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Abstract

This document presents the results of a comparative study of some popular Java
Cards on the market. Eight different cards from four manufacturers have been con-
sidered. The analysis has been done at two levels – (i) a documentation-based com-
parison, also taking other publicly available resources into account, (ii) an actual
hands-on testing with software developed specifically for this purpose by the Pin-
pasJC research team. The investigations focus on basic functionality, secure chan-
nels, the transaction mechanism, support symmetric and asymmetric cryptography,
Global Platform and Open Platform compliance, and garbage and memory manage-
ment.

1 Introduction

Java Card plays an increasingly predominant role in smart card projects, e.g. for identity
cards and travel documents. Many vendors respond to this market expansion with dedi-
cated products. However, by design, these products are not exactly equivalent. On top of
the traditional dissimilarities such as component size, many behavioural differences can be
detected both at the functional and performance level. As such, this can have impact on
the portability of a solution and undermine the advantage of using Java Card.

This document presents a comparative analysis of eight commercial Java Cards available
to us to date (Autumn/Winter 2006), namely C 211A, C 211B, B 211, B 22, B 221, A 211,
A 221(two slightly different instances differing in the communication speed), and D 22. The
evaluation took place with respect to the following criteria:
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Compliance to standards: Compatibility to Java Card and Global Platform

Implemented features: Communication interfaces, APDU protocols, memory manage-
ment, atomicity, RMI support and on-card byte-code verification availability

Performance: Execution time of cryptographic algorithms

Limits: Transaction commit capacity and APDU buffer capacity

The investigations discussed below, give an indication of the present state of affairs regard-
ing Java Card. For example, the choice of cards under consideration has been limited by
their availability. It is also noted that some results reported in this document have been
based on publicly available information only. Additionally, when it came to actual card
testing, two major bottlenecks were hindering our progress for some time. First of all,
getting hold of a type of Java Card in small quantities is non-trivial. Secondly, some cards
are personalized with proprietary authentication keys (or, more precisely, keys that are
derived following proprietary schemes). Finding out this information took a considerable
amount of time (see also Section 3.1).

The rest of this document is organized as follows. Section 2 discusses the card features
stated in the cards’ documentations [16, 15, 2, 1, 6], regarding the four evaluation criteria
above. Section 3 presents several tests (and their results) we performed with the cards
to explore various features: basic card features, secure channel functionality, transaction
mechanism, cryptography support and speed, RMI, garbage collection, etc. For each of
the tests the methodology is briefly described. Finally, Section 4 concludes the report.

2 Card Features Based on Documentation

The Java Cards that have been considered in the research reported here are the following:

• From Manufacturer C the C 211A and C 211B cards. These cards are the only
cards that we were able to buy directly from the manufacturer in small quantities.
They are also the only cards that have full technical documentation that is publicly
available regarding the particular Global Platform implementation. On the other
hand Manufacturer C continuously sells cards known to have bugs, see comments in
Section 3.8.

• From Manufacturer B the following cards: an older B 211, B 22, and B 221. The
B 221 card is the most advanced (supporting both Java Card 2.2.1, Global Platform
2.1.1 and contactless interface) card from Manufacturer B currently available.

• From Manufacturer A the A 211 card and A 221 card. For the A 221 card we
have two different instances available, the main difference being the communication
speed of the contact interface. Whenever any substantial difference has been noticed
between the two A 221 cards we noted them down. Also, A 221 is the only other card
in our test set that supports the latest Java Card and Global Platform technologies.
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Java Card Company JC API Open/Global Platform
C 211A Manufacturer C 2.1.1 2.0.1
C 211B Manufacturer C 2.1.1 2.0.1
B 211 Manufacturer B 2.1.1 2.0.1
B 22 Manufacturer B 2.2 2.0.1
B 221 Manufacturer B 2.2.1 2.1.1
A 211 Manufacturer A 2.1.1 2.0.1
A 221 Manufacturer A 2.2.1 2.1.1
D 22 Manufacturer D 2.2 2.1.1

Table 1: Compliance to software standards

Java Card EEPROM(KB) RAM(Bytes) ROM(KB)
C 211A 32 (30) 4096 96
C 211B 64 (—) — —
B 211 32 (29) — —
B 22 64 — —
B 221 16/32/64 — —
A 211 32 (30) 2300 96
A 221 72 (70) 4608 160
D 22 64 — —

Table 2: Memory characteristics

• From Manufacturer D the D 22 card.

2.1 Compliance to Standards

Table 1 compares the cards under consideration from the point of view of specific versions
of the Java Card API and Open/Global Platform standard that they support.

Table 2 provides the hardware features of the cards. The values between parentheses
are the amounts of free memory available for applications once the system is loaded. The
documentation from the vendor of B 211 card does not show any information about the
capacity of RAM or ROM. The total amount of ROM size of the A 221 card is not presented
in any documentations either,1 though the vendor of this card’s microcontroller does say
that the card has 160KB of ROM.

2.2 Implemented Features

Table 3 compares the cards under consideration with respect to the data transport layer,
whereas Table 4 provides an overview of the availability of additional features such as

1There is actually no formal documentation available for this card as other cards from Manufacturer A.

3



Java Card APDU Protocols Communication Interface
C 211A T=0 Contact
C 211B T=0, T=1 Contact
B 211 T=0, T=1 Contact
B 22 T=0, T=1 Contact
B 221 T=0, T=1, T=CL Contact, Contactless
A 211 T=0, T=1 Contact
A 221 T=0, T=1, T=CL USB 2.0 (Low Speed)

Contact, Contactless
D 22 T=0, T=1, T=CL Contact, Contactless, USB

Table 3: Communication features

Java Card Garbage RMI On-card Logical
Collection Supported Byte-code Verification Channel

C 211A — No Yes No
C 211B — No Yes No
B 211 Yes No — No
B 22 Yes Yes — Yes
B 221 Yes Yes — Yes
A 211 Full No — No
A 221 Full Yes — Yes
D 22 — Yes — —

Table 4: Java Card and Open Platform features

garbage collection, RMI, on-card byte-code verification and logical channels. Availability
of many of these cannot be decided given the information in the vendors’ documentations.
For example, Manufacturer B claims that their cards support run-time garbage collection.
However, it remains implicit whether they concern full or partial garbage collection. Both
cards from Manufacturer A supposedly provide full garbage collection (see Section 3.11
on garbage collection). Note that logical channel functionality is added only to Global
Platform specification 2.1.1 as an optional feature.

2.3 Performance

As far as we are aware, there is no publication available that actually considers a perfor-
mance comparison for Java Cards. An exception is [4] which, at present, treats rather
outdated cards. Manufacturer A has certain documents for each of their cards (excluding
A 221), where a list of performance figures can be found, though qe are not in a position
to confirm these figures. Recently, a project to measure smart card performance has been
initiated in France,2 but at the moment the project is in its very early stage.

2http://cedric.cnam.fr/mesure/
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Java Card Transaction Buffer Size APDU Buffer Size
(bytes) (bytes)

C 211A — 255
C 211B — —
B 211 — —
B 22 — —
B 221 — —
A 211 512 261
A 221 — —
D 22 — —

Table 5: Buffer capacity limits

2.4 Limits

The limits we consider are the size of the APDU buffer and the transaction commit buffer.
The APDU buffer is used to hold incoming and outgoing communication data. The trans-
action buffer is used to save data involved in transactions, viz. all persistent byte and short
stores, as well as persistent parameters to Util.arrayCopy. Only a few vendors have the
buffer size figures in their documentations. However, some of these figures can be retrieved
directly from the card through the Java Card API, see Section 3. The figures obtained
from the documentation (only a few) are listed in Table 5.

Some of the limits are not documented at all (we mention the maximum number of
Java Card objects managed, maximum size of applets or load files, maximum number of
load files or applets that can be installed on a card, maximum number of secure channel
keys in the Issuer Security Domain).

The data we have presented so far are based solely on available documentation (if any).
In the next section we describe a number of tests we performed to verify the documented
data and to obtain details not included in the documentation.

3 Card Testing

For the purpose of testing a number of applications and applets have been written. We
have tested some basic features (Section 3.2), Global Platform functionality, in particular
secure channels (Section 3.3), the transaction mechanism (Section 3.4). Furthermore, we
have established the range of cryptographic support on the cards. We also performed speed
and compatibility tests (Section 3.5) and put an effort to test the basic RMI functionality
of RMI enabled cards (Section 3.7), to test the GP API support (Section 3.8) and garbage
collection (Section 3.11).
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3.1 Preparations

First, a suitable host-side library had to be found to communicate with the cards. Our
choice was to use the IBM BlueZ (RMI) Off-Card API (available as part of the IBM JCOP
tool-set for Eclipse) and build our testing software on top of this library.3 In the process
of developing the software we discovered some (minor) bugs in the IBM libraries – we
developed some small workarounds for these problems. Some of the programs we have
written are the following:

• PATT (PinPas Applet Testing Tool) – a command line tool to manage applets on the
card. The main feature of the tool is that it talks to a wide range of different Java
Cards through the Global Platform interface taking into account all small ‘quirks’
that the cards may require (see below).

• PinPas card customiser – a very simple application that loads a couple of custom key
sets into ISD to be used in the Secure Channel test. This application also performs
the detailed GP key registry test, see Section 3.3.1.

• Secure Channel tester (Section 3.3) – an application that runs a set of GP commands
on the card to reveal details of (Visa) Global Platform [7, 17] behaviour of the card.
The results are presented to the user in concise, human readable form.

• A simple applet (Section 3.2) and host side application to retrieve basic card infor-
mation from the card through the Java Card API. The host application presents the
results in human readable form.

• A test applet for transactions and non-atomic methods (Section 3.4).

• An applet and host side application to test the cryptographic features of the card
(Section 3.5): supported algorithms, compatibility test (with respect to the desktop
Java Crypto API), and performance. Again results are presented in a human readable
form.

• Global/Open Platform API test applet and host application (Section 3.8).

• Garbage collection test applet and host application (Section 3.11).

The IBM Off-Card API provides a uniform framework to manage all GP compliant
cards, but has been developed by IBM and tested mainly with their own cards. Trying to
make the library talk to cards from various vendors revealed some interesting card features:

• Two Manufacturer B cards (B 211 and B 221) have specific initial static keys derived
on a ‘per card’ basis from the standard GP keys (4041...4F). Finding out how these
derivation routines work took a while. For the B 211 card the routine (defined in

3Another possibility is to use an open-source Global Platform implementation – http://sourceforge.
net/projects/globalplatform/, however, we prefer to work with Java programs and libraries.
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VISA Card Personalisation Guideline we believe) can be found on the Java Card
forums, although it is in principle secret/proprietary. For the B 221 card the routine
is similar, but differs in small details, after a long search we found it is documented
in a rather obvious place [5]. However, again, VISA itself seems to be hiding this
information. During the process of figuring out these derivation schemes some cards
got locked.

• The B 211 cards are somewhat more sensitive than all the other cards to the way
the applets are loaded onto the card. The required loading mode is ‘component by
component’ one.

• Both B 22 and D 22 cards implement Java Card API version 2.2 (not version 2.2.1).
The Java Card SUN Development Kit version 2.2 has to be used (2.2.1 library files
are not downwards compatible with 2.2 cards, although the APIs themselves are
almost identical, if not actually the same) to prepare applets for these cards.

• First applet selection after card reset takes more time (noticeably long) on B 22

compared to the other cards.

• C 211A and C 211B cards do not accept standard .cap files produced by the SUN
Java Card Development Kit. This is due to a ‘picky’ on-card byte-code verifier. The
.cap files have to be transformed before loading with proprietary software (provided
by Trusted Logic, it can be downloaded for free from their web site).4

• Rather than B 211 cards, e.g. C 211A does not accept ‘component by component’
loading. Instead, ‘all in one’ mode is required. Also, certain CAP components have
to be included in the load command, a procedure that other cards do not require.

• With our reader (Omnikey CardMan 5121), for the C 211A (C 211B) card loading of
large .cap files failed because of a card timeout. Our guess is that this is due to
lengthy on-card byte code verification. Thus, it seems that the size of the loadable
applets is limited, for this set-up, by the speed of the verifier.

The applet loading differentiators have been systematically analyzed and is summarized
in Table 6. We make the following comments:

• ‘Load Params’, ‘Install Params’ – these two columns indicate whether the card re-
quires any specific parameters to load and install commands. Notably, the C 211A

and C 211B cards have to be informed about the load file size ahead of time, and
also require a persistent memory usage limit to be specified during applet installa-
tion (this is marked by ‘CF’). None of the other cards showed such behaviour. For
these three situations can be distinguished: (a) the card does not require any applet
installation parameters (–), (b) the card requires at least an empty parameter string
of type 1 (c9 00) marked T1, or (c) of type 2 (c9 01 00) marked T2.

4http://www.trusted-logic.com/down.php
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• ‘Load mode’ – some cards require the load components of the CAP file to start at
the APDU boundary (component by component loading – CbC), other cards require
the load APDUs to be of equal lengths, in which case the components are put one
after another and the whole load block is divided at the APDU block size boundary
(all in one mode – AiO). For most of the cards the loading mode does not matter
(–).

• ‘Block Size’ the maximum load block size, usually limited by the APDU buffer size.
Here we tested plain communication where no MACing or encoding takes place,
thus the additional data that maybe required in the APDU (e.g. the MAC) is not
considered.

• ‘Verifier’ – some cards are equipped with a byte-code verifier. In that case the CAP
file needs first to be transformed with a suitable tool (for Manufacturer C cards a
CAP file transformer from Trusted Logic, marked ‘TL’).

• ‘Debug’ – the same cards that are equipped with a verifier also require the debug
component to be loaded onto the card. ‘Yes’ means the debug component is required,
‘No’ means the debug component cannot be included (not the case for any of the
cards), ‘–’ means that the debug component is optional.

The results in Table 6 suggest that all the cards are more or less the same with respect to
applet loading. The Manufacturer C cards are one exception to this rule – this is caused
by the on-card verifier. The other exception is the B 211 card, although here we are not
completely sure of the result. During the early stages of card testing the results we were get-
ting suggested that the card requires ‘component by component’ loading mode. However,
during later systematic tests of applet loading this requirement could not be confirmed,
explaining the asterisk ‘*’ in the table. The fact that some Manufacturer B cards require
specifically derived static keys to authenticate before applet loading is not considered to be
an applet loading differentiator. It is, however, an important card personalization feature.

We should add that depending on the API versions installed on the card (JC or GP),
properly versioned JAR and EXP files are needed to build applets for a given card and also
a matching Java Card development kit has to be used. To the best of our knowledge the
JAR and EXP files are interchangeable between cards that share the same API version,
which in particular means that the standard files provided by Sun or Global Platform
Consortium can be used. We also did manage to use the standard Java Card development
kits to prepare applets for all of the cards. All in all, apart from the CAP file transformer
for the Manufacturer C cards, no proprietary software was needed to prepare applets for
any of the cards.

Finally, we tested the maximal number of load files that can be loaded and instantiated
on the card. The test consisted of cloning one applet 64 times and subsequently loading
and instantiating it on the card. The problem with some cards turned out to be that the
number of the actual load files/applets on the card is different from what the card reports
with the ‘get status’ command. The following are the end results for all the cards:
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A 221 We managed to put total of 30 load files and 29 applets on this card, but GP reports
only 21 load files and all of the applets present on the card.

A 211 We managed to load all 64 test applets onto the card and to instantiate them all.
The card, however, reports only 21 load files and 15 applets with the ‘get status’
command.

B 221 We managed to put 17 load files and 13 applets onto this card, and the card’s report
reflects the reality.

B 22 We managed to put 51 load files and 37 applets onto this card, and the card’s report
reflects the reality.

B 211 We managed to put 28 load files and 19 applets onto this card, and the card’s report
reflects the reality.

C 211A We managed to put 14 load files and 7 applets onto this card, and the card’s report
reflects the reality.

C 211B We managed to put 28 load files and 17 applets onto this card, however, the card
in the end the card reported only 8 load files and 3(!) applets.

D 22 We managed to load and instantiate all 64 test applets on to the card. Moreover, the
card reported all of the load files and applets in the ‘get status’ response.

A note about C 211A and C 211B cards is due: the number of load files and applets depend
on the memory settings of an applet – the lower the limit is set for one applet the more
applets can be loaded. Thus turned out to be very difficult to figure out the actual limits
of those cards.

For the two cards that loaded all the test applets (A 211 and D 22) we rerun the test
with 128 cloned applets. The A 211 card managed to store the total of 115 load files, the
D 22 managed to load all the test files again resulting in 132 load files total on the card.
From this we conclude that these two cards are simply limited by the available memory
when it comes to applet loading.

Table 7 summarizes the results. Of course, because of the nature of the test those
values should be treated as approximate, they rather indicate the range of the capacity of
the card rather than the exact limit.

3.2 The BasicInfo Applet

The BasicInfo applet is a very simple applet that reports basic features of a Java Card
accessible through the Java Card API. For the 2.1.1 cards this is limited to (a) the API
version, (b) the maximum transaction commit capacity, (c) the kind of APDU protocol
(T0/T1), and (d) the size of the APDU buffer. For the 2.2.* cards the applet reports
the following features: (a) the API version, (b) the transaction commit capacity, (c) the
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Java Card Load param Install param Load mode Block size Verifier Debug
A 211 – – – 255 – –
A 221 – T1 – 255 – –
C 211A CF CF AiO 255 TL Yes
C 211B CF CF AiO 255 TL Yes
B 211 – T2 CbC* 255 – –
B 22 – T2 – 255 – –
B 221 – T1 – 255 – –
D 22 – T2 – 255 – –

Table 6: Applet loading differentiators

Java Card Load Files Applets Reports
A 211 115 108 −
A 221 30 29 −
C 211A 14 7 +
C 211B 28 17 −
B 211 28 19 +
B 22 51 37 +
B 221 17 13 +
D 22 >132 >130 +

Table 7: Applet loading differentiators

available memory (persistent and transient), (d) the kind of APDU protocol (T0/T1/TCL),
(e) the APDU size, and (f) the support for object deletion. Additionally, based on the
card’s ATR,5 the maximum supported baud rate of the card is reported – the note ‘default’
means that the card does not report any particular speed, which usually means the default
(initial) speed of 9600 bits/sec is used for the whole communication session. The results of
running the BasicInfo applet on the cards are collected in Appendix A and an overview
of results is given in Table 8. The ‘Memory Persistent’ column indicates the number of
bytes of free persistent memory reported by the Java Card API call – because of the limits
of the short data type, the Java Card API does not report memory sizes above 32K, even
though some cards offer more. The ‘Memory Transient’ column lists the amount of free
transient (RAM) memory in two modes – memory that is cleared on card reset (first value),
and memory that is cleared on applet deselection (second value).6

We have encountered the following:

• B 221: This card reports different sizes of RAM memory for two memory clearing
modes: clearing on reset and clearing on deselection. As noted later in the report

5The information on how to decode the supported baud rate out of the ATR is available at http:
//www.cs.uct.ac.za/Research/DNA/SOCS/psec2.html.

6Note, that the test was not run on cards that were totally empty. In particular, the test applet itself
was present on the card, which already takes up some resources. Thus the actual memory size, especially
RAM, of an empty card may differ slightly. See also Section 3.11.
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(Section 3.11), there is something strange about transient memory reporting on this
card.

• D 22 and C 211B: These cards indicate unusual APDU buffer sizes (274 bytes and
272 bytes respectively).

For the Java Card 2.2.* API a call to APDU.getProtocol should in principle give the type
of the protocol/mode (Wireless Type A, Wireless Type B, or USB). All the 2.2.* cards
however, return the default value. According to the Java Card API documentation that
means the wireless protocol is simply ISO 14443-4 (T=CL).

Finally, during multiple applet loading and deletion we obtained some strange results
with respect to the card memory management and garbage collection. Apparently one of
our C 211A cards does not clear the memory properly on applet deletion – after a sequence
of applet loads and deletions the card refused to load applets, giving an error indicating
lack of memory on the card. This way we managed to effectively lock one of our C 211A

card. All other cards (including a different instance of the same C 211A card), despite the
same loading and deleting operations, still functioned properly.

3.3 Secure Channel and (Visa) Global Platform Tests

The purpose of the Global Platform test is to reveal the details of the Global Platform
implementation on the card and compliance of the card to Visa Global Platform Guide-
lines [17]. It is noted that only are limited number of features is tested (as described below).
So, our test is not a comprehensive (Visa) Global Platform test suite and its results should
therefore be treated with certain reserve.

In the current version, the secure channel test application performs the following tasks:

1. Based on a response to ‘initialize update’ command, a basic secure channel protocol
is established (01 or 02).

2. Furthermore, for a given main version, all secure channel options defined in the
Global Platform Specification [7] are tried out, including implicit modes. A successful
exchange of ‘initialize update’ and ‘external authenticate’ (which requires a MAC)
commands indicates that a corresponding explicit option is supported by the card.
For the implicit modes a simple MACed communication with implicitly derived keys
is initiated, but it seems that none of the cards supports implicit secure channels.

3. Once the main version and the secure channel option are established, the secure
channel is subsequently tested:

• A secure channel is initiated in all possible security levels (PLAIN, MAC,
ENC+MAC, RMAC, MAC+RMAC, ENC+MAC+RMAC). For each of the se-
curity levels a basic communication with the Security Domain is performed (a
communication that requires non-trivial command and response APDU).
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• Additionally, a check if ‘Begin/End R-MAC Session’ commands are supported
is performed. None of the cards seem to support ‘Begin/End R-MAC Session’
or RMACing in general.

• Finally, based on the Visa Global Platform specification, a challenge that the
card should give according to the predictable challenge rules is ‘guessed’ and
compared to the challenge returned by the card. This indicates if the card
implements predictable challenges.

4. A communication over multiple logical channels is initiated. If it succeeds a test is
performed to check whether a security channel can be active on multiple channels.
Lack of such a possibility indicates adherence to Visa Global Platform specifications.
Additionally, the maximum number of logical channels the card supports (again,
based on a trial and error test) is reported.

5. An additional key set is loaded onto the card and a key deletion is attempted. This
indicates the support for key deletion in the Global Platform implementation.

6. Finally, an attempt to instantiate an additional Security Domain from a standard
load file (A0000000035350) indicated by VGP specification [17] is performed. Note,
that the card may have a different load file than the one required by the VGP
specification to instantiate additional Security Domains. We tested VGP compliance
here only for the standard load file.

The complete test results are gathered in Appendix B. We give an overview of results in
Table 9 and list some comments, where applicable:

• C 211A: Regarding key management on this card, the following has been observed. It
seems that the card can hold multiple key sets, but only one can be active at a time –
loading a new key set makes it the default one and none of the previous key sets can
be used for authentication, although the card’s behaviour suggests the other key sets
still exist on the card. Further tests (see the next section) of different instances of
the card suggest that this is caused by some sort of fault that we induced on the card
during testing. Unfortunately, we are not able to reconstruct the fault that occurred.

• D 22: For this card, although the default load file for the security domain is present
on the card, we were not able to instantiate any additional security domains – the
error that we get is ‘conditions of use not satisfied’, which none of the other cards
reported in the same scenario. So far, we did not find any information that would
give us any clue as to what the reason for this behaviour could be.

One thing we find quite unexpected is that none of the cards support Visa predictable
challenges. We tried two challenge calculation schemes described in two different versions
of the VGP specification and none of the challenges were calculated accordingly by the
cards. For the A 221 card however the challenges are predictable – they can be repeated
each time the associated sequence counter is reset. See the next section for details.
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3.3.1 GP Key Registry Test

A separate application has been developed to perform some tests on the GP key registry.
The test has four purposes:

• To see if it possible to replace only parts of key sets (say only 1 key, or only 2 keys,
etc.) and to see what happens to the sequence counter associated with key set after
such an operation. The sequence counter is only implemented in the Secure Channel
protocol version 2, thus, the last part only applies to corresponding cards (A 221 and
B 221). A key is always modified/replaced with the same key.

• If the sequence counter gets reset after key replacement, it is then easy to check if
the card implements predictable challenges: (A) we ask the card for a challenge, then
(B) reset the counter by reloading the keys, and ask the card for a challenge again.
If the two challenges match that means that the challenge is calculated based solely
on the sequence counter and some other fixed data (e.g. current AID). Note again,
that testing predictable challenges only makes sense for cards implementing SCP02.

• An attempt to delete only one key out of the key set is attempted. Again, if this
turns out to be possible, we check (a) what happens to the sequence counter, (b)
whether such ‘crippled’ key set is usable – an authentication is attempted.

Below we summarize the results for the different cards:

A 221 This card exhibits very specific behaviour:

• It is possible to modify the whole key set in one go (key identifiers #1, #2, #3)
without any problem.

• The sequence counter gets reset after any key replacement/modification in the
given key set.

• It is possible to modify only key #2 (the MAC key) and the card still functions
normally.

• It is possible to modify key #1 (AUTH+ENC) but only once. A second attempt
results in an error. It is however possible to reload the whole key set again. If we
try to modify key #1 and some other key (meaning a pair of keys that includes
key #1) an error is always reported – a pair of keys that includes key #1 cannot
be modified.

• It is possible to modify key #3 (DEK/KEK), but the whole key set is not usable
after such modification – authentication cannot be performed, because the card
cryptogram cannot be verified (note that the keys are always replaced with the
same keys). Replacing a key pair that contains key #3 (meaning only the key
pair #2,#3, because the key pair #1,#3 cannot be modified) gives the same
results – authentication is not possible.
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• The card does implement predictable challenges – the challenge is repeatable
after the sequence counter gets reset. The challenge however is not calculated
according to VGP specification (we tried two algorithms mentioned in different
versions of the VGP specification).

• It is not possible to delete single keys in the key set (on this card key deletion
is not implemented).

B 221 This card exhibits a much more consistent behaviour:

• Any single key can be modified in the key set and the sequence counter associ-
ated with the key set gets reset. Regardless of which key is replaced, the key
set functions properly all the time.

• Replacing a pair of keys (any pair) is not possible.

• Replacing the whole key set fully works and gives expected results (the sequence
counter gets reset).

• The challenges are not predictable in any way – they are always different (ran-
dom).

• Deletion of single keys is not possible.

B 22 This card caused the most trouble during the test and because of that only partial
results are available (in fact, it was only possible to perform the test once, and the
following are the results we could extract):

• To our best recollection (we did not save the log from the test) modification of
any subset of the key set (including the whole set) is possible and authentication
works after this.

• Since the card implements SCP01, sequence counter and predictable challenge
issues were not tested.

• Key deletion – this is where the test went wrong. The card does support the
deletion of the whole key set (see Section 3.3), and, to our surprise it was
also possible to delete single keys from the key set. As soon as the first key
was deleted the key set became unusable (naturally), but it also affected the
key registry heavily (and permanently). The default key set number 1 (which
we should add was not participating in the test in any way, the whole test is
performed on the key set number 2) became (was ‘renamed’) key set number 3F
(hex). This key set can be used for authentication, but it cannot be used to load
new key sets (any attempt results in ‘wrong data’ status word). This probably
means (a wild guess), that the DEK/KEK key in key set got corrupted. Since
the default key set is the only one left on the card this effectively means that
no new keys can be loaded onto the card, which means no further key testing
can be performed.
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This behaviour clearly indicates a serious bug in key registry implementation –
partial key deletion should not be possible in the first place.

A 211 On this card only modification of the whole key set is possible – modifying one or
two keys fails, and so does key deletion.

B 211 For this card it is possible to modify the whole key set, or keys #1 and #2, all
other combinations fail. Deletion of single keys is not possible (the card does support
whole key set deletion).

C 211B The same behaviour as for the A 211 card. We did however notice, that reloading
the same key set three times leads to some corruption in the key registry – trying to
use key set in question leads to a ‘file invalid’ error code. After this the key set is
not usable, nor reloadable.

C 211A Again, the same behaviour as for the A 211 card – only the whole key set can be
modified and no single keys (nor whole key sets) can be deleted. This test however
revealed one more interesting issue: one instance of the C 211A card did have problems
loading new keys to the key registry as we described earlier. We could not however
reproduce the same problem on the second instance (from the same order batch)
of the card and the key modification test passed successfully, i.e. new key sets can
be added and modified keeping old key sets usable. Interestingly enough, the card
that was doing strange things with the key registry is the same card that refused to
load applets at some point claiming insufficient memory. The conclusion is that: we
probably did break this one instance of C 211A card in some mysterious way that we
are not able to reconstruct (perhaps by card tearing in the transaction tests). That
means that the claims we made earlier about this card (strange key registry behaviour
and improper memory management) may not be necessarily true in a general case.
But note also that the other Manufacturer C card (C 211B, previous bullet) is not
free of the key registry problems.

D 22 On this card we could modify almost all key subsets – the only key subset that is
not modifiable by one command is keys #1 and #3, all the other possible subsets
are modifiable and the key set is usable after this operation. Deletion of single keys
is not possible, but the card does support deletion of whole key sets.

3.4 The Transactions/Non-Atomic Methods Applet

This applet performs extensive testing of the transaction mechanism and the non-atomic
methods of the Java Card API. Initially the applet has been written at the SoS group
of Radboud University in Nijmegen to test specific cards. The result then was that some
cards exhibited highly non-deterministic behaviour, sometimes non-compliant to the Java
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Card standard [9, 8]. Therefore, we have run a similar test on our cards.7 The results are
summarized below:

A 211 This card exhibited a highly deterministic behaviour in all the tests, with the fol-
lowing features noticed:

• A card tear during a non-atomic method call may leave a persistent array zeroed
out, which is neither the original contents of the array, nor the contents requested
by the copy operation. The zero values reflect the ‘unpredictable’ array contents
quoted in the Java Card specification.

• Non-atomic methods do by-pass/override the transaction mechanism as stipu-
lated by the standard, but they are themselves atomic. That is, they modify
all or nothing of the array elements in question. Another way of looking at it
is that the card implements two different/independent transaction mechanisms.
This does not violate the specification of the transaction mechanism in any way,
but seems unnecessary.

A 221 This card exhibits the same behaviour as the A 211 card, with the additional ‘twists’
in the contactless mode. First, interrupting the communication with the card (card
tear) always results in a ‘garbage’ response APDU (in contact mode there is no
response APDU in such cases). We attribute this to improper behaviour of the
terminal software (smart card reader driver and/or IBM JPCSC implementation).
Secondly, in some test cases an explicit call to JCSystem.abortTransaction seems
to disable further APDU communication – the card does not reply to subsequent
APDUs and the card session has to be restarted.

C 211A This card exhibited a highly deterministic behaviour in all the tests. The trans-
action behaviour is compliant to the Java Card standard. It also seems to have a
similar feature to A 211 cards that zeros out arrays before copying data to them. The
non-atomic methods are not atomic in the sense as A 211 methods are.

C 211B The behaviour is almost the same as for the C 211A cards, with two exceptions:
(a) we never encountered any zeros in the test array (which indicates the behaviour is
better than C 211A), and (b) on occasion, when the test applet is put into an infinite
loop (to do the card tear), the applet returns status word 6F00, meaning an uncaught
exception occurs inside the applet. We did not yet find the cause for that exception
as the problem is non-deterministic and hard to reproduce).

7A note to update with respect to previous versions of this report is due here. After some private
discussions with people on the Java Card Forum we were convinced that the behaviour of cards that
we initially thought was incorrect is in fact intended. It was however agreed that the official Java Card
specification is inaccurate and needs further updates. Thus, we no longer describe our results in terms
of ‘non-compliance’ we simply pin-point the differences between cards with respect to the transaction
mechanism. It should be stressed though that if one takes the Java Card specification literally (or ‘blindly’),
some cards should be considered buggy.
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B 211 For this card interrupting the non-atomic method call (inside or outside of trans-
action) in most cases results in garbage/random data left in the array. Although
this is allowed by the standard to happen when a non-atomic method is called inside
a transaction, it is not allowed to happen outside of a transaction (but again,some
people claim this is a ‘misprint’ in the specification). In all the cases when the non-
atomic method is not interrupted the card seems to behave according to the Java
Card standard.

B 22 This card has a very similar behaviour to B 211 when it comes to interrupting non-
atomic method calls – in many cases it results with garbage/random data left in
the array—sometimes the whole array is filled with FF values (hex), sometimes with
random, partially modified data. In all the cases when the non-atomic method is not
interrupted the card seems to behave according to the Java Card standard. It seems
however, that persistent arrays are treated globally by this card, i.e. non-atomic
updates to persistent arrays are atomic in the same sense as for the A 211 card, and
modifying a single array element marks the whole array modified. This last part
influences the card’s behaviour with respect to transaction roll-back for non-atomic
methods used inside transactions. Here, the card’s behaviour is different from all the
other cards, but is still compliant with the official Java Card specification.

B 221 This card seems to have a much more stable transaction mechanism implementation
than the other Manufacturer B cards. When there are no card tears the transaction
mechanism behaves deterministically and in accordance with Java Card specification.
Non-atomic methods are atomic in the sense A 211 ones are. On a card tear occur-
ring during a transaction and a non-atomic method in progress the test array can
occasionally be left with zero values (not the old or the new value). A non-atomic
method interrupted by a card tear usually leaves the test array in ‘good shape’, but
occasionally a ‘slightly’ random data can be left in the array – by ‘slightly’ we mean,
e.g., the whole array with an exception for one element is filled with zeros.

For this card the same problem with wireless communication has been noticed as with
the A 221 card – APDU communication is not possible after an explicit transaction
abort, and the card session has to be restarted.

D 22 Here, the beginning of the test went fine and for a while indicated that the card
behaves correctly and according to the specifications. The card did not even exhibit
the problem we had with B 221 and A 221 in contactless mode (unresponsiveness
after an explicit abort). However, in the middle of the test one of the card tears
caused the test array to be zeroed out (behaviour noticed with other cards before).
For this card however, the card manager decided to lock the test applet after the
tear. We reinstalled and rerun the test and ended up with the exact same situation
– our test applet was locked by the card manager again. On the third attempt
something more went wrong – the card started returning an unusual status word8 on

8In fact, what we think that happens is that the card sends back a legitimate APDU with a correct
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ISD selection and ISD authentication was no longer possible (the card still returns an
answer to ‘initialize update’ but on ‘external authenticate’ it returns an error status
word declining authentication). In effect the card became useless – neither ISD nor
any other previously installed applets are selectable. As far as we see it – the card
has a deeply ‘inadequate’ transaction mechanism implementation. We should stress
here that the problems occurred quite quickly only after a dozen or so card tears,
while all the other cards managed to survive over 100 tears each. Because of this
results we are not going to attempt any more transactions tests on this type of card.

3.5 The CryptoTest Applet

This applet performs extensive cryptographic testing of the Java Card API, including key
generation, data encryption/decryption, MAC signature generation/verification and hash
generation using message digest algorithms. For the convenience, all the input data (e.g.
plaintext) used in our tests are in fact 128 bytes long arrays. However, extending the applet
for larger data is not a difficult task.

The time for processing the test APDUs has been measured. The overhead time for
APDU transmission and processing was also measured and has been subtracted in the
test results. The overhead time here is seen as the time spent on a full execution of
the application – APDU transmission and processing, output computation and APDU
returning, minus all the above except for a call of the method that actually does the
cryptography operation, e.g., an API call of Cipher.doFinal() or Signature.sign(),
etc. Every test application has been performed 10 times in a loop in order to get an
average value. Due to the ‘fresh’ allocation of necessary objects and arrays on the first
time when an APDU is processed, in fact every card always spends much more time on
the first processing than on the subsequent ones. In order to get rid of this overhead, each
APDU is performed 11 times and the results from the first time is deleted. The indicated
time in our test results is for one processing of a cryptographic operation. We notice that
some of the results may not make much sense, e.g., triple DES takes less time than single
DES. However, we believe we have reached the boundaries on overhead measurement on
software level. If a more accurate result is required, power measurement equipment may
be needed. Not all of the combinations of cards and algorithms could be tested, since the
given algorithms were not implemented on every card.

3.5.1 What has been tested

The packages javacard.security and javacardx.crypto define a set of classes and in-
terfaces for the Java Card security and cryptography framework. All the symmetric algo-
rithms and related keys specified in the Java Card API [11, 12, 13] are listed below and
those marked with * are required by Visa GlobalPlatform [17]. Any possible combination
of them have been applied in our tests.

status word, but with some garbage data appended to the APDU. The last two bytes of this garbage data
happen to be 6283, which can be interpreted as an unusual status word.
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Cipher Algorithms in the Cipher Class

ALG AES BLOCK 128 CBC NOPAD ALG AES BLOCK 128 ECB NOPAD
ALG DES CBC ISO9797 M1* ALG DES ECB ISO9797 M1*
ALG DES CBC ISO9797 M2* ALG DES ECB ISO9797 M2*
ALG DES CBC NOPAD* ALG DES ECB NOPAD*
ALG DES CBC PKCS5 ALG DES ECB PKCS5
MODE DECRYPT* MODE ENCRYPT*

Interfaces for Symmetric Keys

AESKey DESKey* Key* SecretKey*

Keys in the KeyBuilder Class

LENGTH AES 128 LENGTH DES*
LENGTH AES 192 LENGTH DES3 2KEY*
LENGTH AES 256 LENGTH DES3 3KEY
TYPE AES TYPE DES*
TYPE AES TRANSIENT DESELECT TYPE DES TRANSIENT DESELECT*
TYPE AES TRANSIENT RESET TYPE DES TRANSIENT RESET*

MAC Algorithms in the Signature Class

ALG AES MAC 128 NOPAD
ALG DES MAC4 ISO9797 1 M2 ALG3 ALG DES MAC8 ISO9797 1 M2 ALG3
ALG DES MAC4 ISO9797 M1 ALG DES MAC8 ISO9797 M1*
ALG DES MAC4 ISO9797 M2 ALG DES MAC8 ISO9797 M2*
ALG DES MAC4 NOPAD ALG DES MAC8 NOPAD*
ALG DES MAC4 PKCS5 ALG DES MAC8 PKCS5
MODE SIGN* MODE VERIFY*

Hashing Algorithms in the MessageDigest Class

ALG MD5 ALG RIPEMD160 ALG SHA*

3.5.2 Symmetric Encryption and Decryption

These tests involve applications of cipher algorithms with keys shown in Section 3.5.1.

Data Encryption The host initializes the conversation by passing the plaintext to the
applet and assigning the algorithm to be used in this application. The applet first
checks whether the desired algorithm is available on the card. If it is not, an agreed
error code will be returned to the host. Otherwise, the applet generates a secret
key and encrypts the plaintext using the required algorithm and the key. Finally, it
returns the ciphertext, the key and any parameters needed for decryption. The host
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then decrypts the ciphertext from the applet and compares the decrypted data with
the original plaintext it passed to the applet. If they match the card is considered
to hold a correct implementation of data encryption for the specific algorithm; the
implementation is seen to be incorrect otherwise.

Data Decryption The host generates a secret key this time, encrypts the plaintext and
sends to the applet the ciphertext, the key and any other parameters as needed. The
applet checks the availability of the desired algorithm and returns an error code in
case it is not supported. Otherwise, it decrypts the ciphertext using the knowledge
from the host and returns the decrypted data to the host. The host then compares
the data with the original plaintext. If they match the corresponding implementation
in card is considered to be correct, and it is not otherwise.

On the host side, implementations for all the cipher algorithms can be found in the
SunJCE in JDK 5.0 [14], except the ones for ISO 9797 Padding Method 1 and padding
Method 2 [10] that are missing. We employ the implementation from Bouncy Castle [3]
for padding Method 2 [10]. The former one we implemented ourselves, since no existing
implementation was found. The results are listed in Table 10, 11, 12 and 13. In these
tables time is in milliseconds and is indicated as data encryption or decryption. Categories
marked with * are required to be implemented for Visa compliance.

A 211 This card works the slowest among the tested cards. Together with C 211A and
C 211B, it also has the least number of implementations of algorithms. The speed for
encryption and decryption are also quite unbalanced, i.e. there is a big gap between
the values.

A 221 This card turns out very slow after the overhead time is filtered out, and apparently
the encryption for AES is much more time-consuming than decryption.

C 211A As an JC21 card (card that supports Java Card Platform 2.1), it shows a quite
satisfying results w.r.t. speed.

C 211B As a sibling of C 211A, it supports the same algorithms as C 211A does. This card,
however, is obviously slower than the other one. Some results on triple DES with
two keys also show discrepancy between the time for encryption and the time for
decryption.

B 211 Encryption in this card is significantly slower than decryption on the correspond-
ing algorithms. Like the other Manufacturer B cards, triple DES with double keys
consumes approximately the same amount of time as single DES, while triple DES
with three keys requires much more time. The good thing about this card is that it
has the implementation of all the cipher algorithms specified in the Java Card API
2.1.1 [11].
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DES (Single DES)
Card No Padding PKCS#5 Pad. ISO9797 M1 Pad. ISO9797 M2 Pad.

CBC* ECB* CBC ECB CBC* ECB* CBC* ECB*
A 211 335/405 326/328 — — 335/336 326/396 430/480 422/337
A 221 355/353 355/354 — — 354/354 355/354 375/361 376/361
C 211A 41/41 37/37 — — 40/42 37/38 45/44 40/39
C 211B 71/73 70/70 — — 71/71 71/87 82/73 76/68
B 211 188/157 175/136 233/164 217/140 188/156 176/134 233/164 218/140
B 22 67/69 65/67 71/69 68/67 67/68 67/67 71/69 68/67
B 221 46/46 44/43 47/46 47/46 46/49 44/44 48/47 45/46
D 22 41/40 11/13 — — 41/40 12/14 40/42 12/11

Table 10: CryptoTest result for DES

3-DES (Triple DES with 2-Keys)
Card No Padding PKCS#5 Pad. ISO9797 M1 Pad. ISO9797 M2 Pad.

CBC* ECB* CBC ECB CBC* CBC*
A 211 408/407 332/399 — — 408/407 367/483
A 221 356/355 356/355 — — 356/356 378/363
C 211A 58/60 55/55 — — 58/60 62/62
C 211B 73/73 71/72 — — 73/91 81/73
B 211 189/160 177/136 233/164 220/144 189/160 233/164
B 22 69/70 67/69 73/71 74/69 72/70 74/67
B 221 46/48 45/48 49/51 49/46 48/47 49/49
D 22 40/41 12/13 — — 40/42 43/44

Table 11: CryptoTest result for 2-Key 3-DES
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3-DES (Triple DES with 3-Keys)
Card No Padding PKCS#5 Pad. ISO9797 M1 Pad. ISO9797 M2 Pad.

CBC ECB CBC ECB CBC CBC
A 211 — — — — — —
A 221 357/368 357/356 — — 360/357 379/365
C 211A — — — — — —
C 211B — — — — — —
B 211 268/233 252/216 316/248 304/224 269/233 316/248
B 22 164/167 167/163 176/173 174/172 166/167 178/172
B 221 58/62 62/60 65/63 64/62 61/63 63/64
D 22 43/40 13/13 — — 41/41 44/42

Table 12: CryptoTest result for 3-Key 3-DES

AES (128 bits Key) AES (192 bits Key) AES (256 bits Key)
Card No Padding No Padding No Padding

CBC ECB CBC ECB CBC ECB
A 211 — — — — — —
A 221 243/199 239/199 239/201 244/199 242/203 241/201
C 211A — — — — — —
C 211B — — — — — —
B 211 — — — — — —
B 22 77/89 80/90 80/96 83/95 85/100 88/102
B 221 — — — — — —
D 22 — — — — — —

Table 13: CryptoTest result for AES
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B 22 This is the only card that supports all the algorithms in our tests. Like A 221, it also
gives poor balanced results on AES operation. However, the situation here is in the
other way around – the decryption consumes more time than the encryption.

B 221 This card behaves very stable in the sense that there is nothing odd to mention
here. It also shows a good speed result, although it is pity that implementation of
AES is missing.

D 22 The card does not show much difference between the results for DES and triple DES.
However, the gap between the speed for CBC mode and for ECB mode is relatively
large.

During the tests, we discovered that some properties in the Java Card Platform are re-
mained open (i.e. unspecified) or unclear in the specification and the cards behave variously
on them.

• On the Java Card platform encryption/decryption output is generated by invoking
the method:

doFinal(byte[] inBuff, short inOffset,
short inLength, byte[] outBuff, short outOffset);

in the Cipher class. It is, however, not specified what should happen if the value
of inLength (the length of the data to be encrypted/decrypted) is zero. In fact,
not all of the cards behave the same in this situation – A 211 allows zero length
and while no output is generated; C 211A, C 211B, B 22, B 221, and A 221 throw a
CryptoException.

• The notes on the method Cipher.doFinal() in the Java Card API says that:

On decryption operations (except when ISO 9797 method 1 padding is
used), the padding bytes are not written to outBuff.

What we would like to know is what happens when ISO 9797 method 1 padding is
used. And, in fact, the cards are divided into two groups according to this – in A 211

and A 221 padding bytes are removed from the output while in C 211A, C 211B, B 22,
B 221 and D 22 the padding bytes are kept.

• Another issue is about the setIncomingAndReceive() method in the APDU class. In
the Java Card API it says:

APDU buffer[5..] is undefined and should not be read or written prior
to invoking the setIncomingAndReceive() method if incoming data is
expected. Altering the APDU buffer[5..] could corrupt incoming data.
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We found that this is the case expect for A 221 and B 221. In these two cards,
the APDU buffer[5..] hold the exact incoming data regardless whether the method
setIncomingAndReceive() has been invoked, and they can work as if the method
has been called. Missing setIncomingAndReceive() on some other cards (even if
there is no input data to be read in), however, leads to very strange things, for
example:

– on C 211A cards an API method invoked in the applet’s process method can
be called twice (in some very specific situations) – exactly as if it were repeated
in the source code twice.

– on C 211A cards and A 211 card, when calling setOutgoingAndSend(), the host-
side JPCSC library reports low-level errors.

What we are trying to say is that it is not only the APDU data that gets corrupted if
the call to setIncomingAndReceive() is missing, but some other, possibly serious,
card specific artifacts can occur as well.

3.5.3 Symmetric MAC Generation and Verification

On symmetric MAC generation (except when ISO 9797 MAC algorithm 3 [10] is used), the
n-byte signature of a message is identical to the most significant n bytes of the last block
of the encrypted data out of the message using the corresponding algorithm. For example,
the signature generated by algorithm Signature.ALG DES MAC 8 NOPAD is the same as the
last block of the encrypted data generated by algorithm Cipher.ALG DES CBC NOPAD. The
following applications have been applied to all possible combinations of MAC algorithms
and keys shown in Section 3.5.1.

MAC Generation The application initializes from the host by asking the card to gener-
ate the MAC of given data using a specific algorithm. The applet then creates a key,
generates the MAC and returns the key and the MAC back to the host. The host
generates a MAC itself and compares it with the one from the applet. If the matching
succeeds the implementation is seen to be correct and vice versa. The applet returns
an error code if the algorithm is not implemented on the card.

MAC Verification The host generates a key and yields a MAC out of the input data
using a specific algorithm. It then passes to applet the input, the signature and
other necessary parameters. The applet verifies the MAC using a method call on the
Java Card Platform and returns the result (yes or no) back to the host. Like the
previous application, a known error code will be returned if the desired algorithm is
not available.

Apart from ISO 9797 padding Method 1 and Method 2, the SunJCE [14] does not
provide implementations for ISO 9797 MAC algorithm 3 [10] either. We therefore employ
the implementation from Bouncy Castle [3] for the related applications. The test results

26



DES (Single DES)
Card No Padding PKCS#5 Pad. ISO9797 M1 Pad. ISO9797 M2 Pad.

MAC4 MAC8* MAC4 MAC8 MAC4 MAC8* MAC4 MAC8*
A 211 — 14/29 — — — 14/29 — 18/35
A 221 — 13/29 — — — 14/29 — 19/35
C 211A — 50/49 — — — 50/50 — 53/51
C 211B 8/15 9/17 — — 12/13 13/17 12/14 12/13
B 211 182/183 180/185 223/226 224/226 180/185 182/184 198/226 224/228
B 22 67/80 68/80 70/83 71/83 67/79 67/80 120/134 71/83
B 221 25/26 27/25 27/24 27/26 27/26 25/25 27/27 27/26
D 22 35/35 35/36 — — 35/35 35/37 35/35 35/32

Table 14: CryptoTest result for DES MAC

3-DES (Triple DES with 2-Keys)
Card No Padding PKCS#5 Pad. ISO9797 M1 Pad. ISO9797 M2 Pad.

MAC4 MAC8* MAC4 MAC8 MAC4 MAC8* MAC4 MAC8*
A 211 — 15/30 — — — 15/30 — 19/34
A 221 — 14/30 — — — 14/30 — 20/35
C 211A — 69/67 — — — 67/67 — 71/69
C 211B 14/16 14/19 — — 13/15 15/18 16/16 30/23
B 211 183/186 183/187 226/228 225/229 181/186 182/187 227/228 225/228
B 22 69/82 70/82 72/87 73/85 68/86 69/82 122/135 73/85
B 221 28/27 28/27 29/27 27/28 28/27 28/27 29/27 28/28
D 22 32/34 33/32 — — 31/33 33/34 31/33 32/34

Table 15: CryptoTest result for 2-Key 3-DES MAC

are shown in Table 14, 15, 16, 18 and 17. The time is indicated as signature verifica-
tion/generation in milliseconds. Categories marked with * are required to be implemented
for Visa compliance.

A 211 Together with C 211A, this card supports the least algorithms among all the cards.
However, the supported algorithms show rather good results regarding the speed.
What appears hard to understand here is that the time for MAC verification is twice
as much as it for MAC generation, as it is expected that signature verification equals
the signature generation plus short byte array comparison. Apparently this card does
something extra in verification.

A 221 This card does not support any 4-byte MAC algorithms and ISO 9797 MAC algo-
rithm 3. Like A 211, it gives quite distinguishable results for MAC verification and
generation. But it is one of the fastest cards among all the cards in this scenario.

C 211A As said above, this card has the least implementations of MAC algorithms. Unlike
A 211, its speed in signature operation appears not look that good.

27



3-DES (Triple DES with 3-Keys)
Card No Padding PKCS#5 Pad. ISO9797 M1 Pad. ISO9797 M2 Pad.

MAC4 MAC8* MAC4 MAC8 MAC4 MAC8* MAC4 MAC8*
A 211 — — — — — — — —
A 221 — 14/30 — — — 14/30 — 20/35
C 211A — — — — — — — —
C 211B — — — — — — — —
B 211 260/265 261/266 307/312 308/309 260/264 261/266 308/311 308/310
B 22 165/178 165/178 170/187 174/187 164/177 164/177 222/235 174/188
B 221 41/40 42/40 43/39 41/42 42/40 40/41 43/42 42/43
D 22 33/34 35/36 — — 36/32 36/34 35/31 35/34

Table 16: CryptoTest result for 3-Key 3-DES MAC

ISO9797 ALG3 M2 Pad.
Card 3-DES (Triple DES with 2-Keys)

MAC4 MAC8
A 211 — —
A 221 — —
C 211A — —
C 211B — —
B 211 — —
B 22 119/120 120/118
B 221 28/28 28/29
D 22 4/4 4/7

Table 17: CryptoTest result for ISO 9797 MAC Algorithm 3 with 2-Key 3-DES

AES (128 bits Key) AES (192 bits Key) AES (256 bits Key)
Card No Padding No Padding No Padding

MAC16 MAC16 MAC16
A 211 — — —
A 221 14/36 14/35 14/36
C 211A — — —
C 211B — — —
B 211 — — —
B 22 77/96 79/98 82/101
B 221 — — —
D 22 — — —

Table 18: CryptoTest result for AES MAC
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C 211B This card seems having very quick responses to all the MAC algorithms it supports.
Unlike in the tests for cipher algorithms, it is much more efficient this time than its
sibling C 211A.

B 211 This card seems to be significantly slower than all the rest. However, it owns the
implementation of all the algorithms it could support (see [11]). Like the other two
Manufacturer B cards, operations on triple DES with two keys are almost as fast as
single DES but triple DES with three keys appears to be very slow compared with
them.

B 22 This card supports all the algorithms described in Java Card API 2.2 [12], although
it is the slowest in all the JC22 cards. What also looks odd is that processing 4-
byte MAC operations with ISO 9797 padding method 2 consumes much longer time
than the corresponding 8-byte ones. We do not have an explanation for this at this
moment.

B 221 This card performs more ‘reasonably’ and stable than all the rest. It also gives good
speeds according to what the results show. However, the lack of implementation of
AES is still a blemish in an otherwise perfect thing.

D 22 Like in the cipher algorithm tests, results here also show that this card use approx-
imately the same amount of time for single DES and Triple DES. It is also shown
that the computation on the ISO 9797 MAC algorithm on this card is unbelievably
fast.

We also found something during our test worthy to bring up for discussion.

• In Java Card Platform, a MAC signature is generated by invoking the method

sign (byte[] inBuff, short inOffset,
short inLength, byte[] sigBuff, short sigOffset);

in the Signature Class, and a signature is verified via method:

verify(byte[] inBuff, short inOffset, short inLength,
byte[] sigBuff, short sigOffset, short sigLength);

Like what happened in the method doFinal(), when inLength is zero A 211 does
not complain and no output of MAC is generated, while all the other cards do not
allow this.

• The application of the ISO 9797 MAC algorithm 3 requires the following six steps:
padding, splitting the padded data into blocks, initial transformation where simple
DES is applied on the first block, iteration where DES in CBC mode is applied on the
second block and so on, output transformation and truncation. The combination of
the initial transformation and the iteration can be seen as an overall DES application
in CBC mode with zero bytes initialization vector (IV). Two methods exist in the
Java Card Platform for signature initialization:
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Card MD5 RIPE MD-160 SHA*
A 211 46 — 50
A 221 26 — 32
C 211A 75 — 139
C 211B — — 88
B 211 56 112 71
B 22 116 131 119
B 221 33 75 51
D 22 16 — 19

Table 19: CryptoTest result for Message Digest

init(Key theKey, byte theMode,
byte[] bArray, short bOff, short bLen);

where parameter value for the IV can be customized, and

init(Key theKey, byte theMode);

when no initialization parameters are needed or the default IV value (zero bytes) will
be used for algorithms in CBC mode. To initialize a signature for ISO 9797 MAC
algorithm 3, the latter method should be applied, as well as the former one with the
resulting IV value being zeros. However initialization with the former method with
an arbitrary value of IV passed in is in fact allowed for this algorithm. Signature can
also be generated with this initialization without any complaints from the JCRE.
This signature, of course, is not correct but can be mistaken as a correct one. We
therefore suggest that necessary checking for consistency of algorithms and initializa-
tion parameters should be introduced here into the former method to prevent such
illegal initializations of a signature.

3.5.4 Message Digest Tests

The application for message digest test is substantially simpler compared with the pre-
vious two. Here, no key is involved and only one hash code generation method in the
MessageDigest class in the Java Card Platform exists for testing. The host generates the
hash code out of the input data using one of the hashing algorithms in Section 3.5.1. The
host then passes the input data and the hash to the applet. The applet hashes the input
data using the specific algorithm and compares the result with the hash the host generated.
If they match, the implementation in the card is seen to be correct, and otherwise not.

The results are shown in Table 19. The D 22 card is significantly faster on this than
the rest. Speaking of the speed, we notice that a card that works faster on one algorithm
is not necessarily faster for another algorithm as well (e.g. C 211A vs. B 22).
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3.6 Asymmetric Crypto Test

In this section we describe the results of a comprehensive asymmetric cryptographic testing.
We investigated the following:

• Whether all features specified by the Java Card API are supported.

• Whether the implementation is the correct one/can be verified on the host side.

The length of the input data for the ciphers used in the test was derived based on the
size of the key and the padding scheme used. For the NoPadding scheme, data length
is as long as the key. For PKCS1 padding, the padding data needs to be a minimum of
11 bytes (88 bits) long, so the data length taken was keyLength-11 bytes. For the rest of
the padding schemes the data length taken was arbitrary, in our case 15 bytes (120 bits)
for testing purposes.

Wherever possible timings were recorded. The overhead times were measured and
calculated separately for APDU transmission and processing and subsequently subtracted
from the total times for the actual timings of the cryptographic operations (method call
like doFinal() for encryption and decryption, sign() for signature and verify() for
verification). To get a better estimate of the timings, the cryptographic operation was
performed several times in a loop and the average of the timings from the different iterations
was calculated and documented. Every card spent quite some time for the first processing.
So the operations were performed n + 1 times (n being the desired number of iterations)
and the results from the first iteration were discarded for a fair estimate.

Not all of the combinations of algorithms and padding scheme that are theoretically
possible, could be tested as some of them were not implemented either on the card or on
the host side. If the algorithms are not present on the card then ‘function not supported
error code’ was returned and documented. If the algorithm could not be implemented on
the host side for verification then the card was made to process the data and return true
if function was supported or false if it was not supported, i.e. on-card testing only was
performed.

3.6.1 Tested Modules

To test the ability of the card extensively, an applet and a Java application were developed.
The first aim of the test is to review the following four points:

• the ability to (a) build keys of different key lengths and (b) use different asymmetric
algorithms on the card,

• the ability to generate keys of different key lengths,

• the ability to initialize cipher with different padding schemes,

• if the card supports all cryptographic operations specified by the Java Card API and,
in particular, Visa Global Platform.
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Apart from testing the presence of a function we also analyzed the correctness of a given
function and reported the time taken to perform the actual operation (excluding the over-
head times). Here we cross check the implementation on the card with that in Java devel-
opment kit. Other than this, it is also scrutinized to see if all the specifications mentioned
in the Java Card APIs are followed. Performance tests are repeated several times for ac-
curacy in timings. Comparison is drawn between various cards in terms of the supported
features and the timings.

The tested modules are given below. All the asymmetric algorithms, modes, key types,
key lengths and signature algorithms from different classes have been mentioned below.
We applied any possible combinations of them in our tests. Not all of them are required
for VISA compliance, * represents those that are.

Cipher Mode in the Cipher Class

MODE ENCRYPT* MODE DECRYPT*

Cipher Algorithms in the Cipher Class

ALG RSA NOPAD* ALG RSA PKCS1 NOPAD* ALG RSA ISO97976
ALG RSA PKCS1 OAEP ALG RSA ISO14888

Keys in the KeyBuilder Class

LENGTH RSA 512* LENGTH RSA 1536 LENGTH DSA 512
LENGTH RSA 768* LENGTH RSA 1792 LENGTH DSA 768
LENGTH RSA 1024* LENGTH RSA 2048 LENGTH DSA 1024
LENGTH RSA 1280

Type of keys in the KeyBuilder Class

TYPE RSA PRIVATE* TYPE DSA PRIVATE TYPE RSA CRT PRIVATE*
TYPE RSA PUBLIC* TYPE DSA PUBLIC

Mode in the Signature Class

MODE SIGN* MODE VERIFY*

Signature Algorithms in the Signature Class

ALG RSA MD5 PKCS1 ALG RSA SHA ISO9796* ALG RSA RIPEMD160 ISO9796
ALG RSA MD5 RFC2409 ALG RSA SHA PKCS1* ALG RSA RIPEMD160 PKCS1
ALG RSA MD5 PKCS1 PSS ALG RSA SHA RFC2409 ALG RSA RIPEMD160 PKCS1 PSS

ALG RSA SHA PKCS1 PSS
ALG DSA SHA
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3.6.2 Asymmetric Encryption/Decryption

In this subsection the results from the testing of on card encryption and decryption are
tabulated and presented.

Data Encryption The host initializes the conversation by (a) generating a pair of keys
and sending and initalizing them on the applet, (b) passing the plaintext to the applet
and assigning the algorithm expected to be used in the test. The applet first checks
whether the desired algorithm is available on the card. If it is not, an agreed error
code is returned to the host. Otherwise, the applet encrypts the plaintext using the
required algorithm with the public key and returns the ciphertext back to the host.
The host then decrypts the ciphertext from the applet and compares the decrypted
data with the original plaintext it passed to the applet. If they match, the card
is considered to hold a correct implementation of data encryption for the specific
algorithm else the implementation is seen to be incorrect.

Data Decryption The situation is very similar to encryption, here the server sends the
ciphertext to the applet, the applet decrypts it with the private key and sends the
plaintext back to the host. The host then compares the result from applet with its
own copy of the plaintext.

On the host side the algorithm implementations can be found in SunJCE in JDK
5.0 [14]. Some of the missing algorithms were found in Bouncy Castle Provider [3]. Few
other algorithms were self implemented by us like signature algorithms with ISO9796
padding. It was noticed that for the encryption operation other than for NoPadding scheme,
the verification of the ciphertext failed on the host.9

The results are presented in the tables 20 to 26. The time is indicated as Encryp-
tion/Decryption in milliseconds. Categories marked with * are required to be implemented
for Visa compliance. N means RSA, C means RSA CRT, NV means Not Verified, — means
Not Supported, CR means Crashed.

For the testing of padding scheme ISO14888, an APDU was sent to test it’s presence
on the card. For all the cards it returned a function not supported error code. It was
concluded that none of the cards supported the particular padding scheme.

Another padding scheme ISO9796, was found not to be implemented in any of the cards
for encryption/decryption algorithms. All of them returned with a function not supported
error. Hence, the scheme was not included in the table.

The B 221 card reported low level errors (the reader driver reported transmission errors)
and crashed when dealing with key length 2048 bits. So it was concluded that it supports
the particular key length but it behaves strangely when using it in practice. This was the
only card to show such behavior.

9In fact, for certain algorthims all of the cards return easily spottable wrong results – a repeated
encryption of the same plaintext with the same keys gives always different ciphertexts in subsequent runs.
To this date, we are not able to explain this behaviour. Neither we are able to explain the other reported
failed results in the reminder of this section, even though they seem to follow certain patterns.
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It is also noticeable that none of the cards implement all of the algorithms for all key
lengths. The closest is the D 22 card which implements three of the five padding schemes
for all key lengths. The C 211A card and the B 211 card support the least number of
schemes. They do not support key lengths greater than 1024 bits. C 211B card supports
only 1024 bits and 2048 bits key lengths and nothing in between.

A 211 This is one of the slowest cards along with B 22 and C 211A. It is slowest in both
encryption and decryption. Though it has the most implementations among all the
older specification cards. Like all cards, encryption in asymmetric algorithms is
faster than decryption. This is very apparent as the length of the key increases. Also
decryption in CRT mode is significantly faster than NON-CRT mode. Encryption
takes about same time in both modes.

A 221 This is one of the fastest cards along with B 211 among all the cards tested, as
far as encryption is concerned. It is almost twice as fast as the next fastest card.
Decryption though, takes almost the same time on most cards. The trend, RSA-CRT
mode being faster in decryption mode and same time in both modes for encryption,
continues.

C 211A This along with C 211B card has the least implementations. This card does not
support any key length greater than 1024 bits. It is also one of the slowest cards.

C 211B This card has the least number of implementations. It supports only key lengths
1024 and 2048. It is also the slowest card. For key length 2048 bits, this card is
almost twice as slow as the next slowest card.

B 211 This is the fastest card for encryption. But it does not support key lengths greater
than 1024. Decryption behaves as expected and the timings are comparable to other
cards.

B 22 This is one of the slower cards. Apart from that it shows no odd behavior.

B 221 This card showed strange behavior when dealing with key length of 2048 bits. The
applet kept crashing when computing the encryption/decryption for more than once.

D 22 This card supports the most implementations. It is also good in terms of speed of
the cryptographic operation.

3.6.3 Building Keys

Here the card was tested with different key lengths to see what key lengths are supported
by the buildKey method. It is also to be noted that if the building failed then we bailed
the card out for all remaining tests for that particular key length. This is due to the fact
that verification of the implementation of encryption, decryption, signature, verification
all require building of the key to be supported for that particular length.
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RSA (KeyLength 512*)
Card No Padding PKCS#1 Pad OAEP Pad

N* C* N* C* N C
A 211 35/90 33/62 NV/87 NV/58 – –
A 221 8/48 9/33 NV/47 NV/32 – –
C 211A 42/94 37/101 NV/94 NV/100 – –
C 211B – – – – – –
B 211 18/197 18/207 NV/199 NV/206 – –
B 22 54/137 53/160 NV/136 NV/161 – –
B 221 59/143 58/107 NV/149 NV/111 – –
D 22 15/70 16/48 NV/71 NV/47 NV/81 NV/55

Table 20: RSA crypto key-length 512 bit

RSA (KeyLength 768*)
Card No Padding PKCS#1 Pad OAEP Pad

N* C* N* C* N C
A 211 44/220 43/106 NV/211 NV/101 – –
A 221 12/129 12/61 NV/129 NV/64 – –
C 211A 46/212 43/157 NV/213 NV/157 – –
C 211B – – – – – –
B 211 28/266 27/207 NV/263 NV/205 – –
B 22 55/266 57/219 NV/268 NV/219 – –
B 221 59/291 59/161 NV/294 NV/162 – –
D 22 24/188 24/89 NV/186 NV/88 NV/204 NV/103

Table 21: RSA crypto key-length 768 bit

RSA (KeyLength 1024*)
Card No Padding PKCS#1 Pad OAEP Pad

N* C* N* C* N C
A 211 52/443 53/177 NV/441 NV/175 – –
A 221 11/279 11/110 NV/276 NV/110 – –
C 211A 54/445 54/245 NV/441 NV/243 – –
C 211B 88/247 84/239 NV/242 NV/236 – –
B 211 25/365 24/213 NV/364 NV/215 – –
B 22 63/502 60/322 NV/500 NV/319 – –
B 221 59/560 59/245 NV/561 NV/248 – –
D 22 28/399 32/162 NV/399 NV/156 NV/420 NV/181

Table 22: RSA crypto key-length 1024 bit
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RSA (KeyLength 1280)
Card No Padding PKCS#1 Pad OAEP Pad

N* C* N* C* N C
A 211 62/803 63/277 NV/798 NV/272 – –
A 221 18/521 21/185 NV/525 NV/184 – –
C 211A – – – – – –
C 211B – – – – – –
B 211 – – – – – –
B 22 144/– 144/515 NV/– NV/513 – –
B 221 66/560 68/371 NV/749 NV/372 – –
D 22 41/739 41/257 NV/740 NV/261 NV/768 NV/289

Table 23: RSA crypto key-length 1280 bit

RSA (KeyLength 1536)
Card No Padding PKCS#1 Pad OAEP Pad

N* C* N* C* N C
A 211 75/1297 74/410 NV/1297 NV/415 – –
A 221 23/1226 24/291 NV/1228 NV/291 – –
C 211A – – – – – –
C 211B – – – – – –
B 211 – – – – – –
B 22 169/– 168/721 NV/– NV/719 – –
B 221 69/1226 69/544 NV/1214 NV/547 – –
D 22 44/1238 44/409 NV/1233 NV/403 NV/1270 NV/440

Table 24: RSA crypto key-length 1536 bit

RSA (KeyLength 1792)
Card No Padding PKCS#1 Pad OAEP Pad

N* C* N* C* N C
A 211 128/6516 128/591 NV/6533 NV/591 – –
A 221 25/1913 28/431 NV/1911 NV/431 – –
C 211A – – – – – –
C 211B – – – – – –
B 211 – – – – – –
B 22 192/– 190/980 NV/– NV/981 – –
B 221 68/1873 67/610 NV/1848 NV/609 – –
D 22 55/1926 56/599 NV/1921 NV/599 NV/1967 NV/643

Table 25: RSA crypto key-length 1792 bit
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RSA (KeyLength 2048)
Card No Padding PKCS#1 Pad OAEP Pad

N* C* N* C* N C
A 211 149/9656 151/833 NV/9646 NV/820 – –
A 221 32/2820 32/614 NV/2822 NV/615 – –
C 211A – – – – – –
C 211B 204/19087 209/509 NV/19008 NV/509 – –
B 211 – – – – – –
B 22 218/– 219/2825 NV/– NV/2804 – –
B 221 72/2605 CR CR CR CR CR
D 22 65/2827 65/857 NV/2826 NV/855 NV/2874 NV/901

Table 26: RSA crypto key-length 2048 bit

RSA (KeyBuilder Class)
Card 512* 768* 1024* 1280 1536 1792 2048 NSL
A 211 YES YES YES YES YES YES YES YES+

A 221 YES YES YES YES YES YES YES YES
C 211A YES YES YES — — — — —
C 211B — — YES — — — YES —
B 211 YES YES YES — — — — YES+

B 22 YES YES YES — — — — YES++

B 221 YES YES YES YES YES YES YES YES
D 22 YES YES YES YES YES YES YES YES+

Table 27: RSA key building

There are two categories of key types. The standard length keys and the non standard
length keys. Visa Global Platform requires:

buildKey() method shall support any other keyLength parameter (other than
512, 768 and 1024) for a keyType; TYPE RSA CRT PRIVATE, TYPE RSA PRIVATE

or TYPE RSA PUBLIC, as long as the length is between 512 and the maximum
length supported by the card is 1024 bits and a multiple of 32 bits. Some
cryptoprocessors support a maximum of 2048 bits but this is out of the scope
of the Visa implementation.

The specification is unclear on key lengths between 1024 to 2048 bits. Nevertheless, all the
key lengths have been tested.

The tables 27 and 28 give the results for the KeyBuilder class. Categories marked
with * are required to be implemented for Visa compliance. + denotes that support for
the non-standard key lengths was partial. ++ denotes that any non-standard key length
less than or equal to 1024 was supported, else not supported. All key lengths are in bits,
NSL means Non Standard Length, YES means Supported, — means Not Supported.

The DSA keys are supported only by the B 22 card. It supports all the three key sizes
(512 bits, 768 bits and 1024 bits).
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RSA CRT (KeyBuilder Class)
Card 512* 768* 1024* 1280 1536 1792 2048 NSL
A 211 YES YES YES YES YES YES YES YES+

A 221 YES YES YES YES YES YES YES NO
C 211A YES YES YES — — — — —
C 211B — — YES — — — YES —
B 211 YES YES YES — — — — YES+

B 22 YES YES YES — — — — YES
B 221 YES YES YES YES YES YES YES YES
D 22 YES YES YES YES YES YES YES YES+

Table 28: RSA CRT key building

Some of the cards support all the standard key lengths and the key lengths multiple of
32 bits. In the support of the non-standard lengths there is discrepancy. Some of the cards
support up to 2048 bits, some support up to 1024 bits and some have random support.
These have been indicated in the corresponding tables for both RSA and RSA CRT mode.

It was also observed that if the key size was set to be 0 bits, some of the cards like A 221

reset the key size to a default value and then continued with the rest of the testing. But
any other key length not mentioned in the APIs or visa specifications returned an error.

The buildKey method allows applet to create a new key with the required specifi-
cations. Keys can then be set with methods like setExponent and setModulus and
initialized. The methods differ from key to key. For e.g. for RSAPublic key we use
setModulus and setPublicExponent and for RSAPrivateKey we use setModulus and
setPrivateExponent.

A 211 This card supports all the standard key lengths in RSA as well as RSA CRT mode.
It also supports non-standard key lengths, but not all of them.

A 221 This card supports all the standard key lengths in both RSA and RSA CRT mode.
For non standard key lengths, this is more specific than the A 211 card. In the case
of RSA, it supports all non-standard key lengths and for the case of RSA CRT mode,
it does not support any non-standard key length.

C 211A None of the Manufacturer C cards support non standard key lengths. C 211A

supports all the standard key lengths up to and including 1024 bits.

C 211B As mentioned, this card does not support non-standard key lengths. For the stan-
dard key lengths, it supports only 1024 and 2048 bits key lengths.

B 211 This card behaves similar to Manufacturer C cards except when dealing with non-
standard key lengths. In standard key lengths, it supports everything up to and
including 1024 bits. For non-standard key lengths it has partial support.

B 22 In RSA mode this card supports standard and non-standard key lengths up to and
including 1024 bits. In RSA CRT mode, all key lengths, both standard and non-
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RSA (KeyGen)
Card 512* 768* 1024* >1024
A 211 — — — —
A 221 — — — —
C 211A 490 2555 4695 —
C 211B — — — —
B 211 — — — —
B 22 2395 3555 6119 —
B 221 — — — —
D 22 — — — —

Table 29: Key-generation for RSA

RSA CRT (KeyGen)
Card 512* 768* 1024* 1280 1536 1792 2048
A 211 — — — — — — —
A 221 399 929 1425 5132 17228 25156 13559
C 211A 1044 1517 4696 — — — —
C 211B — — 6688 — — — 20483
B 211 — — — — — — —
B 22 2531 3225 5679 8111 11757 — —
B 221 — — — — — — —
D 22 1315 — — — — — —

Table 30: Key-generation for RSA CRT

standard are supported. This is the only card that supports DSA key building. It
supports all the three DSA key lengths (512, 768 and 1024 bits).

B 221 This card also has the maximum support. It supports key building of all key lengths
for both RSA modes (RSA and RSA CRT). However, the card is unstable and crashed
during encryption/decryption with 2048 bits key length.

D 22 This supports all standard key lengths in both RSA and RSA CRT mode. For non-
standard key lengths, the support is partial.

3.6.4 On Card Key Generation

In this subsection, we discuss the ability of the card to generate keys. We test the on card
key generation for different key lengths and draw a comparison between the various cards.
The tables 29 and 30 give the complete results with the time taken to generate the keys
wherever available.

In the previous subsection, we build empty keys and use the key information from the
host to initialize the keys. Here we actually generate the keys on the card. Many card
support building of the empty keys for use for a particular length of the keys, but do not
support the generation of keys of that length. This explains why these two functionalities
have been tested separately.
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It was observed that for DSA, on card key generation was supported only by B 22.
Only 512 bits key length is supported.

RSA key generation is more widely supported. Many key lengths are supported.
RSA CRT is the most popular among all the supported algorithms. RSA in non-CRT
mode is only supported by C 211A and B 22 and only up to and including 1024 bits.

A 211 This is one of the many cards that does not support any on-card key generation.
Keys have to be loaded from outside.

A 221 This is the only card to support key generation of all standard lengths. But this is
only for RSA CRT mode. For RSA mode, it does not support key generation.

C 211A This card supports key generation in both RSA and RSA CRT mode but only up
to and including key length 1024. This is the fastest card in both RSA and RSA
CRT mode.

C 211B This card supports key generation in the RSA CRT mode. It is the slowest cards
in terms of key generation times in the RSA CRT mode.

B 211 Does not support any key generation.

B 22 Supports key generation for smaller key lengths. In CRT mode it also supports a few
larger ones. As already mentioned, this is the only card which supports DSA key
generation, viz. for 512 bits.

B 221 Does not support any key generation.

D 22 Supports just one key generation in the CRT mode for the 512 bits key length.

3.6.5 Asymmetric Signature/Verification

Here the results from the testing of on card signature and verification have been tabulated
and presented.

Signature The application initializes from the host by (a) generating, loading, and in-
tializing the required keys on the applet, and (b) sending a text to be signed to the
applet. The applet then generates a signature with the private key and then passes
on the signatureto the host for verification. The host then generates his signature and
compares it to the one received from the applet. If they match then the implemen-
tation is seen to be correct else it is seen to be incorrect. If the specified algorithm
is not implemented on the card, a function not supported error is returned.

Verification The scenario follows the one above, but it’s the applet that verifies (with the
verify() method) the signature provided by the host and sends a yes/no answer to
the host.
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RSA Sign/Verify
No Additional Padding ISO9796

Card SHA1* MD5 RMD160 SHA1*
N* C* N C N C N* C*

A 211 477/112 205/VF 465/115 202/VF SF/– SF/– 577/41 315/42
A 221 297/17 125/VF 287/12 118/VF SF/– SF/– 327/44 156/44
C 211A – – – – – – – –
C 211B – – – – – – – –
B 211 473/101 325/VF 459/91 311/VF SF/150 SF/VF – –
B 22 638/176 462/VF 600/154 418/VF SF/187 SF/VF – –
B 221 625/162 305/VF 606/145 290/VF SF/190 SF/VF – –
D 22 419/28 175/VF 411/24 171/VF SF/– SF/– – –

Table 31: RSA signing/verification, no padding and ISO9796

RSA Sign/Verify
PKCS1 RFC2409

Card MD5 RMD160 SHA1 MD5 SHA1
N C N C N C N C N C

A 211 697 431 – – – – – – – –
A 221 430 258 – – – – – – – –
C 211A – – – – – – – – – –
C 211B – – – – – – – – – –
B 211 795 644 691 543 793 645 – – 677 523
B 22 979 794 780 600 923 735 – – – –
B 221 – – 823 509 – – – – 856 542
D 22 503 265 – – – – 555 315 – –

Table 32: RSA signing/verification, PKCS1 and RFC2409

On the host side the algorithm implementations can be found in SunJCE in JDK
5.0 [14]. Some of the missing algorithms were found in Bouncy Castle Provider [3].
Few other algorithms were self implemented like signature algorithms with ISO9796
padding. None of the cards support DSA signatures. Also none of the cards supported
RSA/RIPEMD160/ISO9796 or RSA CRT/RIPEMD160/ISO9796 combinations, so these
results were not included in the tables.

The results are presented in Tables 31 and 32. From the results it is also apparent that
both Manufacturer C cards do not support any of the signature algorithms for either RSA,
RSA CRT mode or DSA. The time is indicated as Signature/Verification in milliseconds.
Categories marked with * are required to be implemented for Visa compliance. N means
RSA, C means RSA CRT, VF means Verification Failed, SF means Signature Failed,10 —
means Not Supported.

10Again, we find it really odd that, for example, all the cards failed in the same way for one algorithm
(RMD160 with no padding). It may indicate that (a) the card indeed has a faulty implementation, or,
more likely, (b) the signature algorithm combination we used on the host side is not the right one, i.e., not
the one used on the card, despite all our best efforts to find the right one.
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Another interesting observation during the testing was, the signature was correct in
both RSA and RSA CRT mode for all cards, but verification failed in the RSA CRT mode,
except for RSA/SHA1/ISO9796.

Table 32 shows the results for the algorithms which could not be implemented on the
host side for verification. Their implementation could not be verified, but the card was
checked to see if they are supported. If the applet successfully signs the data and verifies
the signed data then the algorithm has been implemented for both generating a signature
and verifying a signature, else the function is not supported and error code is returned.
The times indicated in the table include both signing the data and then verifying the signed
data.

A 211 On all cards Signing and Verification are quicker in RSA CRT mode than in RSA
mode. Though many of the algorithms are implemented on the card from Table 31,
only one is implemented from Table 32. Speed of the card is average, neither quick
nor slow.

A 221 This is the fastest card for signing and verification. It is almost twice as quick. In
terms of number of algorithms implemented both Manufacturer A cards are equal.
Both Manufacturer A cards conform to the Visa Global Platform specs by imple-
menting the ISO9796 padding with SHA1. They are the only cards to support this
algorithm.

C 211A, C 211B None of the Manufacturer C cards support signature algorithms.

B 211 This card has the most implementations. In Table 32 it supports all algorithms
except RFC2409/MD5. Speed is comparable to the A 211 card.

B 22 This is the slowest card in terms of speed of operation. But it has fair number
of implementations. Like all other cards, signing takes distinguishably longer than
verification.

B 221 Along with B 22 card this is one of the slowest.

D 22 Though the actual times are not very big, the ratio of signing time to verification
time is the biggest for this card.
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3.7 The RMI Applet

The RMI applet that we wrote has the same functionality as the BasicInfo applet, except
that it uses the RMI interface. A suitable RMI host application has been written for the
applet based on the IBM RMI off-card API. We successfully loaded and run the applet
on all RMI supported cards: A 221, B 22, B 221, and D 22. One technical thing that was
noticed on the way is that all cards except the A 221 card require the CLA byte of RMI
calls to be 80 hex, while the A 221 card accepts both 00 and 80. What we found nice
(and surprising too to a certain extent) is that the IBM RMI off-card library can be used
to talk to RMI applets on all cards. Having all the experiences with small differences in
implementations on different cards and ‘twists’ in standard compliant solutions we found
it really comforting.

3.8 Global and Open Platform API

The purpose of this test is to assess the card Global Platform API functionality and
compliance to Visa GP specification. An applet11 that utilizes the API has been written and
a host application that communicates with the applet to extract the necessary information.
The following things have been evaluated:

• Whether the card implements the API subset required by the VGP specification [17].

• Whether the Secure Channel and crypto related parts of the API give expected
results. Namely, a secure channel is opened for the applet through the GP API
(methods processSecurity, openSecureChannel, verifyExternalAuthenticate),
and decryption routines are checked for accuracy according to the GP specification
(not only whether they are supported, i.e., work giving some results) – methods
unwrap, decryptData, and decryptVerifyKey.

• Additionally, the support for encryption (not required by VGP) have been tested –
methods wrap and encryptData.

• Other parts of the API have been tested in a similar way by performing simple
functionality tests. The exceptions are the terminateCard and lockCard methods.
They were included in the source code of the applet in an unreachable block – we
wanted to check whether the applet would link and load to the card. We did not
want to actually invoke the methods and make cards unusable.

• The test applet is not loadable to the C 211A card. This is a known bug, which
can be summarized as follows – due to a buggy (or ‘too picky’) on-card bytecode
verifier, no applet that uses the OP API can be loaded onto the card. Certain
versions of this card are not equipped with a bytecode verifier and thus are free
from this problem. Unfortunately, all of our C 211A cards have the verifier enabled.

11Actually, because of major differences between the OP API 2.0.1 and GP API 2.1.1 two separate
applets had to be written.
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What we find extremely disturbing is that this bug is known since year 2003 and
Manufacturer C still sells those cards to customers.

The results of this test can be summarized shortly:

• All the cards support the required API subset.

• For the GP 2.1.1 cards (A 221 and B 221), all tests are passed successfully. However,
none of the cards supports the encryption routines (wrap and encryptData). This
seems natural as none of the cards supports R-MAC either.

• For the OP 2.0.1 cards (all the rest) almost all tests are passed successfully. The one
thing we had problems with is setting and using the global PIN, for all but one card.
Although it is claimed that all the cards support the global PIN, we were not able
to set it through the API on most of the cards. The only OP 2.0.1 card that worked
was the D 22 card. We tried all different kinds of PIN formats and we always get the
same problem – two cards return false on setPin, meaning that the PIN could not
be set, two cards simply throw an exception with the error code ‘wrong data’.

We should also note that the global PIN API functionality for OP 2.0.1 API is very
poorly treated in the publicly available documentation. The situation is slightly
better in proprietary specifications, but that does not help much – despite our best
effort (including setting the right privileges for the applet in the OP registry), we
were not able to access the global PIN functionality on the OP 2.0.1 cards. Finally,
we should note that global PIN worked fine on the GP 2.1.1 cards.

• Finally, this test gives us a final answer as to which OP/GP version the D 22 card
supports. The doubt came from the fact the information about this card found on
the Internet suggest GP 2.1.1. However, both of our tests (the secure channel test
and this one) indicate that the supported version is in fact OP 2.0.1.

3.9 Other APIs

The only other API that was open to testing on the card is the Java Card Forum Biometric
API. Through the JCOP tool-set we have access to the Bio API 1.0 library files, so we
made an attempt to put an applet that utilizes this API onto our cards. The test applet
simply tries to instantiate all possible biometric templates defined by the API. The results
of this test is the following: the test applet could only be loaded to two cards (A 221 and
B 221). For all the other cards the load failed, which means that (at least this particular
version of) the Biometric API is not supported by the card. For the two cards that did
accept the applet we got the following results: on the B 221 card we could only instantiate
a template associated with finger prints (BioBuilder.FINGERPRINT), on the A 221 card
we could not instantiate any of the templates. We find the latter result extremely strange,
because it makes the whole API practically useless.12 Thus, we are not sure if we can state

12Unless of course we missed something, but the fact that the same test worked for the B 221 card
suggests that something is not right here.
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that the card supports the Biometric API, even though the API can be referenced on the
card.

3.10 Preloaded Applets

We listed the load files, executable modules, applet AIDs, and security domains preexisting
on each of the cards. The complete list is included in Appendix C in exactly the same
form as our PATT tool provides. The listings include all extractable information from the
GP registry, meaning, e.g., that if executable modules are not sub-listed for the load file
that indicates that the card does not supply this information (in fact, only two cards do
– the A 221 and D 22). The D 22 card caused a little trouble when retrieving the load file
listing: either the only D 22 card we have left has a corrupted registry because of one of our
other tests, or the card simply reports the load file information in a wrong way. In either
case the card reports executable modules for one load file correctly, and for the other load
file the executable modules data is simply malformed (we checked “manually” – one byte
required by the GP specification is missing in card’s response).

We leave it to reader’s discretion to relate the listed AIDs to any of the smart card
software or libraries known in the industry.

3.11 Garbage Collection/Memory Management

The garbage collection and memory management test was performed in two steps. In the
first step the Java/applet memory was tested for garbage collection.13 To this end an
applet has been written that performs the following tests:

• Subsequent allocation of memory blocks storing the references to the newly allocated
memory. In this case the applet should always (eventually) run out of memory (the
amount of currently allocated memory is noted down when this happens – the results
given below are approximate amounts, because the memory is allocated in blocks,
thus, when it is not possible to allocate a new whole block it does not necessarily
mean there the amount of memory left is 0). After the memory is filled, all the
references are ‘released’ and the test is rerun. At this point the applet is expected to
be able to allocate memory again, if the garbage collection is implemented.

• Subsequent allocation and immediate release of memory blocks. If the garbage col-
lection is fully implemented it should be possible to do it indefinitely (a certain limit
is put into the test to stop after we are sure that the test is passed). There are two
flavours of this test – one that stores the reference to the newly allocated block in an
applet field and one that stores the same reference in a local variable. This is done

13As strongly noted in the Java Card documentation, in Java smart cards garbage collection mechanism
does not exist as such, i.e., the one known from the desktop Java. On Java Cards the mechanism is called
object deletion and on new Java Cards has to be invoked explicitly through an API call. By default, older
cards do not support garbage collection and/or object deletion.
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in the hope that some JCVMs may treat references differently depending on where
they are stored (persistent or transient memory).

For all of the above tests both kinds of memory were tested – RAM and EEPROM, i.e.,
the memory blocks were allocated in either. Additionally, for the cards that support Java
Card API 2.2.*, we checked if the method requestObjectDeletion has to be invoked for
the garbage collection to work (turns out all the JC 2.2.* cards require this call to collect
garbage). Moreover, since the JC API 2.2 can report on free memory on the card, we
compared the results reported by the API with what the expectations were according to
our test data. For the transient (RAM) memory interesting results were obtained.

The following is the description of each card behaviour:

A 221 The garbage collection seems to be fully implemented on this card. The total
amount of persistent memory we managed to allocate was in the vicinity of 68KB.14

An interesting thing we discovered about RAM allocation is the following: When
allocating memory in the ‘clear on deselect’ mode it seems that the whole available
RAM can be allocated (circa 1900 bytes), but the API does not report any change in
transient memory size after allocation. Conversely, when allocating in the ‘clear on
reset’ mode, the API correctly reports the new memory size, but the whole available
memory cannot be allocated. That would suggest that the JCVM keeps a reserve
block (around 200 bytes) of RAM for whatever purposes.

B 221 This card also fully implements garbage collection. The amount of persistent mem-
ory that we managed to allocate was in the vicinity of 47KB. When it comes to RAM
allocation and API reports of the available memory size, the card is a kind of mystery.
In short: the memory is allocated correctly and the maximum allocatable sizes are
what is expected: around 900 bytes can be allocated in the ‘clear on deselect’ mode,
slightly less (600 bytes) in the ‘clear on reset’ mode. It seems that similar limitations
on the ‘clear on reset’ mode apply as for the A 221 card. However, the reports that
the API gives do follow a pattern, but one very difficult to explain. We noted earlier
that this card reports two different memory sizes for the two allocation modes (‘reset’
and ‘deselect’). When we allocate the ‘deselect’ memory, the card report less ‘reset’
memory available, but not accordingly to what was allocated. When we allocate the
‘reset’ memory, the two types of memory are reported to be less according to the
amount we allocated. Apparently the book keeping is not very accurate, similar to
the A 221 card.

B 22 In principle the card exhibits the same behaviour as the A 221 card – garbage collec-
tion is fully implemented, the amount of persistent memory we managed to allocate
was circa 56KB. Reporting of free transient memory works almost the same way as
on A 221 card – the card does not properly keep track of ‘clear on deselect’ alloca-
tions. The difference is that on this card the whole transient memory (circa 1900
bytes) can be allocated in both modes – the card does not keep any reserves.

14Note again, that none of the cards during this test were ‘empty’, thus the reported memory sizes
should be taken with certain reserve.
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D 22 Again, the garbage collection fully works on this card. The amount of persistent
memory that we managed to allocate was 55KB (there was one big applet that could
not be removed installed on the card during the test). The amount of allocatable
transient memory was in the range of 900 bytes in both allocation modes. Similar
to other cards, this card has some problems reporting free transient memory – after
allocating the memory in the ‘reset’ mode the reports are as expected, after allocation
in the ‘deselect’ mode only the ‘reset’ transient memory is reported decreased, the
‘deselect’ memory is reported as it was before the allocation.

The rest of the cards do not support Java Card API 2.2 or higher and thus are not capable
of reporting the available memory through API calls. Also object deletion is not supported
through the API on these cards, nevertheless we tested them all to see if the cards possibly
have any implicit garbage collection mechanism.

A 211 There is no application level garbage collection on this card. We managed to allocate
circa 28KB of the persistent memory on this card, circa 500 bytes of RAM in the
‘reset’ mode and circa 600 bytes in the ‘deselect’ mode.

B 211 Same as A 211 card. We managed to allocate circa 14KB of the persistent memory
on this card, circa 2100 bytes of RAM in the “reset” mode and circa 2300 bytes in
the “deselect” mode.

C 211A, C 211B Also no application level garbage collection on these cards. We managed
to allocate circa 28KB of persistent memory, and circa 700 bytes of transient memory
(in both allocation modes) on C 211A, and 1000 bytes (in both allocation modes) on
C 211B. A note w.r.t. allocatable persistent memory is due here: Both Manufacturer C
cards require the user to specify how much persistent memory the applet is allowed
to use. On both cards we specified this to be around 29KB (70FF hex), giving the
maximum specifiable value of 32KB (7FFF hex) is not possible – the applet is refused
installation. Thus, it is not surprising that neither of the cards (even though the
newer one is supposedly 64K) allowed us to allocate more than 29KB.

In parallel to the applet level garbage collection test we performed the card registry
memory management test, i.e., we tested whether applet deletion takes proper care of any
garbage that the applet may be leaving behind. Whenever we filled the memory with
garbage by running the test applet described above, we deleted the applet, reinstalled
it, and checked whether we can allocate the same amount of memory as before. This
cycle was repeated a sufficiently large number of times to convince us that the garbage is
indeed cleaned up upon applet deletion. All the cards successfully passed this test. At
this point we also have to revise some statements we made earlier about the C 211A card.
One instance of this card did fail on us w.r.t. memory management (see Section 3.2) and
during key management test (see Section 3.3.1). It seems though that none of the failures
were caused by bugs in the card or lack of garbage collection or other features. To repeat
what we have said earlier, probably what happened is that we introduced some faults into
the cards in the earlier stages of testing (the transaction test could be responsible, as it,
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e.g., totally destroyed the D 22 card). Unfortunately, we are not able to back trace these
faults.

The overall result of the garbage collection test can be summarized as follows. None of
the older generation cards (JC API 2.1.1) support garbage collection on the applet level.
All of the new generation cards (JC API 2.2 and on) fully support garbage collection,
or more precisely, object deletion. An adequate API call is required on those cards to
trigger the garbage collection mechanism. This seems reasonable, as garbage collecting
takes visibly long time and is very expensive on EEPROM memory writes.

3.12 Software and Test Results Availability

All software and applets written for the tests as well as log files (where applicable) from
the tests are available on request. Some of the software (not always up to date) is available
on the our web page: http://www.cs.ru.nl/∼woj/software/software.html.

4 Conclusions

The outcome of the study we presented in this report has multiple aspects:

• The test results themselves – only after the first stage of testing it was already clear
that the cards differ substantially from each other in small details. Towards the end
of the testing a number of card differentiators have been discovered.

• Broken cards – it is surprising to see how easy it is to break some of the cards. One
of the D 22 cards did not even last 30 minutes of testing, and we did loose one of
our C 211A cards on the way (in a sense it still functions, but is practically useless
as a test card). We think that when it comes to choosing cards for long term use,
the resilience aspect is probably one of the most important ones. Also, we cannot
imagine, for example, how contactless cards with a faulty transaction mechanism can
survive the ‘large market’ reality.

• Loopholes in specifications – testing of cards revealed that there are some unexplained
issues in different kinds of specifications. One example is all the ambiguities in
the transaction mechanism specification that are being progressively corrected, the
other one is the behaviour of Cipher for inputs of length zero, which seems to be
underspecified.

• The (steep) learning curve – most of the time spent in the project was devoted to
finding suitable information, studying all different standards involved in the Java
Card technology, and getting acquainted with the different API libraries. Although
lots of time has been consumed, we think it paid off, both in terms of the test results
and knowledge gained.
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• Software – finally, lots of host-side applications and card applets have been developed
in the process. We are planning on developing them further and making them publicly
available as much as possible.
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A BasicInfo Test Results

• B 211:

Card reports supported baud rate of 53763
API version: 2.1
APDU protocol: Type T1, media DEFAULT
Max Commit: 505
APDU buffersize: 261

• A 211 (2.1.1):

Card reports supported baud rate of 9622 (default)
API version: 2.1
APDU protocol: Type T0, media DEFAULT
Max Commit: 500
APDU buffersize: 261

• C 211A:

Card reports supported baud rate of 78125
API version: 2.1
APDU protocol: Type T0, media DEFAULT
Max Commit: 510
APDU buffersize: 261

50



• C 211B:

Card reports supported baud rate of 156250
API version: 2.1
APDU protocol: Type T0, media DEFAULT
Max Commit: 512
APDU buffersize: 272

• A 221:

Card reports supported baud rate of 161290
(Regular A_221 in contact mode)

Card reports supported baud rate of 9622 (default)
(Regular A_221 in contactless mode,
the other flavour of A_221 in both modes)

API version: 2.2
APDU protocol: Type T1, media DEFAULT (contact)
APDU protocol: Type TCL, media DEFAULT (contactless)
Max Commit: 512
Free Commit: 512
Free Memory Persistent: 32767
Free Memory TransReset: 1983
Free Memory TransDeselect: 1983
Object Deletion supported: Yes
APDU buffersize: 261
Default RMI INS: 0x38

• B 22:

Card reports supported baud rate of 161290
API version: 2.2
APDU protocol: Type T1, media DEFAULT
Max Commit: 896
Free Commit: 896
Free Memory Persistent: 32767
Free Memory TransReset: 1936
Free Memory TransDeselect: 1936
Object Deletion supported: Yes
APDU buffersize: 261
Default RMI INS: 0x38

• B 221:

Card reports supported baud rate of 161290 (contact)
Card reports supported baud rate of 9622 (default) (contactless)
API version: 2.2
APDU protocol: Type T1, media DEFAULT (contact)
APDU protocol: Type TCL, media DEFAULT (contactless)
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Max Commit: 504
Free Commit: 504
Free Memory Persistent: 32767
Free Memory TransReset: 614
Free Memory TransDeselect: 906
Object Deletion supported: Yes
APDU buffersize: 261
Default RMI INS: 0x38

• D 22:

Card reports supported baud rate of 161290 (contact)
Card reports supported baud rate of 9622 (default) (contactless)
API version: 2.2
APDU protocol: Type T0, media DEFAULT (contact)
APDU protocol: Type TCL, media DEFAULT (contactless)
Max Commit: 511
Free Commit: 511
Free Memory Persistent: 32767
Free Memory TransReset: 946
Free Memory TransDeselect: 946
Object Deletion supported: Yes
APDU buffersize: 274
Default RMI INS: 0x38

B Global Platform Test Results

• B 211:

The main Secure Channel Protocol is: 1
OP/GP version most likely is: 2.0.1
Supported Secure Channel Versions are:
[SCP_01_05 APDU_CLR APDU_MAC APDU_ENC]

Key deletion supported: Yes
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 0
Additional Security Domain instantiated successfully

• A 211 (2.1.1):

The main Secure Channel Protocol is: 1
OP/GP version most likely is: 2.0.1
Supported Secure Channel Versions are:
[SCP_01_05 APDU_CLR APDU_MAC APDU_ENC]

Key deletion supported: No
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 0
No default load file found to instantiate additional Security Domain
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• C 211A:

The main Secure Channel Protocol is: 1
OP/GP version most likely is: 2.0.1
Supported Secure Channel Versions are:
[SCP_01_05 APDU_CLR APDU_MAC APDU_ENC]

Key deletion not tested, card does very strange things
with key registry!

Key deletion supported: No
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 0
No default load file found to instantiate additional Security Domain

• C 211B:

The main Secure Channel Protocol is: 1
OP/GP version most likely is: 2.0.1
Supported Secure Channel Versions are:
[SCP_01_05 APDU_CLR APDU_MAC APDU_ENC]

Key deletion supported: No
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 0
Could not instantiate additional Security Domain

• A 221:

The main Secure Channel Protocol is: 2
OP/GP version most likely is: 2.1.1
Supported Secure Channel Versions are:
[SCP_02_15 APDU_CLR APDU_MAC APDU_ENC]

Key deletion supported: No
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 3
Logical Channels: Multi-selection of Security Domain not possible.
Additional Security Domain instantiated successfully

• B 22:

The main Secure Channel Protocol is: 1
OP/GP version most likely is: 2.0.1
Supported Secure Channel Versions are:
[SCP_01_05 APDU_CLR APDU_MAC APDU_ENC]

Key deletion supported: Yes
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 3
Logical Channels: Multi-selection of Security Domain possible.
Opening of a secure channel on sup. logical channel possible.
Communication over multiple secure/logical channels failed,
only one secure/logical channel active.

Additional Security Domain instantiated successfully
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• B 221:

The main Secure Channel Protocol is: 2
OP/GP version most likely is: 2.1.1
Supported Secure Channel Versions are:
[SCP_02_15 APDU_CLR APDU_MAC APDU_ENC]

Key deletion supported: No
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 3
Logical Channels: Multi-selection of Security Domain possible.
Opening of a secure channel on sup. logical channel possible.
Communication over multiple secure/logical channels failed,
only one secure/logical channel active.

Additional Security Domain instantiated successfully

• D 22:

The main Secure Channel Protocol is: 1
OP/GP version most likely is: 2.0.1
Supported Secure Channel Versions are:
[SCP_01_05 APDU_CLR APDU_MAC APDU_ENC]

Key deletion supported: Yes
VISA GP predictable challenge: No
Number of supplementary logical channels supported: 3
Logical Channels: Multi-selection of Security Domain not possible.
Could not instantiate additional Security Domain

C Preinstalled Applets

• B 211:

Card Manager (ISD) status:
AID: A0 00 00 00 03 00 00 00
State: READY

Security Domain status:
--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
None found.
--------------------------------------------

Load File status:
--------------------------------------------
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AID: A0 00 00 00 03 53 50 [?????SP]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 53 44 [?????SD]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: D2 76 00 00 05 AA 04 03 60 01 04 [?v??????‘??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: D2 76 00 00 05 AA FF CA FE 00 01 [?v?????????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 00 00 [???????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 02 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 02 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 00 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------

• A 211 (2.1.1):

Card Manager (ISD) status:
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AID: A0 00 00 00 03 00 00 00
State: INITIALIZED

Security Domain status:
--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
None found.
--------------------------------------------

Load File status:
--------------------------------------------
AID: A0 00 00 00 62 00 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 02 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 02 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 00 00 [???????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: 31 50 41 59 2E [1PAY.]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 60 10 [?????‘?]
State: LOADED
Executable modules:

Not available.
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--------------------------------------------

• C 211A:

Card Manager (ISD) status:
AID: A0 00 00 00 03 00 00
State: INITIALIZED

Security Domain status:
--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
None found.
--------------------------------------------

Load File status:
--------------------------------------------
AID: A0 00 00 00 62 00 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 02 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 02 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 00 00 [???????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------

• C 211B:

Card Manager (ISD) status:
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AID: A0 00 00 00 03 00 00 00
State: INITIALIZED

Security Domain status:
--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
None found.
--------------------------------------------

Load File status:
--------------------------------------------
AID: A0 00 00 00 62 00 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 02 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 02 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 00 00 [???????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 30 00 00 70 00 68 00 10 20 30 [????0??p?h?? 0]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 01 32 00 01 [????2??]
State: LOADED
Executable modules:

Not available.

58



--------------------------------------------
AID: A0 00 00 00 30 29 05 70 00 AD 14 10 01 01 [????0)?p??????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 53 44 [?????SD]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 53 50 [?????SP]
State: LOADED
Executable modules:

Not available.
--------------------------------------------

• A 221:

Card Manager (ISD) status:
AID: A0 00 00 00 03 00 00 00
State: READY

Security Domain status:
--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
None found.
--------------------------------------------

Load File status:
--------------------------------------------
AID: A0 00 00 00 03 53 50 [?????SP]
State: LOADED
Executable modules:

A0 00 00 00 03 53 50 41 [?????SPA]
--------------------------------------------

• B 22:

Card Manager (ISD) status:
AID: A0 00 00 00 03 00 00 00
State: INITIALIZED

Security Domain status:
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--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
None found.
--------------------------------------------

Load File status:
--------------------------------------------
AID: D2 76 00 00 05 AA FF CA FE 00 01 [?v?????????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 00 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 00 02 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 00 03 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 01 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 01 01 [????b???]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 01 02 [????b??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 62 02 01 [????b??]
State: LOADED
Executable modules:
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Not available.
--------------------------------------------
AID: A0 00 00 01 51 00 [????Q?]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 00 00 [???????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: D2 76 00 00 05 AA 04 03 60 01 04 [?v??????‘??]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 53 44 [?????SD]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 53 50 [?????SP]
State: LOADED
Executable modules:

Not available.
--------------------------------------------

• B 221:

Card Manager (ISD) status:
AID: A0 00 00 00 03 00 00 00
State: INITIALIZED

Security Domain status:
--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
AID: A0 00 00 00 63 50 4B 43 53 2D 31 35 [????cPKCS-15]
State: SELECTABLE
Privileges: []
--------------------------------------------

Load File status:
--------------------------------------------
AID: A0 00 00 00 03 53 44 [?????SD]
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State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 03 53 50 [?????SP]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 02 27 01 10 00 [????’???]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: 53 4B 54 45 58 54 4C 49 42 [SKTEXTLIB]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
AID: A0 00 00 00 63 02 [????c?]
State: LOADED
Executable modules:

Not available.
--------------------------------------------

• D 22:

Card Manager (ISD) status:
AID: A0 00 00 00 03 00 00 00
State: READY

Security Domain status:
--------------------------------------------
None found.
--------------------------------------------

Applet status:
--------------------------------------------
None found.
--------------------------------------------

Load File status:
--------------------------------------------
AID: A0 00 00 00 03 53 50 [?????SP]
State: LOADED
Executable modules:

A0 00 00 01 51 00 00 [????Q??]
A0 00 00 00 03 53 50 41 [?????SPA]
A0 00 00 00 03 00 00 [???????]
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--------------------------------------------
AID: A0 00 00 00 77 01 00 03 00 10 00 00 00 00 00 03 [????w???????????]
State: LOADED
Executable modules:

Not available.
--------------------------------------------
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