Pure Type Systems with Definitions

Paula Severi Erik Poll *
{severi,erik }@win.tue.nl

Eindhoven University of Technology

appeared in Logical Foundations of Computing Science (LFCS94),
Lecture Nores in Computer Science Vol. 813, pp. 316-328, 1994

Abstract. In this paper, an extension of Pure Type Systems (PTS’s) with definitions is presented.
We prove this extension preserves many of the properties of PTS’s. The main result is a proof that for
many PTS’s, including the Calculus of Constructions, this extension preserves strong normalisation.

1 Introduction

A large class of typed lambda calculi can be described in a uniform way as Pure Type Systems (PTS’s). This
includes for instance the second-order A-calculus [Gir72][Rey74], Edinburgh Logical Framework [HHP93],
and the Calculus of Constructions [CH88]. For an introduction to PTS’s and their most important properties
we refer to [Bar92].

One shortcoming of PTS’s is that they do not provide the possibility to introduce definitions, i.e. abbrevi-
ations for larger expressions that are used several times. A definition mechanism is essential for practical use,
and indeed implementations of PTS’s such as Coq [Dea91], Lego [LP92] or Constructor [Hel91] do provide
such a facility, even though the formal definitions of the systems they implement do not.

In this paper, we introduce an extension of PTS’s with definitions. Definitions will be of the form z = a : A.
A definition £ = a : A introduces = as an abbreviation of the term a of type A. Definitions are allowed both
in contexts, e.g. I, x=a:A,..., and in terms, e.g. (r=a:A in b). Definitions in contexts are called global
definitions, definitions in terms are called local definitions. A new reduction relation — §-reduction — is defined
for the unfolding of definitions.

The extension of a PTS with definitions looks very harmless, and may not seem a topic worthy of
investigation. However, the local definitions complicate matters, and it is an open problem whether extending
an arbitrary PTS with definitions preserves strong normalisation! Worse still, proving strong normalisation
for particular PTS’s extended with definitions is already a problem. The strong normalisation proofs for
particular type systems given in [Coq85] [Luo89] [GN91] [Bar92] cannot be extended in any obvious way to
prove strong normalisation of these systems extended with definitions.

In this paper we show how strong normalisation of a PTS extended with definitions follows from strong
normalisation of another (larger) PTS. This enables us to prove that for all strongly normalising PTS’s that
we know the extensions with definitions are also strongly normalising.

In the systems of the AUTOMATH family (see [dB80]) definitions are considered as part of the formal
language. The meta-theory of these systems — including strong normalisation — is treated in detail in [vD80].
However, the proofs of strong normalisation apply only to the particular type systems that are considered,
and do not extend to other type systems.

In section 2, we recall the definition of PTS’s. Then in section 3, DPTS’s — PTS’s with definitions —
are introduced. In section 4, some properties of §-reduction are proved, and in section 5 some properties of
DPTS’s. Finally in section 6 we consider the problem of strong normalisation for DPTS’s.

* supported by the Dutch organization for scientific research (NWO).

2 Pure Type Systems

Pure Type Systems (PTS’s) are defined as in [Bar92].

Definition 1. A specification of a PTS is a triple S = (S, A, R) such that

e Sis a set of symbols called the sorts.
e A CS xS is the set of azioms.
¢ R CS xS xS is the set of rules. We write (s1, s2) for a rule (s1, $2,83) € Rif 59 = s3.

The PTS determined by the specification S is denoted by AS. It consists of sets of pseudoterms and pseudo-
contexts, a reduction relation and a typing relation.

Definition 2. The set T of pseudoterms and the set C of contexts of the PTS A(S,A,R) are defined as

follows:
Ta=V|[S | (TT)| A:T.T)| (IV:T.T)
Cu=ce€ | (CV:T)

where V is the set of variables and € is the empty context.

a-equality is defined as usual, and a-equal terms are identified. We write FV(A) for the set of the free
variables of a term A. -reduction, denoted by — g, is defined as usual by (Az:A. b) a =g b[z := a]. We write
A — Bfor (IIz:A. B) if x ¢ FV(B).

Definition 3. A term b has type B in context I' in the PTS AS = A(S,A,R) — written ' Fys b: B —if it
can be derived using the following rules (the subscript AS of | is dropped if it is clear which PTS we mean):

(axiom) ebs:s fors:s' € A
(start) % where z is I'-fresh
(weakening) r l}bx B Y }_F bl__ g -8 where z is I'-fresh

I'A:s1 INt:AF B:ss
I'- (ITx:A.B) : s3
Nz:A+-b:B 'k (z:A. B):s
I' (Az:A. b) : (IIz:A. B)
I'tb:([Iz:A.B) I'ta:A
I't(b a): B[z :=a]
I'tb:B I'tB':s B=3B
I'tb:B

(II — formation) for (s1,s2,83) € R

(IT — introduction)

(IT — elimination)

(8 — conversion)

Here s ranges over sorts, i.e. s € S, and a variable z is called I'-fresh if & {y} UFV(B) for all y:B in I'.
Definition 4. A specification S = (S, A, R) is functional (or singly sorted) if

1. (s:8"),(s:8")e A= s =45"
2. (s1,82,83),(81,82,83) €ER= 83 = s}

In functional PTS’s, types are unique up to B-equality:

Theorem 5 Uniqueness of Types. Let AS be a functional PTS.
IfI'tyxsa:Aand I'tys a: B then A =g B.

Definition 6. The Calculus of Constructions (AC) is the PTS specified by

S={x,0} A={x:0} R={(xx),(0,%),(x,0),(0,0)}
The Calculus of Constructions extended with an infinite type hierarchy (AC°) is the PTS specified by
N

{(n:n+1)|nelN}
{(m,0,0) | m € N} U{(m,n,maz(m,n)) | m,n € N}

> wn
I

We can see that AC*® extends AC' by reading * for 0 and O for 1.

By extending AC*™ with cumulativity (a subtype relation on the sorts) we obtain the system defined in
section 11 of [Coq86]. By extending it with cumulativity and strong X-types, we obtain the system ECC
introduced in [Luo89].

Theorem 7. A\C* and (hence \C) are strongly normalising, i.e. b and B are [3-strongly normalising for all
I't+bv:B.

Proof. A\C* is a subsystem of ECC and ECC is SNg (see [Luo89]).

3 Pure Type Systems with Definitions

The DPTS determined by the specification S is denoted by AS;. It consists of sets of pseudoterms and
pseudocontexts, reduction relations and a typing relation.
The set of pseudoterms T and the set of contexts C defined in section 2 are extended to include definitions:

Definition 8. The set T; of pseudoterms of the DPTS A(S,A,R) is given by
T5 =V | S | (T5 T5) | (/\VT(; T5) | (HVT5 T(;) | (V:T(; : T(; in T5)

Like A- and IT-abstractions, definitions introduce bound variables. In (z=a:A in b) the free occurrences
of z in b are bound (but not those in a and A). The notions of free variables, substitution, a-equality, and
B-reduction are extended to Ty in the natural way.

Definition 9. The set Cs of pseudocontexts of the DPTS A(S, A, R) is defined as follows

e ecCs
o (Iw:A) e Cs if I' € C5, 2z € V,A € Ts and z is [-fresh
o (INz=a:A) € Cs f I'e Cs5,z €V, a,A€Ts, zis I'fresh and x € FV(a) UFV(A).

Here a variable z is called I'-fresh if z & {y} UFV(B) for all y:B in I" and z ¢ {y} UFV(b) UFV(B) for all
y=b:B in I'.

Note that the set of contexts is not simply given by Cs :=€| Cs5,V:Ts| Cs5,V=Ts: T, but that we
require that all variables introduced in a context are fresh. This is necessary to avoid problems with the
capture of free variables in the definition of d-reduction below.

Definition 10. A term b §-reduces to b’ in the context I' — written I' - b —4 b’ — if it can be derived using
the following rules:
IN,z=a:A, IxFxz—s5a
I't (z=a:Ain b) —s b if x ¢ FV(b)
Iz=a:AFb—sb
I't (z=a:Ain b) =5 (z=a:Ain b')

I'a—sa 'k A—s A
I't (z=a:Ain b) =5 (z=ad':Ainb) 'k (z=a:A in b) =4 (z=a:A" in b)
I‘I—a—)aa’ Fl‘b—)gbl
I't(ab)—5 (D) I't(ab)—s5(ad)
I''rc:AlFa—sad I'-A—s A
I't (Az:A. a) =55 (A\z:A. @) TI'F (Az:A. a) =5 (Ax:A'. a)
I''r:Aba—sad I'-A—s A

't (IIz:A. a) =5 (Ix:A. o') T'F (IIz:A. a) -5 (ITz:A'. a)

The first rule allows the unfolding of definitions, the second rule allows the removal of definitions, and the
rest are compatibility rules.

We write I' - a —gs o' if I' F a =5 a' or a =g a'. For p € {$,9, 30}, the relation I - _ —», _ is the
transitive, reflexive closure of I"' - _ —, _, and I' - _ =, _is the congruence relation generated by I" - _ —, _.

Ezample 1.
eF (id=(\yA. y):A—> Ain QzA— A id) id)
=5 (id=(Ay:A. y): A = Ain (Az:A = A. (A\y:4. y)) id)
=5 (id=(Ay:A. y) : A > Ain (Az:A — A. (A\y:A. y)) QA)
—s (Az:A = A. (Ay:A. y)) w4, y)

In the first two steps one occurrence of id is unfolded, and in the last step the definition of id is removed.

Definition 11. A term b has type B in context I' in the DPTS A\S; = A(S,A,R)s — written I' bys, b: B —
if it can be derived using the following rules (the subscript ASs of |- is dropped if it is clear which DPTS we
mean):

(0 — start) 7 mljal_jki 7 where z is I'-fresh
(6 — weakening) Fll__, 2zaBA E;_(IB A where z is I'-fresh

I'z=a:A+B:s
'k (r=a:Ainbd):s
Iz=a:AFb:B Itk (z=a:AinB):s
I't (z=a:A in b) : (xr=a:A in B)
I'tb:B I'tB':s I'tB=;B
I'tbv: B

(6 — formation)

(6 — introduction)

(6 — conversion)

where s ranges over sorts, i.e. s € S.

Clearly, a DPTS AS; is an extension of the PTS AS.

One might consider dropping the premiss ”I" F (z=a:A in B) : s” in the d-introduction rule, (and then
possibly also omitting the §-formation rule). However, this results in a badly-behaved type system for which
subject reduction fails, as the following example illustrates.

Example 2. Consider the system A\Cs with the rule (§ — introduction) replaced by the more powerful rule

Iz=a:A+b:B

(8 — introduction+) I' (z=a:Ain b) : (z=a:A in B)

Suppose that I' F a : A. Then we can derive I' F (z=a:A in %) : (r=a:A in O), but we cannot derive (i)
I't x: (z=a:Ain O). Since (x=a:A in *) —; *, this means subject reduction fails. The d-conversion rule
cannot be used to derive (i) from I' F x : O, e.g.

I'tx:0 TI'F(z=a:AinO):s Itk (z=a:Ain0O)=;0
I't x:(z=a:Ain O)

because — like O — (z=a:A in O) does not have any type s.

Remark. (Definitions vs abstraction and application).
There are important differences between the terms (x=a : A in b) and (Az:A. b) a, both regarding their typing
and their reduction behaviour.

Both terms can be reduced to bz := a]. But the term (Az:A. b) a B-reduces in one step to to b[z := a,
whereas (z=a : A in b) §-reduces in one step to an expression which has only one occurrence of z in b replaced
by a. The d-reduction of (z=a:A in b) to bz := a] will take several steps.

There are two reasons why (z=a:A in b) may be typable when (Az:A. b) a is not typable:

1. in (z=a:A in b) the fact that z is an abbreviation for a can be used to type b.

Ezample 3. Tt is possible to type the term (X=a — a:x in (Ay:a. Af:X. fy)). But it is not possible to
type the term obtained by replacing the definition with an abstraction and an application: (AX :*. Ay:
a. Af:X. fy) (@ =). In this term the application fy is not well-typed, because the type a of the
argument y does not match the type X of the function f. In the first term this application is well-typed,
because we know that X is an abbreviation of a — «a.

2. the abstraction (Az:A. b) may not be allowed in a given type system.

Ezample 4. The term (X=a — a: *in (Ay:X. A\f:X — X. fy)) is typable in the simply typed lambda
calculus (A_,) extended with definitions. The corresponding term expressed with an application and an
abstraction, i.e.

A X Ay X, Af: X — X. fy) (¢ = @), is not typable in A_,, because in A_, abstractions over type
variables are not allowed.

The fact that the type A of a is recorded in the definition z = a : A is not essential. One can also choose
not to record the types of definitions, i.e. have terms and contexts of the form (z=a in b) and I',xz=a,I".
For functional PTS’s it makes no difference whether definitions include type information or not, because
types are unique (up to S-equality). There are however instances where one may want to record the type of
a definition, for example if a is a proof of some proposition A. Also, in any implementation types will have
to be recorded for efficient type-checking.

4 Properties of §-reduction

All proofs of results in this section and the next are given in detail in [SP93]. Many of these proofs are
straightforward induction proofs, but they are too long for all of them to be included here.

Definition 12. For a € Ts and I" € C;5 we define |a|r € T by induction on the number of symbols occurring
in I' and a, as follows:

{ la|r, if I'= (I1,z=a:A,I})

|z|r otherwise
Is|r =s ifseS

la blr = la|r|blr

‘)\iEA bl[‘ = ()\$|A|[‘ |b‘[‘,z:A)

|H.CL'A B|F = (H.CL'|A|[‘ |B|F,z:A)

|z=a:A in b|r = |b|r,z=aa

So the value |a|r is obtained from a by unfolding all the definitions occurring in I" and in a. The mapping
|-|_ is used to prove Church-Rosser for é- and fd-reduction, using the following basic properties, which we

give without proof:

Property 13. 1. I' - a —»; |a|r.
2.if 't a—sa then |a|r = |a'|r.
3. if a —p a' then |a|r -5 |d'|r.

Theorem 14. §-reduction is Church-Rosser.

Proof. Suppose I' - a —»5 a1 and I' F a =5 az. By 13.1, I' F a; —»5 |a1|r and
I' - az —»s |az|r, and by 13.2, |a|r = |a1|r = |az2|r, so |a|r is a common é-reduct of a; and as.

As you probably expected:
Theorem 15. |a|r is the §-normal form of a in I'.

Proof. Given 13.1 and Church-Rosser for d-reduction, it only remains to be shown that |a|r is in §-normal
form in I'. This can be proved by induction on the number of symbols in I" and a.

Theorem 16. (3§-reduction is Church-Rosser.

Proof. Suppose I' F a —»g5 a1 and I' - a —»g5 a2. By 13.1, ' - a =5 |a|r, ' F a1 =5 |a1|r, and I' F as =5 |az|r.
By 13.2 and 13.3, I' F |a|r =3 |a1|r and I' F |a|r =3 |a2|r. Now the solid lines of the diagram below are
justified:

a
85 gs
1)
ai az
la|
|ax|r |az|r
., B
PN
as

Then by Church-Rosser for g-reduction there is a common S-reduct as of |ai|r and |az|r, and this is a
common Gé-reduct of a; and as.

From the fact that §-normal forms exist (theorem 15), it follows that §-reduction is weakly normalising.
In fact, §-reduction is strongly normalising. To prove this, we define d-reduction for contexts:

Definition 17. For p € {0, 36}, a context I" p-reduces to I'"" — written I' =, I'"" — if it can be derived using
the following rules:
I'tA—, A I'FA—, A I'ta—,d
Ly A I -, IyA, I INy=a:A, I'" =, INy=a:A", I" I'y=a:A,I'" -, I'y=a"A,I"

Theorem 18. SNs J-reduction is strongly-normalising, i.e. for all I' € C5 and b € Ty the pseudoterm b is
d-strongly normalising in I.

Proof. This is proved by showing that the function nat_(_) : C5 x Ts = IN defined below decreases with
d-reduction.
For a € T and I' € Cs5 we define natr(a) € IN , by induction on the number of symbols in I" and a, as

follows:
[natr, (@) +1 i I' = (I1,2=a:A, I3)

natr(z) 10 otherwise

natr(s) =0 ifseSsS

natr(z=a:A in b) = natr(a) + natr(A) + natrg—qa(b) + 1
natr(a b) = natr(a) + natr(b)

natr(Ax:A. b) =mnatrz.a(b) + natr(A)

natr(IIz:A. B) =natrz.4(B) + natr(A)

The following two properties of nat_(_) can proved simultaneously by induction on number of symbols in I"
and in a:

(i) if I' + a —4 a' then natr(a) > natr(a')

(ii) if I' =45 I"" then natr(a) > natr (a)
SN; follows immediately from (i).

In [vD80] a proof of strong normalisation for the theory of abbreviations LSP, due to N.G. de Bruijn, is
given, which corresponds to SNg. Our proof is somewhat simpler. By having the context as a parameter, we
can give a simpler definition of the measure nat_(_).

Strong normalisation for § implies finiteness of developments for S-reduction (think of a d-redex (z=a:
A in b) as a 'marked’ B-redex (Az:A. b) a). In fact, the simple proof of finiteness of developments given in
[dV85] was inspired by the proof in [vD80].

5 Properties of DPTS’s

To establish a relation between the PTS AS and the DPTS AS;s, the mapping |_|_ is extended to contexts:

Definition 19. The mapping |-| : C; — C is defined as follows:

e =€
| z:Al = |, 2| Alr
|I, z=a:A| = ||

The following theorem states that definitions can be eliminated:
Theorem 20. Elimination of Definitions If I' Fys, a : A then |I'| Fas |a|r : |A|r.
Proof. Induction on the derivation of I' - a : A.

It follows from this theorem that extending a PTS with definitions does not increase the strength of the
system.

Corollary 21. (Conservativity) Leta € T and I € C. Then

1.3a'kFyrsa:AigffIa I'Frs,a: A
2.3a T yxsA:aiff daT'kFys; A:a

The first part of this corollary states that a AS-term is typable in AS iff it is typable in ASs. The second
part states that a AS-type is inhabited in AS iff it is inhabited in ASs. The second part is crucial if types
are interpreted as propositions and terms as proofs (the Curry-Howard-de Bruijn isomorphism), because it
means that a AS-proposition is provable in AS iff it is provable in ASs.

All the properties proved in [Bar92] for arbitrary PTS’s can easily be proved for DPTS’s. For example,
we have

Theorem 22. (Subject Reduction) If I'+a: A and '+ a —g5 a’ thenI'Fa' : A.

Proof. This can be proved in the same way as subject reduction for PTS’s. The following properties are
proved simultaneously by induction on the derivation of I'Fa : A

ifI'ta—gsa' andI'+a:AthenI'td': A

({)ifI'—»gs ["and 'ta: AthenI"Fa: A
using a substitution lemma.

Theorem 20 can also be used to prove that for functional systems we preserve the property that types are
unique up to conversion:

Theorem 23 Uniqueness of Types. Let ASs be a functional DPTS.
IfI'trs;a:Aand I'Fys; a: B then I'- A =5 B.

Proof. Suppose I' Fys; a: A and I' Fys; a : B. By theorem 20 |I'| Fas |a|r : |A|r and || Fas |a|r : |B|r.
AS is functional, so by Uniqueness of Types for the PTS AS |A|r =p |B|r. It follows from 13.1 that I' F
A —»s |A|1" and that I' - B —»5 |B|[' Hence ' A =gs5 B.

6 Strong Normalisation

We now come to the problem of strong normalisation of 8d-reduction for DPTS’s.

Definition 24. Let AS(5) be a (D)PTS and p € {3, 36}
AS(5) is p-strongly normalising — written SN, — if b and B are p-strongly normalising in I'" for all I' ks,

Similarly, AS(s) is p-weakly normalising — WN, — if b and B are p-weakly normalising in I" for all
I'hk AS () b: B.

Using theorem 20 it is easy to prove that extending a PTS with definitions preserves weak normalisation:
Theorem 25. AS is WNg = AS; is WNgs.

Proof. Suppose AS is WNg and I' Fys; a : A. By theorem 20 |I'| ks |a|r : |A|r, so by WNg for AS the term
|a|r has a B-normal form b. Then I' - a —»; |a|r —»3 b, and it is not difficult to show that the S-normal
form b of the §-normal form |a|r is also a J-normal form.

Using theorem 20 it is also easy to show that strong normalisation is preserved for DPTS’s without local
definitions:

Theorem 26. Let AS; be AS extended with only global definitions, i.e. the system A\S; without the rules
d-form and d-intro. (In this system terms cannot be of the form (zr=a:A in b), i.e. all terms are in T and not
in Ts\T.) Then

AS is SNg =)‘86_ 8 SNg(; .

Proof. Given theorem 20, we only have to show that |-|_ maps an infinite Bd-sequence to an infinite (-
sequence. Any infinite 3d-sequence contains an infinite number of S-steps (because of SNy), so this follows
from property 13.2 and

a—pb = |alr =p|blr foralla,beT.
Note that this does not hold for all a,b € T !
For example, if (z=a:A in y) =3 (r=a":A in y) then |z=a:A in y|r = |z=a":Ain y|r = |y|r.

The system implemented in Coq [Dea91] does not have local definitions, so for this system strong normali-
sation follows from strong normalisation of the system without definitions.

To prove strong normalisation for gé-reduction for DPTS’s we introduce a mapping {_}_: Ts x Cs = T,
which maps an infinite gé-reduction sequence in a DPTS to an infinite S-reduction sequence in a slightly
"larger” PTS, i.e. a PTS with more sorts, axioms and rules.

Definition 27. The mapping {_}_: Ts x Cs = T is defined as follows:
(=}r _ {{a}p1 if ' = (I, z=a:A, I})

T otherwise
{s}r =s ifseS
{a b}r = {a}r{b}r

{)\.’EA b}p =)\.’E{A}p {b}p,z:A

{H.CL'A B}p = H.CL'{A}F {B}p’z;A

{z=a:Ain b}r = (A:{A}r. {d}re=aa){a}r

Note that |-|_ only differs from {_}_in the value given for (z=a:A4 in b). Like |_|_ the mapping {_}_ unfolds all
definitions, but, unlike |_|_, the mapping {_}_ does not remove local definitions. Instead, every local definition

is translated to a (-redex, a A-abstraction with an argument. The redex (Az:{A}r. {b}ro=a){a}r is a
special kind of f-redex, called K-redex, because z ¢ FV({b} z—q:4)-

Ezample 5. Let B = (X=a — a:x* in (\y:a. Af:X. fy)). Then {B}. is
(AX:=*. dy:a. Af:a = a. fy) (a = a)

Compare this with example 3, where it was shown that replacing the local definition in the term B with an
abstraction and application produces an untypable term

A X Ay, Af:X. fy) (o =)

because in this term the application fy is not well-typed. In the term {B}. the application fy is well-typed,
because all occurrences of X have been unfolded.

Definition 28. The mapping {-} : C; — C is defined by
{e} =€
{z: A} ={I'},z:{A}r
{Iz=a:A} ={I'},x: {A}r

{_}_ maps Bd-reduction sequences to S-reduction sequences:

Lemma29. 1. Ifa—pb then {a}r =% {b}r, where =} is the transitive closure of —4.
2. If ' a —5 b then {a}r —F {b}r, where =7 is the reflezive closure of —p.

Proof. Induction on the structure of a.

By this lemma {_}_ maps a Sd-reduction sequence with an infinite number of 3-steps to an infinite S-reduction
sequence.

It will be proved that {_}_maps terms that are typable in a DPTS ASs to terms that are typable in a
PTS AS' with 8" a completion of S:

Definition 30. A specification &' = (S’,A’,R’) is called a completion of a S = (S, A,R) if

(C1) SCS', ACA, RCR/, and
(C2) &' is full, ie. Vs1,82 € S’ As3 € S' (51, 92,83) € R', and
(C3) for all s € S there is an s’ € §' such that (s : s') € A’ (so the sorts of S are typable in AS').

Example 6. The system AC* is a completion of AC' and of itself.

Remember that {_}_ translates a local definition to a A-abstraction with an argument:
{z=a:Ain b}y = (Az:{A}r. {b}rz=aa){a}r. Condition C2 is needed to ensure that all these A-abstractions
introduced by {_}_ are allowed in AS’. Condition C3 is needed because for example the term (z=x : O in z)
is typable in ACs but {z=+:0inz}. = (Az:0. %) * is not typable in A\C.

Lemma31. Let &' = (S',A’,R") be a completion of S = (S,A,R).
IfF FAS& a:A and {F} |—)\gl {a}p : {A}p, then {F} I_AS’ {A}p .S,

Proof. Assume (i) I' Fyss a:A and (ii) {I'} Fas: {a}r : {4} r. By correctness of types [Bar92] it follows from
(11) that {F} |_)\S’ {A}F :s' or {A}p = S.

Suppose {A}; = s. Then {A}r €S, so by C3 it is typable in AS': there is a sort s’ € S’ such that
({A}r:s') € A" and hence {I'} Fys {A}r: s

Lemma32. Let 8’ = (S',A',R") be a completion of S = (S,A,R).
IfF |_AS<5 a: A then {F} |—)\51 {a}p : {A}p

Proof. By induction on the derivation of I' k)54 a:A. We show the case that the last step is the d-introduction
rule, which is the most complicated one.
F,.CL'ZG,ZA |—)\35 b:B I l—,\sg (w:a:A in B))

I'Fyss (z=a:Ain b) : (z=a:A in B)

Suppose the last step in the derivation is

By the IH

{Iz=a:A} Fas {b}ro=aa : {B}raz=aa (i)
{I'}Fas' {x=a:Ain B}r : s (ii)

The derivation of I', z=a:A F)ss5 b : B contains a (shorter) derivation of I' Fyss a:A, so also by the TH

{I'}Fas {a}r : {A}r (iii)

By lemma 31 it follows from (i) and (iii) that there are s1,s2 € S’ such that
{Fa JIIG,IA} Fas {B}F,w:a:A © 82 (IV)
{I'tFas {A}r: s (v)

By C2 there exist an s3 € S’ such that (s1, s2,83) € R', so then

(iv) (v) (I -form)
{F} Fas (H.’L’ € {A}F {B}F,z:a:A) 1 83 (1) (H—intro)
{F} Fas (/\1’ S {A}F {b}p’:,;:a;A) : (H.’E S {A}p {B}p,w:a;A) (111
{I't Fas' (Az € {A}r. {b}ro—aa){a}r : {B}re—ealz := {a}r]

(IT-elim)

10

{z=a:Ain b}r = (Az € {A}r. {b}rz=ea){a}r and
{z=a:Ain B}r = (Az € {A}r. {B}re=aa){a}r
=g {B}ra=aalz = {a}r] (vi)
so using the conversion rule

{F} l—)\,sl {IL'IG,:A in b}p : {B}F,wza:A[x = {a}p] (11) (Vl)
{I'} Frs {z=a:Ain b} : {z=a:A in B}r

(8 — conv)

Lemmas 29 and 32 can now be used to prove:
Theorem 33. Let S' = (S',A’,R’) be a completion of S = (S,A,R). Then
S is SNﬁ = ASs is SNga .
Proof. Suppose that AS’ is SNg, and suppose towards a contradiction that AS; is not SNgs, i.e. I' Frss a: A
and there is an infinite 3d-reduction sequence starting at a: I' - a —gs a1 —gs az
Observe that the number of g-reductions in this sequence is infinite. Otherwise the sequence would end
with an infinite d-sequence, and because § is strongly normalising, this cannot happen. This means it is of

the form
't a =5 an, =8 Any =5 Gpg =8 Gny —5 Gng —3 Apg =5 - - -

By lemma 29 there is an infinite S-reduction sequence starting at {a}r:
{atr =p {anbr =§ {an.br =5 {an,}r =5 {an e =5 {an }r 2§ {an}r =5 -

and by theorem 32 {I'} ks {a}r : {A}r, which contradicts the assumption that AS’ is SNg.

This theorem can be used to prove strong normalisation of the Calculus of Constructions (with an infinite
hierarchy of universes) extended with definitions:

Corollary 34. ACs and AC§° are SNg;.

Proof. The system AC™ is a completion of AC' and of itself, so by theorem 33 this corollary follows imme-
diately from the fact that AC* is SNg (theorem 7).

All systems in Barendregt’s lambda cube are subsystems of the Calculus of Constructions, so extended with
definitions they are all 3d-strongly normalising.

7 Conclusions

Theorem 33 can easily be generalized to include more type constructors and reduction rules than just IT
and 3, or other features, for instance cumulativity. In particular, we can prove that the system ECC (see
[Luo89]) extended with definitions is strongly normalising. This can be proved using the fact that ECC is
SN, in the same way that in corollary 34 we prove that AC§° is SN using the fact that AC*® is SN. So all the
type systems implemented in Lego [LP92], which do have local definitions, are strongly normalising.

Theorem 33 is somewhat unsatisfactory. It would be nicer to prove a stronger property, namely
AS is SNg = ASs is SN/@J,;

This remains an open problem.

On the other hand, we do not know any strongly normalising PTS AS for which theorem 33 cannot be
used to prove strong normalisation of ASs. In particular, AC* is a completion of all strongly normalising
PTS’s given in [Bar92).

11

References

[Bar92]
[CHSS]

[Coq85]
[Coq86]

[dB80]

[dV85]

[Deadl]
[Gir72]

[GNO1]

[Hel91]

H.P. Barendregt. Lambda calculi with types. In D. M. Gabbai, S. Abramsky, and T. S.E. Maibaum, editors,
Handbook of Logic in Computer Science, volume 1. Oxford University Press, 1992.

Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information and Computation, 76:95—
120, 1988.

Thierry Coquand. Une Theorie des Constructions. PhD thesis, Université Paris VII, 1985.

Thierry Coquand. An analysis of Girard’s paradox. In Logic in Computer Science, pages 227-236. IEEE,
1986.

N.G. de Bruijn. A survey of the project AUTOMATH. In J.P. Seldin and J. R. Hindley, editors, To H.
B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pages 579-606. Academic Press,
1980.

Roel de Vrijer. A direct proof of the finite developments theorem. Journal of Symbolic Logic, 50(2):339-343,
1985.

G. Dowek et al. The Coq proof assistant version 5.6, users guide. Rapport de Recherche 134, INRIA, 1991.
J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de larithmétique d’ordre supérieur.
PhD thesis, Université Paris VII, 1972.

Herman Geuvers and Mark-Jan Nederhof. A modular proof of strong normalisation for the Calculus of
Counstructions. Journal of Functional Programming, 1(2):155-189, 1991.

Leen Helmink. Goal directed proof construction in type theory. In Procs. of the first Workshop on Logical
Frameworks. Cambridge University Press, 1991.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the ACM,

[LP92]
[Luo89]
[Rey74]
[SP93]

[vD80]

40(1):143-184, 1993.

Zhaohui Luo and Robert Pollack. LEGO proof development system: User’s manual. Technical Report
ECS-LFCS-92-211, LFCS-University of Edinburgh, 1992.

Z. Luo. ECC, the Extended Calculus of Constructions. In Logic in Computer Science, pages 386-395. IEEE,
1989.

John C. Reynolds. Towards a theory of type structure. In Programming Symposium: Colloque sur la
Programmation, volume 19 of LNCS, pages 408—425. Springer, 1974.

Paula Severi and Erik Poll. Pure type systems with definitions. Computing Science Note (93/24), Eindhoven
University of Technology, 1993.

D. T. van Daalen. The Language Theory of Automath. PhD thesis, Eindhoven University of Technology,
1980.

12

