PGD during the meta-learning phase
to generate adversarial examples and incorporate them in the training procedure.
Formally, the FGSM attack is defined as:

x′ = x+ ε sign(∇xl(θ,x, y)). (7)

The term ε controls the size of the perturbation added in order to cause a
misclassification. We are aware that defenses against FGSM attacks sometimes
lead to a false sense of protection and to gradient masking [2], however, we
remind that hereby the goal is to reduce the data needed to train robust models
and increase the generalization outside the training distribution.

The PGD attack is defined as follows:

x′ =
∏
n

(x′ + ε sign(∇xl(θ,x, y))). (8)

If the number of iteration suffices to approximate the space we want to provide
robustness to, training with adversarial examples generated with this method
should protect against any perturbation in the space defined by ε. In order to
obtain better approximations, we can increase the iteration number, n. However,
this comes at increased computational costs.

4 Results

In all experiments the optimizer consists of a two-layer LSTM network with a
hidden state size of 20. We compare the results on training two types of neural
networks on two distinct data sets with the adaptive optimizer ADAM.

We focus on two experiments related to training neural networks, as in
prior work on meta-learning [1, 19, 14, 15]. More experiments with minimizing

Learning to Learn from Mistakes 7

other functions – e.g. logistic regression – and an integration with the Clever-
hans framework are available in the project’s repository, which can be found
at https://github.com/NullConvergence/Learning2LearnAdv. In all cases, an
optimizer is trained using normal and adversarial examples on a data set and
tested by training a robust optimizee without generating adversarial examples.
Several perturbation sizes are analyzed, as introduced below.

4.1 MNIST

We begin by training a small, fully connected, neural network with 20 units and
ReLU activation on the MNIST data set. The perturbations take different values
in the set ε ∈ {0.05, 0.1, 0.2, 0.3} for both attacks introduced earlier (Eq. (7) and
Eq. (8)). We experiment with different learning rates by grid search and find the
best to be 0.001 for the meta-optimizer. Training is performed using the common
cross entropy loss function, with a batch size of 128. We shuffle the training data
set (consisting of 60.000 examples) and divide in two parts equally: the first is
used to train a meta-optimizer using both normal data and adversarial examples
and the second is used to test its performance while training with normal data
and testing with perturbed data. Each experiment ran for 100 steps and the
average results are illustrated in Figures 1 and 2. All experiments are done using
α = 0.5 in Eq. (6) during training and α = 0.0 during the meta-optimizer transfer
phase, as first introduced in [8]. In addition to ADAM’s performance compared to
the meta-optimizer, we evaluate the performance of the meta-optimizer during
training and the performance of training a meta-optimizer using α = 1 and
testing with α = 0 (L2L and Transfer-NOT labels in Figures 1 and 2). Figure 1
illustrates the results from generating adversarial examples using the FGSM
method (Eq. (7)). The loss functions start from approximately the same value
because the networks are always initialized with the same values.

In all cases, the meta-optimizer is able to transfer the information learned
during training and has comparable performance to ADAM (in some cases per-
forming better). We remind that during testing the optimizer uses normal data,
but the plots are generated by feeding adversarial perturbed data to the opti-
mizee. This implies that the meta-optimizer proposes update rules which lead
to smooth surfaces around the tested inputs. Moreover, it is able to learn a ro-
bust regularization term during training and transfer it to new tasks without
the need to generate new data. Also, the trained meta-optimizer exhibits more
stable behavior. This brings evidence that adversarial training leads to more
interpretable gradients [24].

When the optimizer is trained only with normal examples, but used to opti-
mize the model using adversarial examples – Transfer-NOT label in Figure 1 – its
performance decrease significantly. This implies that a meta-optimizer is domain
specific and does not have the general behavior of ADAM, an observations which
will be further discussed in Section 5.

In Figure 2 we illustrate the results from running similar experiments, but
generate adversarial examples using the PGD method from Eq. (8). Training

8 Alex Serban, Erik Poll, and Joost Visser

(a) ε = 0.05 (b) ε = 0.1 (c) ε = 0.2 (d) ε = 0.3

Fig. 1: The loss landscape when training a neural network on the MNIST data set,
perturbed with FGSM and different perturbation sizes (ε). The meta-optimizer
is trained with adversarial examples – label L2L – transferred to a scenario
where training is performed with normal and adversarial data, but tested with
adversarial examples – label L2L-Transfer – and compared with a meta-optimizer
trained with normal data and transferred to adversarial settings – label Transfer-
NOT – and with ADAM. Best seen in color.

(a) ε = 0.05 (b) ε = 0.1 (c) ε = 0.2 (d) ε = 0.3

Fig. 2: The loss landscape when training a neural network on the MNIST data
set perturbed with the PGD method and different perturbation sizes (ε). The
legend is detailed in the caption of Figure 1.

with PGD is generally performed only using the perturbed examples (corre-
sponding to α = 0 in Eq. (6)), as in the original paper [16]. We take a similar
approach in this paper.

The results are consistent with the FGSM method, although the gap between
ADAM and the transferred meta-optimizer is smaller. A constant decrease in per-
formance is also observed, possibly corresponding to the decrease in performance
specific to adversarial training [24]. Nevertheless, the results are consistent and
bring evidence that the meta-optimizer is able to learn robust update rules.

Learning to Learn from Mistakes 9

(a) ε = 0.05 (b) ε = 0.1 (c) ε = 0.2 (d) ε = 0.3

Fig. 3: The loss landscape when training a neural network on the CIFAR-10 data
set, perturbed with the FGSM method and different perturbation sizes (ε). The
legend is detailed in the caption of Figure 1.

(a) ε = 0.05 (b) ε = 0.1 (c) ε = 0.2 (d) ε = 0.3

Fig. 4: The loss landscape when optimizing a neural network on the CIFAR-10
data set, perturbed with PGD and different perturbation sizes (ε). The legend
is detailed in the caption of Figure 1.

4.2 CIFAR-10

We present the results from training a model using both convolution and fully
connected layers on the CIFAR-10 data set. The network consists of three con-
volutional layers with kernel size 3, a fully connected layer with 32 hidden units
and a logits layer of size 10. All activation functions are ReLU, the loss is cross-
entropy and batch normalization is used in the convolutional layers. The meta-
optimizer is trained using a learning rate of 0.001 determined through grid search.

Since there are striking differences between the convolution and the linear
layer, we use two sets of parameters for the meta-optimizer – one for optimiz-
ing all convolutional layers and one for the linear layers. Moreover, since the
CIFAR-10 problem is more difficult, we train the optimizee for 1000 steps and
present the results in Figure 3 for perturbations generated with FGSM and in
Figure 4 for perturbations generated with PGD. The evaluation was performed

10 Alex Serban, Erik Poll, and Joost Visser

as earlier, using 2-fold cross validation for training a meta-optimizer in adversar-
ial settings and transfer it to training a model in normal settings which is tested
with adversarial examples.

We observe that in the case of FGSM, the transferred meta-optimizer (la-
bel L2L-Transfer, Figure 3) exhibits similar behavior as in the MNIST experi-
ments: it has similar and sometimes better performance than ADAM. We remind
that, in this case, no adversarial examples are used during training. The meta-
optimizer trained normally, but tested with adversarial examples (Transfer-NOT
label, Figure 3) performs visibly worse, which strengthens the observation that
meta-learning optimization is domain specific.

Figure 4 shows results from running the same experiment using perturbations
generated with the PGD method, with a number of 7 steps, as in the original
paper [16]. In all cases, the loss improvements are small, although the meta-
optimizer exhibits better performance than ADAM both during training and
testing. However, the improvements in training time are significant since after
training an adversarial meta-optimizer, it can be applied to different models
without the need to execute 7 forward and back propagation steps for each
batch of data.

5 Discussion

Typically used to rapidly adapt to new tasks or generalize outside the i.i.d as-
sumption, meta-learning algorithms show promising results to reduce the train-
ing samples needed for adversarial training. The results presented in this paper
suggest these algorithms can be used in the future to build adversarial defenses
with less computational resources and capable to adapt to new data.

We hereby note some weaknesses discovered during the process. Although
capable of achieving better performance than hand crafted optimizers [1, 15] and,
as discussed in Section 4, showing promising results in transferring information
about adversarial examples, meta learning algorithms still suffer from broader
generalization. In particular, trained optimizers can not generalize to different
activation functions, or between architectures with noticeable differences [25].
This means that an optimizer trained for ReLU can not be used for sigmoid
(or other) activation functions. Moreover, if the meta-optimizer is not trained
with specific data that will be later used, it does not exhibit general behavior.
For example, if the meta-optimizer does not use any adversarial examples during
training, but it encounters such examples during testing, it faces difficulties. This
behavior is illustrated in the figures above with the label Transfer-NOT.

Second order information (taking the gradient of the gradient, as introduced
in Section 3) was not used in this paper. As shown in [25], this information
can help the meta-optimizer better generalize and induce more stable behavior.
However, it also introduces more complexity. Analyzing the trade-off between the
optimizer’s complexity and its ability to learn and transfer knowledge related to
adversarial vulnerabilities is left for future work.

Learning to Learn from Mistakes 11

6 Conclusions and Future Research

We introduce a method to learn how to optimize ML models robust to adver-
sarial examples, in low data regimes. Instead of specifying custom regularization
terms, they are learned automatically by an adaptive optimizer. Acquiring meta
information about the optimization landscape under adversarial constraints al-
lows the optimizer to reuse it for new tasks.

For future research, we propose to train the meta-optimizer concomitantly
with different perturbation types – e.g. l1, l2-norm – and test if the optimizer
can learn to robustly optimize under all constraints. Other perturbations, such
as naturally occurring perturbations [9] can also be included. Another research
direction is to use the meta-optimizer to refine a trained model and evaluate if
it is possible to robustly regularize it with less data.

References

1. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: NeurIPS. pp. 3981–3989 (2016)

2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. ICML (2018)

3. Bubeck, S., Price, E., Razenshteyn, I.: Adversarial examples from computational
constraints. arXiv:1805.10204 (2018)

4. Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D.,
Goodfellow, I.J., Madry, A., Kurakin, A.: On evaluating adversarial robustness.
arXiv:1902.06705 (2019), http://arxiv.org/abs/1902.06705

5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (S&P). pp. 39–57. IEEE (2017)

6. Cullina, D., Bhagoji, A.N., Mittal, P.: Pac-learning in the presence of evasion
adversaries. arXiv:1806.01471 (2018)

7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML. pp. 1126–1135 (2017)

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv:1412.6572 (2014)

9. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. ICLR (2019)

10. Huang, X., Kroening, D., Kwiatkowska, M., Ruan, W., Sun, Y., Thamo, E.,
Wu, M., Yi, X.: Safety and trustworthiness of deep neural networks: A survey.
arXiv:1812.08342 (2018)

11. Jacobsen, J.H., Behrmann, J., Carlini, N., Florian Tramer, N.: Exploiting excessive
invariance caused by norm-bounded adversarial robustness. ICLR (2019)

12. Jacobsen, J.H., Behrmann, J., Zemel, R., Bethge, M.: Excessive invariance causes
adversarial vulnerability. ICLR (2019)

13. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An effi-
cient smt solver for verifying deep neural networks. In: CAV. pp. 97–117. Springer
(2017)

14. Li, K., Malik, J.: Learning to optimize. arXiv:1606.01885 (2016)
15. Li, K., Malik, J.: Learning to optimize neural nets. arXiv:1703.00441 (2017)

12 Alex Serban, Erik Poll, and Joost Visser

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. ICLR (2018)

17. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. ICML (2018)

18. Miyato, T., Maeda, S.i., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing
with virtual adversarial training. arXiv:1507.00677 (2015)

19. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. ICLR
(2017)

20. Rice, L., Wong, E., Kolter, J.Z.: Overfitting in adversarially robust deep learning.
arXiv preprint arXiv:2002.11569 (2020)

21. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: ICML. pp. 1842–1850 (2016)

22. Schmidhuber, J.: A neural network that embeds its own meta-levels. In: ICNN. pp.
407–412. IEEE (1993)

23. Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J., Studer, C., Davis, L.S.,
Taylor, G., Goldstein, T.: Adversarial training for free! arXiv:1904.12843 (2019)

24. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: There is
no free lunch in adversarial robustness (but there are unexpected benefits).
arXiv:1805.12152 (2018)

25. Wichrowska, O., Maheswaranathan, N., Hoffman, M.W., Colmenarejo, S.G., Denil,
M., de Freitas, N., Sohl-Dickstein, J.: Learned optimizers that scale and generalize.
In: ICML. pp. 3751–3760 (2017)

26. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. ICML (2018)

27. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: Revisiting adversarial
training. arXiv preprint arXiv:2001.03994 (2020)

28. Younger, A.S., Hochreiter, S., Conwell, P.R.: Meta-learning with backpropagation.
In: IJCNN. vol. 3. IEEE (2001)

29. Zhang, D., Zhang, T., Lu, Y., Zhu, Z., Dong, B.: You only propagate once: Accel-
erating adversarial training via maximal principle. arXiv:1905.00877 (2019)

30. Zhang, H., Chen, H., Song, Z., Boning, D., Dhillon, I.S., Hsieh, C.J.: The limitations
of adversarial training and the blind-spot attack. ICLR (2019)

