
Formal Specification and Verification of
JavaCard’s Application Identifier Class

Joachim van den Berg, Bart Jacobs, Erik Poll

Dept. Computer Science, Univ. Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

{joachim, bart, erikpoll}@cs.kun.nl
http://www.cs.kun.nl/∼{joachim, bart, erikpoll}

10th October 2000

Abstract This note discusses a verification in PVS of the AID (Ap-
plication Identifier) class from JavaCard’s API. The properties that are
verified are formulated in the interface specification language JML. This
language is also used to express the properties that are assumed about
the native methods from the Util class that are used in the AID class.

1 Introduction

This short note describes the obvious next step after the formal specific-
ation in JML [8,7] of JavaCard’s API in [10], namely actual verification
that the current reference implementation (version 2.1) [1] satisfies these
specifications. This verification is done with the proof tool PVS [9], based
on the translation of Java and JML into PVS, as incorporated in the
LOOP tool, see [11]. This verification forms a test, both for the JML spe-
cifications, and for the Java implementations (and of course also for the
LOOP tool). Here we concentrate on a small part of the API, involving
essentially only the classes Util and AID. The emphasis is not so much
on the actual statements that are being verified (because they are not so
spectacular), but on how the results and assumptions are formulated and
used in proofs.

The JavaCard API specifications in JML make many implicit assump-
tions explicit, and provide useful (and hopefully readable) documentation,
see [10]. But one can also make mistakes in writing specifications, so it is
important to actually verify them, if possible. One option is static check-
ing, see [12]. This is certainly very effective and useful, but only allows
(automatic) checking of certain “simple” properties, without guarantee of
absolute correctness1. We see our approach as complementary, for provid-
1 It may be interesting to note that the verification of the getBytes method that

is discussed in Section 3 below has also been done in ESC/Java, but without the

ing additional certainty: our verifications are based on a mathematical
semantics of Java (expressed in the logic of PVS) that allows in principle
arbitrarily complex assertions. But the activity of proving such assertions
is interactive, and far from automatic. The fact that both static and se-
mantic analysis (and even run-time checking of assertions [3]) is possible
for JML is a strong advantage of this specification language.

This paper can only give an impression of some of the issues in API
verification. It discusses these issues via an example.

2 JavaCard’s Util class: specification

The AID class makes use of two methods from the Util class, namely
arrayCopy and arrayCompare. Both these methods are static, final and
native: ‘static’ means that they can be invoked without a receiving object,
‘final’ that they cannot be overridden, and ‘native’ that no actual Java
code is provided, but their implementation is given in some other (low-
level) language.

The behaviour of these methods is described in informal comments in
the Util.java file. We quote these explanations:

arrayCopy: “Copies an array from the specified source array, beginning
at the specified position, to the specified position of the destination
array (non-atomically).”

arrayCompare: “Compares an array from the specified source array, be-
ginning at the specified position, with the specified position of the
destination array from left to right. Returns the ternary result of the
comparison : less than(-1), equal(0) or greater than(1).”

More information is given in the javadoc clarifications, see [1], especially
about when exceptions may be expected. Such information is important
for correct use of the JavaCard API in applets.

We shall use formal specifications in JML, as described in Figure 1 (see
also [10]). They concentrate on normal/abrupt termination and modific-
ation, and say nothing about the functional behaviour of these methods.
Hence our specifications are clearly incomplete (at this stage). But they
do already convey useful information (and are strong enough to prove the
AID specifications in the next section).

modifies clauses. The ESC/Java tool accepted this example in only a few seconds,
indicating that it saw no errors. (With thanks to Jim Saxe from Compaq SRC for
demonstrating this example.)

2

public static final native short arrayCopy(byte[] src,

short srcOff,

byte[] dest,

short destOff,

short length)

throws ArrayIndexOutOfBoundsException,

NullPointerException,

TransactionException;

/*@ behavior

@ requires: src != null && srcOff >= 0 &&

@ srcOff + length <= src.length &&

@ dest != null && destOff >= 0 &&

@ destOff + length <= dest.length &&

@ length >= 0;

@ modifiable: dest[*];

@ ensures: true;

@ signals: (TransactionException) true;

@*/

public static final native byte arrayCompare(byte[] src,

short srcOff,

byte[] dest,

short destOff,

short length)

throws ArrayIndexOutOfBoundsException,

NullPointerException;

/*@ normal_behavior

@ requires: src != null && srcOff >= 0 &&

@ srcOff + length <= src.length &&

@ dest != null && destOff >= 0 &&

@ destOff + length <= dest.length &&

@ length >= 0;

@ modifiable: \nothing;

@ ensures: true;

@*/

Figure1. JML specifications for arrayCopy and arrayCompare from Util

3

Instead of explaining JML in general, we explain only the mean-
ing of these specifications. The behavior keyword indicates that if the
precondition as given by the requires clause holds, then either the
method terminates normally, and the “normal” postcondition after the
ensures keyword holds, or the method terminates abruptly because of
an exception of the type indicated after signals, and the ensuing “ab-
rupt” postcondition holds. The keyword normal behavior, instead of just
behavior, indicates that the method must terminate normally, provided
the precondition holds. The behavior specifications are translated into
partial Hoare triples, and the normal behavior specifications into total
Hoare triples, in a special version of Hoare logic adapted to Java [5]. The
modifiable clauses tell which items may be changed by the method, and
thus also, implicitly, which are left unaltered. The method arrayCompare
does not modify anything, and thus has no side-effect. The arrayCopy
method can modify the entries of its parameter array dest, as indicated by
dest[*]. Actually, one can be more precise and say that this method only
modifies the entries of dest in the range offset, . . . , offset + length -
1, but that is not needed at this stage. The TransactionException may
occur when an overflow arises in JavaCard’s transaction buffer—which is
used to enable rollback of operations in case of failure.

JML is expressive enough to formulate also functional behaviour. For
instance, for arrayCopy we could have used as ensures clause:

dest == \old(dest) &&

dest.length == \old(dest.length) &&

\forall(int i) [i >= srcOff && i <= srcOff + length - 1

==> dest[i] == \old(src[i])] &&

\forall(int i) [(i >= 0 && i < srcOff) ||

(i < dest.length && i > srcOff + length - 1)

==> dest[i] == \old(dest[i])] &&

\result == dstOff + length

But this property is not needed for the verification below.

3 JavaCard’s AID class: specification and verification

In the JavaCard platform each applet instance and package is uniquely
identified and selected by an application identifier (AID)—and not, as
usual, by a string possibly in combination with a domain name, see [4,
§§3.8]. AIDs are used in loading and linking. As prescribed in the ISO 7816
standard, each AID consists of an array of bytes, ranging in length from
5 to 16. The first five bytes form what is called the resource identifier
(RID), which is assigned by ISO to a company. The possible remainder

4

(between 0 and 11 bytes) forms the proprietary identifier extension (PIX),
which is under the control of individual companies.

Space restrictions prevent us from discussing the AID class in full, so
we concentrate on the essentials. Its field, constructor and five methods,
without their implementations, look as follows.

public final class AID{

byte[] theAID;

public AID(byte[] bArray, short offset, byte length) ...

public byte getBytes(byte[] dest, short offset) ...

public boolean equals(Object anObject) ...

public boolean equals(byte[] bArray, short offset, byte length) ...

public boolean partialEquals(byte[] bArray, short offset, byte length) ...

public boolean RIDEquals (AID otherAID) ...

}

Our JML specification of this class adds a class invariant, and pre-/post-
conditions for its constructor and methods. Since the array of an AID
consists of a 5-byte RID possibly together with a PIX of up-to 11 bytes,
our invariant is (as also mentioned in [10]):

//@ invariant : theAID != null &&

5 <= theAID.length && theAID.length <= 16;

The proof obligation is to show that this property holds after termination
(both normal and abrupt) of the constructor, and also that it holds after
termination (both normal and abrupt) of each method, assuming it holds
in the state in which the method is invoked2.

Here we shall concentrate on the method getBytes. Its official explan-
ation is: “Called to get the AID bytes encapsulated within AID object.”
More precisely, after a successful method invocation getBytes(dest,
offset), the contents of the theAID byte array can be found at the para-
meter entries dest[offset], . . . , dest[offset + theAID.length - 1].
The JML specification of getBytes is:

/*@ behavior

@ requires: dest != null && offset >= 0 &&

@ offset + theAID.length <= dest.length

@ modifiable: dest[*];

@ ensures: true;

@ signals: (TransactionException) true;

@*/

Notice that it only mentions termination and modification behaviour. The
implementation of getBytes in the JavaCard API version 2.1 is:
2 What is surprising is that the theAID field is not declared as private. As it stands, it

can be modified from the outside (but only within its package), making it vulnerable
to a breach of the invariant. We consider the ommission of the private access
modifier a bug.

5

{

Util.arrayCopy(theAID, (short)0, dest, offset, (short)theAID.length);

return (byte) theAID.length;

}

We briefly discuss the proof in PVS that this implementation satisfies
the specification, assuming the arrayCopy method from Util satisfies its
specification in Figure 1. The main distinction is between normal and
abrupt termination of the getBytes method.

Abnormal termination If the precondition and the invariant hold and
getBytes terminates normally, then we have to show two properties about
the post-state, namely:

1. We must show that only the contents of the dest array have changed,
and nothing else. In the memory model (see [2]) in the semantics of
Java underlying the LOOP translation, the dest parameter refers to
a particular memory cell. What we prove—the LOOP translation of
the clause modifiable dest[*]—is that all memory cells except this
one remain unaltered3. The modification property of getBytes follows
easily from the one for arrayCopy, see Figure 1. In order to be able to
use this arrayCopy specification, its requires clause (plus invariant,
if any) has to be established. But that’s easy in this case, using the
getBytes requires clause and the AID invariant.

2. We must show that the AID invariant holds in the post-state. This is
easy by the assumption that the invariant holds in the pre-state and
the fact that theAID is not modified by getBytes. Even if theAID
and dest are aliases4 the invariant is maintained, because the array
reference dest itself and the length of the array referred to by dest are
not modified: the modifies clause only says that the array components
dest[*] may be modified.

Normal termination If the precondition and the invariant hold and
getBytes terminates abruptly because of an exception, then we have to
show that this exception is an instance of TransactionException, and
that the “abnormal” post-state still satisfies the two properties:
3 Since this translation of the modifies clause is expressed in term of cells in the

underlying memory model, it is not restricted to the currently known fields (stored
in already known cell positions), but it can also be used for currently unknown fields
that are introduced in the future.

4 This aliasing possibility is easily overlooked, but our semantics forces us to consider
it explicitly.

6

1. Only the contents of dest have changed;
2. The AID invariant still holds.

The proof is much like in the normal case, and relies on the specific-
ation of arrayCopy. During the proof we establish explicitly that the
(assumed) abrupt termination of getBytes is due to abrupt termination
of arrayCopy.

Specifications similar to the specification of getBytes have been writ-
ten for the other AID methods and constructor. They have all been proved
in PVS, assuming the Util specifications in Figure 1. In the end, what we
have reached is a fully verified formal specification of a small part of the
JavaCard API. It provides a reliable basis for building JavaCard applets.
In due time, these specifications will be published on the web [11].

One interesting point in the semantics of specifications came up dur-
ing the verification, namely about the validity of class invariants. It is
tempting to use some sort of global assumption that every object which
is an instance of a class A satisfies the invariant of A. But this easily leads
to inconsistencies, for example because invariants should hold at the be-
ginning and end of method bodies, but may be broken (temporarily) in
between. What we have used instead is that the LOOP tool strengthens
all pre-conditions with an assertion that a parameter (if any) of some class
A satisfies the A-invariant. For example, the pre-condition of RIDEquals
is strengthened to include an assertion that the parameter otherAID of
type AID satisfies the AID-invariant. This may then be used during veri-
fication of the method. But when the method specification is used, this
pre-condition has to be established, which includes actual verification of
the invariants of the classes of the parameters. However, this does not
cover all cases. For example, if we have an object obj of class Object,
and (down)cast it to A, then we would like to use that (A)obj satisfies
the A-invariant5. How to handle this in general still has to be elaborated.
More on invariants in an object-oriented setting can be found in [6].

It is not so easy to quantify the effort that was needed for the whole
AID verification, because we have used this case study as an experiment
to try out various semantical descriptions and proof methods. But, to
give a rough impression, handling all the possible cases for the getBytes
method in PVS takes about one hour of user interaction.

5 This comes up during verification of the equals method from AID where we have
solved this problem by adding an extra assumption in the requires clause.

7

4 Conclusions

We have sketched the AID verification in PVS of its JML specification,
based on the semantics provided by the LOOP tool. The verification
involves dealing explicitly with many possible cases, some of which may
be easily overlooked. This is of course a very modest exercise, but it
does show the feasibility of such validation efforts for class libraries. They
will form the basis for actual applet verification at a later stage. Initial
goals for these applet verifications will be proving the absence of runtime
exceptions and non-termination, and proving the absence of unwanted
side effects (notably side effects on other applets) expressed by modifies
clauses.

References

1. JavaCard API 2.1. http://java.sun.com/products/javacard/htmldoc/.
2. J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory

model for verification of sequential Java programs. In D. Bert and C. Choppy,
editors, Recent Trends in Algebraic Development Techniques, number 1827 in Lect.
Notes Comp. Sci. Springer, Berlin, 2000.

3. A. Bhorkar. A run-time assertion checker for Java using
JML. Techn. Rep. 00-08, Dep. of Comp. Sci., Iowa State Univ.
(http://www.cs.iastate.edu/∼leavens/JML.html), 2000.

4. Z. Chen. Java Card Technology for Smart Cards. The Java Series. Addison-Wesley,
2000.

5. M. Huisman and B. Jacobs. Java program verification via a Hoare logic with
abrupt termination. In T. Maibaum, editor, Fundamental Approaches to Software
Engineering, number 1783 in Lect. Notes Comp. Sci., pages 284–303. Springer,
Berlin, 2000.

6. K. Huizing, R. Kuiper, and SOOP. Verification of object oriented programs using
class invariants. In T. Maibaum, editor, Fundamental Approaches to Software
Engineering, number 1783 in Lect. Notes Comp. Sci., pages 208–221. Springer,
Berlin, 2000.

7. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In
H. Kilov and B. Rumpe, editors, Behavioral Specifications of Business and Systems,
pages 175–188. Kluwer, 1999.

8. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Techn. Rep. 98-06, Dep. of Comp. Sci.,
Iowa State Univ. (http://www.cs.iastate.edu/∼leavens/JML.html), 1999.

9. S. Owre, J.M. Rushby, N. Shankar, and F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans. on
Softw. Eng., 21(2):107–125, 1995.

10. E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API in JML.
In Fourth Smart Card Research and Advanced Application Conference (CARDIS).
Kluwer Acad. Publ., 2000, to appear.

11. Loop Project. http://www.cs.kun.nl/∼bart/LOOP/.

8

12. Extended static checker ESC/Java. Compaq System Reserch Center.
http://www.research.digital.com/SRC/esc/Esc.html.

9

