
W04. Formal Techniques for Java Programs

Gary T. Leavens, Sophia Drossopoulou, Susan Eisenbach,
Arnd Poetzsch-Heffter, and Erik Poll

leavens@cs.iastate.edu, scd@doc.ic.ac.uk, se@doc.ic.ac.uk,

Arnd.Poetzsch-Heffter@Fernuni-Hagen.de, erikpoll@cs.kun.nl

Abstract. This report gives an overview of the third ECOOP Workshop
on Formal Techniques for Java Programs. It explains the motivation for
such a workshop and summarizes the presentations and discussions.

1 Introduction

The ECOOP 2001 workshop on Formal Techniques for Java Programs was held
in Budapest, Hungary. It was a follow-up for last year’s ECOOP workshop on
the same topic [DEJ+00b] [DEJ+00a], the first ECOOP workshop on this topic
[JLMPH99], and the Formal Underpinnings of the Java Paradigm workshop
held at OOPSLA ’98 [Eis98]. The workshop was organized by Susan Eisen-
bach (Imperial College, Great Britain), Gary T. Leavens (Iowa State University,
USA), Peter Müller (FernUniversität Hagen, Germany), Arnd Poetzsch-Heffter
(FernUniversität Hagen, Germany), and Erik Poll (University of Nijmegen, The
Netherlands). Besides the organizers the program committee of the workshop in-
cluded Gilad Bracha (Sun Microsystems, USA), Sophia Drossopoulou (Imperial
College, Great Britain), Doug Lea (State University of New York at Oswego,
USA), and Rustan Leino (Compaq Computer Corporation, USA). The program
committee was chaired by Sophia Drossopoulou.

There was lively interest in the workshop. Out of many submissions, the or-
ganizers selected 13 papers for longer presentations, and three for short presen-
tations. There was one invited talk, given by Gilad Bracha of Sun Microsystems.
Overall, 36 people from 30 universities, research labs, and industries attended
the workshop.

Motivation. Formal techniques can help to analyze programs, to precisely de-
scribe program behavior, and to verify program properties. Applying such tech-
niques to object-oriented technology is especially interesting because:

– the OO-paradigm forms the basis for the software component industry with
their need for certification techniques.

– it is widely used for distributed and network programming.
– the potential for reuse in OO-programming carries over to reusing specifica-

tions and proofs.



2 Leavens, et al.

Such formal techniques are sound, only if based on a formalization of the lan-
guage itself.

Java is a good platform to bridge the gap between formal techniques and
practical program development. It plays an important role in these areas and is
becoming a de facto standard because of its reasonably clear semantics and its
standardized library.

However, Java contains novel language features, which are not fully un-
derstood yet. More importantly, Java supports a novel paradigm for program
deployment, and improves interactivity, portability and manageability. This
paradigm opens new possibilities for abuse and causes concern about security.

Thus, work on formal techniques and tools for Java programming and formal
underpinnings of Java complement each other. This workshop aims to bring
together people working in these areas, in particular on the following topics:

– specification techniques and interface specification languages
– specification of software components and library packages
– automated checking and verification of program properties
– verification technology and logics
– Java language semantics
– dynamic linking and loading, security

Structure of Workshop and Report. The one-day workshop consisted of
a technical part during the day and a workshop dinner in the evening. While
the food in Budapest was delightful, this report deals only with the technical
aspects of the workshop.

The presentations at the workshop were structured as follows.

– 9:00 10:00 Opening Session, and Invited Talk by Gilad Bracha: “Adventures
in Computational Theology: Selected Experiences with the Java(tm) Pro-
gramming Language ”

– 10:15 11:15 Language Semantics I
• Alessandro Coglio: “Improving the Official Specification of Java Byte-

code Verification”
• Kees Huizing and Ruurd Kuiper: “Reinforcing Fragile Base Classes”

– 11:25 12:25 Language Semantics II
• Davide Ancona, Giovanni Lagorio, and Elena Zucca: “Java Separate

Type Checking is not Safe”
• Mirko Viroli : “From FGJ to Java according to LM translator”
• Mats Skoglund and Tobias Wrigstad : “A mode system for read-only

references in Java”
– 13:45 15:45 Specification and Verification I (Java Card)
• Pierre Boury and Nabil Elkhadi : “Static Analysis of Java Cryptographic

Applets”
• Peter Müller and Arnd Poetzsch-Heffter : “A Type System for Checking

Applet Isolation in Java Card”



W04. Formal Techniques for Java Programs 3

• Gilles Barthe, Dilian Gurov, and Marieke Huisman “Compositional spec-
ification and verification of control flow based security properties of
multi-application programs”

– 16:00 17:30 Specification and Verification II
• Peter Müller, Arnd Poetzsch-Heffter, Gary T. Leavens : “Modular Spec-

ification of Frame Properties in JML”
• John Boyland : “The Interdependence of Effects and Uniqueness”
• Ana Cavalcanti and David Naumann : “Class Refinement for Sequential

Java”
• Joachim van den Berg, Cees-Bart Breunesse, Bart Jacobs, and Erik Poll

: “On the Role of Invariants in Reasoning about Object-Oriented Lan-
guages”

– 17:45 18:30 Short presentations and closing session
• Claus Pahl: “Formalising Dynamic Composition and Evolution in Java

Systems”
• M. Carbone, M. Coccia, G. Ferrari and S. Maffeis: “Process Algebra-

Guided Design of Java Mobile Network Applications”
• Peep Küngas, Vahur Kotkas, and Enn Tyugu : “Introducing Meta-

Interfaces into Java”

The rest of this report is structured as follows: Sections 2 to 6 summarize
the presentations and discussions of the technical sessions of the workshop. The
conclusions are contained in Section 7. A list of participants with email ad-
dresses can be found in the Appendix. The workshop proceedings are contained
in [DEL+01].

2 Language Semantics I

Because Java security is based on type safety, correct implementation of bytecode
verification is of paramount importance to the security of an implementation
of the Java Virtual Machine (JVM). In his contribution [Cog01a], Alessandro
Coglio provided a comprehensive analysis of the official specification of byte-
code verification and explained techniques to overcome the shortcomings. The
insight underlying the analysis was gained during a complete formalization of
Java bytecode verification [Cog01b]. The critique on the official specification lists
places of redundancy, unclear terminology (e.g., static and structural constraints
are both static in nature which might lead to confusion), lack of explanation,
contradictions (e.g., the specification says that uninitialized objects cannot be
accessed as well as that a constructor can store values into some fields of the
object that is being initialized), and errors that were reported elsewhere.

Based on this critique, Coglio suggested improvements to the JVM specifi-
cation. He discussed the merging of reference types and suggested that sets of
type names should be used to express the merged types. This is an improvement
over solutions that are based on existing common supertypes, because it avoids
premature loading. For checking the subtype relation, he also proposed a solu-
tion that does not need premature loading. The basic idea is to generate subtype



4 Leavens, et al.

constraints at verification time. These constraints are checked when additional
classes are loaded.

Furthermore, Coglio suggested that Java should make a clear distinction
between acceptable code, i.e., code that does not lead to runtime type errors,
and accepted code, i.e., code that satisfies declarative and decidable conditions
guaranteeing type safety. Since it is, in general, undecidable whether a bytecode
sequence is acceptable, the bytecode specification should define what accepted
code is and compilers should be constraint to generate only accepted code.

The second presentation of this session given by K. Huizing is discussed in
section “Specification and Verification II”, because its topic is closer related to
the other papers of that session.

3 Language Semantics II

Davide Ancona, Giovanni Lagorio, and Elena Zucca [ALZ01] looked at the prob-
lem of ensuring type safety for separately-compiled language fragments. They
showed that with current Java development systems it is possible to compile
fragments, alter and recompile some of them and in the process introduce type
errors that are only caught at link time. They believe that these errors should
have been caught earlier, in the compilation process.

Ancona, Lagorio, and Zucca went on to propose a formal framework for
expressing separate compilation. They defined a small subset of Java and con-
jecture that within their framework, type errors would be caught at compilation
rather than linking time. Their scheme would mean that a programmer could
always have a single set of source fragments, that could be recompiled together
to produce the current executable, a property not held by actual Java programs.

Mirko Virolli [Vir01] described work he is doing on adding parametric poly-
morphism to Java starting with Featherweight Generic Java [IPW99]. Parametric
polymorphism is added via a translator called LM and the translation process
is complex. To understand the complexity, a formalization of LM has been done
so reasoning about its properties is possible. The LM translator is modeled as a
compilation of FGJ into full Java. The model should help with the implementa-
tion of a correct translator.

Skoglund and Tobias Wrigstad [SW01] proposed an extension of Java syntax
(with type rules) to include modes that will restrict some mutations of shared
objects. There are four proposed modes, which include read, write, any and
context. Objects in read mode cannot be altered, although objects in write
mode can be. Objects in any and context mode are readable or writable de-
pending on the context. The system is statically checkable. In addition to the
modes, there is a dynamic construct called caseModeOf which enables the
programmer to write code depending on the mode of an object. Java’s lack of
a construct (unlike C++) to restrict the altering of objects has been tackled by
others, but the authors believe earlier attempts to solve this problem are too
restrictive.



W04. Formal Techniques for Java Programs 5

4 Specification and Verification I (Java Card)

Three of the papers presented at the workshop were about Java Card, a simplified
version of Java designed for programming smart cards, which has been attracting
a lot of attention in the formal methods community. The small size of Java Card
programs, which have to run on the extremely limited hardware available on
a smart card, and the vital importance of correctness of typical smart card
applications, notably for bank cards and mobile phone SIMs, make Java Card
an ideal application area for formal techniques. Indeed, both the smart card
industry and their customers have recognized the important role that formal
methods can play in ensuring that the (very high) security requirements for
smart card applications are satisfied.

The paper by Pierre Boury and Nabil Elkhadi [BE01] was about a technique
for static analysis of confidentiality properties of Java Card programs (also called
“applets”).

Java Card programs typically rely on cryptography to ensure security prop-
erties, such as authentication (e.g., of a mobile phone SIM to the mobile phone
network) and confidentiality (by the creation of secure channels). Even though
standard cryptographic algorithms are used for this, ensuring that these are used
correctly in a program, so that no confidential data is ever disclosed (leaked) to
unauthorized parties, is notoriously difficult. The approach taken by the authors
has been to adapt formal models that have been proposed for the analysis of
cryptographic protocols to the verification of confidentiality properties of Java
Card applets, using the technique of abstract interpretation. The outcome of this
work is an tool, called “StuPa”, which can automatically verify confidentiality
properties of Java Card class files.

The paper by Gilles Barthe, Dilian Gurov, and Marieke Huisman [BGH01]
considered another class of security properties for Java Card programs, namely
properties about control flow.

Global properties about a collection of interacting Java Card applets on a
single smart card are expressed in temporal logic. The idea is then that “local”
properties about the individual applets are found, and it is then formally proved
that these local properties together imply the required global properties. The
proof system used to prove that the local properties imply the required global
ones is based on the modal µ-calculus. To verify the local properties an existing
technique, which uses an essentially language independent program model, is
instantiated to Java Card. The local properties of the individual applets are
verified automatically, using model checking.

The paper by Peter Müller and Arnd Poetzsch-Heffter [MPH01] is an ap-
plication of type system ideas to the Java Card language. In Java Card, ap-
plets are isolated in the sense that they are “not allowed to access fields and
methods of other applets on the same smart-card.” (If this happens anyway, a
SecurityException is supposed to be thrown by the smart-card’s virtual ma-
chine.) The problem addressed is how to statically check applet isolation in Java



6 Leavens, et al.

Card programs, which would avoid the problem of producing lots of Java smart-
cards that have code that could cause SecurityExceptions. The type system
in the paper prevents such errors, using mostly static checks.

The approach taken to this problem is to adopt the author’s previous work
on type systems for alias control [MPH00]. The type system tracks what context
owns each reference in a conservative manner, and thus can prohibit accesses to
other contexts that would otherwise cause a SecurityException. The checking
is not completely static, because in some cases one must use Java-style downcasts
to recover exact information about the context to which a reference belongs. Be-
sides easing debugging, this type system could also lead to improvements in the
runtime overhead experienced by Java Card programs, provided the execution
engine takes the previous work of the type checker into account.

5 Specification and Verification II

The paper by Kees Huizing and Ruurd Kuiper [HK01] contained a new analysis
of the fragile base class problem. The fragile base class problem arises when
one has a correct base class (i.e., a superclass), a correct derived class (i.e., a
subclass), and then changes the base class in such a way that it is still correct,
but the derived class is no longer correct [MS98]. One difficulty is that the
programmers working on the base class may have no idea of what derived classes
exist, so they have no way of ensuring the correctness of the derived classes. This
points to a weakness of the specification of the base class.

The analysis by Huizing and Kuiper focuses in particular on the specifica-
tion of class invariants. The problem, they say, is that the derived class may
have a stronger invariant than the base class (as permitted by standard defini-
tions of behavioral subtyping), but that this stronger invariant is not preserved
by methods of the base class. They describe a specification formalism, called
“cooperative contracts” to avoid this problem, as well as a stronger notion of
behavioral subtyping. This stronger notion of behavioral subtyping (called “rein-
forced behavioral subtyping”), requires that every non-private method inherited
from the base class (i.e., which is not not overridden in the derived class), does,
in fact, preserve the derived class’s possibly stronger invariant. The programmer
of the derived class can use the source code of the base class in this proof, and
can override base class methods to meet this proof obligation as well. However,
in some cases, to allow reasonable derived classes and the use of method inher-
itance, the authors further propose stronger forms of method specification. In
particular, a “cooperative contract” allows the postcondition of a method to refer
to the postconditions of other methods it calls. The developer of the base class
can plan ahead for future derived classes by referring to the postconditions of
other methods in its method specifications. These parameterized postconditions
change their meaning in the context of a derived class, since the specifications
of the methods of a derived class will refer to the overriding method.

The extended abstract by Cavalcanti and Naumann [CN01], describes “ongo-
ing” work “on refinement calculus for sequential Java.” The refinement calculus



W04. Formal Techniques for Java Programs 7

is a formalism for systematic development of correct programs [Mor90]. Refine-
ments can involve both algorithmic and data refinements. A data refinement
replaces a data structures and the methods that manipulate them with differ-
ent data structures and methods. The paper extends these ideas to classes, by
allowing one to replace the implementation of a class (including its fields and
methods) with another implementation. In the refinement calculus, such a refine-
ment step must be proved correct by exhibiting a forward simulation relation,
which relates the states of the original (abstract) class to those of the replace-
ment (concrete) class. The paper states a soundness theorem for this form of
data refinement.

The work contains two “surprises.” The first is that the forward simulation
must be surjective in the sense that there cannot be any concrete values that
do not represent some abstract values. This requirement is needed in a language
that can have uninitialized variables, or call-by value-result or result. The sec-
ond surprise was that the simulation relation has to be total if the language has
angelic variables (or an equally powerful construct, such as specification state-
ments). Another interesting aspect discussed is that, apparently, the results show
that an equality test that tests the identity of objects does not preserve data
refinement.

The paper by Peter Müller, Arnd Poetzsch-Heffter, and Gary Leavens
[MPHL01] tackles the notorious problem of modular verification of frame prop-
erties. Frame properties specify which locations (i.e., fields) may be modified by
a method. For an object oriented language it should be possible to specify such
properties in an abstract way, so that subclasses have the freedom to introduce
additional fields that can be modified. Clearly one wants to reason about these
properties in a modular way, so that frame properties can be specified and ver-
ified of an individual class irrespective of the context in which it is used, and
irrespective of additional (sub)classes that may exists in this context. Finding
a proof system that allows modular verification of frame properties has been
recognized as an important open problem, and has attracted a lot of attention
in the past few years.

This paper presents a concrete proposal to extend the behavioral interface
specification language JML (Java Modeling Language [LBR01]) for Java with
constructs to specify frame properties in a modular way, and a sound proof
system allowing modular verification of these frame properties. The technique is
based on a more general framework for the modular verification of Java programs
introduced in the recent PhD thesis of Peter Müller [Mül01], which in turn builds
on work by Rustan Leino [Lei95]. Key to the whole approach is an ownership
model, in which the object store (i.e., the heap) is partitioned into a hierarchy
of so-called “universes” and which imposes restrictions on references between
different universes. This alias control type system allows frame properties of
a method to only refer to “relevant” locations, so that the frame properties
are effectively underspecified. A client calling a method can use the methods
specification to reason about the called method’s relevant locations, and can
reason directly about abstract locations that may depend on them.



8 Leavens, et al.

The paper by John Boyland [Boy01] described interdependence between ef-
fects and uniqueness of references. The effects of a method are the locations
that the method reads and writes. As in the work described above and Leino’s
work, effects should be described abstractly, without mention of implementation
details such as protected or private fields of objects. To enforce this abstraction,
for example, to prevent representation exposure, one must prevent representa-
tion exposure, by confining subobjects used in the implementation of an abstract
object. One way to accomplish this without copying is by having unique refer-
ences. A unique reference is the only reference to an object in a program. The
enforcement of uniqueness and optimization techniques such as alias burying,
depend on knowing the effects of methods. For example, alias burying requires
that when a unique variable is read, all aliases to it must be dead; hence this
technique requires knowledge of what locations a method will read.

Since checking both effects and uniqueness annotations requires the seman-
tics of the other, one can check them modularly by using specifications for each
method. That is, when checking a method’s annotations for effects and unique-
ness, one assumes the annotations for all called methods.

The paper by Joachim van den Berg, Cees-Bart Breunesse, Bart Jacobs,
and Erik Poll [vdBBJP01] discussed problems relating to the semantics and
modular verification of class invariants. This presentation used JML to illustrate
the issues. Invariants can cause significant problems for modular verification,
because the class invariants of all objects are supposed to hold at all calls and
returns from all public methods. Aliasing, if not controlled, can cause methods
to break invariants of objects other than the method’s receiver. Call-backs also
cause difficulties, because a method that might call back may find the receiver
object in an inconsistent state. This suggests that the official semantics in JML
[LBR01] is unworkable for verification, because it requires that before a method
is called on an object o, one must establish not only the calling class’s invariant,
but also the invariant for o’s class. This touched off a lively discussion among
the participants, with Boyland suggesting that read clauses could help [Boy01],
and Poetzsch-Heffter suggesting that alias control could allow the invariant to
be checked modularly [Mül01, MPHL01].

6 Coordination, Scripting and Specification

The last session consisted of three short presentations.
Claus Pahl [Pah01] developed a process calculus to capture the establishment

and release of contracts. This calculus, which is a variant of the π-calculus,
formalizes dynamic composition and evolution in Java systems.

Marco Carbone, Matteo Coccia , Gianluigi Ferrari and Sergio Maffeis
[CCFM01] proposed ED , a coordination and scripting language. This language
is based on Hennessy and Riely’s Distributed π-calculus [HR99], which they im-
plemented in Java, using the class loader, reflection, and sockets. They are now
working on a type system for security.



W04. Formal Techniques for Java Programs 9

Peep Küngas, Vahur Kotkas and Enn Tyugu in [KKT01] suggested “meta-
interfaces” as a means to specify classes, and defined their composition. Meta-
interfaces define which interface variables are computable from others, and under
what conditions. The techniques used are similar to those used in constraint logic
programming.

7 Conclusions

The interest in the workshop, and the lively discussions at the workshop itself
show that many researchers are applying their techniques to either the Java
language or to programs written in Java.

Java provides interesting language features, which need to be explored fur-
ther. Their precise description is both scientifically interesting, and practically
relevant.

Although Java is a rather complex language, having a common programming
language makes it significantly easier to compare and discuss different approaches
and techniques, and stimulates cooperations. This synergy was evident at the
workshop, which helped make it a highly successful event that was appreciated
by the participants.

The interests of the participants were very wide: source language seman-
tics, source language extensions, bytecode verification, specification languages,
reasoning about program correctness, security, applets, Java card, effects, re-
finement, coordination. Nevertheless, the common language provided enough
common ground to allow for many interactions. In future workshops, it has been
suggested that papers could be distributed in advance, and the program com-
mittee could assign to smaller working groups the task of reading these papers
and addressing specific questions.

Several of the participants have come to that workshop for the third time,
and expressed the intention of coming again.



10 Leavens, et al.

List of Participants

Last Name First Name Email
Ancona Davide davide@disi.unige.it
Boury Pierre Pierre.Boury@dyade.fr
Boyland John boyland@cs.uwm.edu
Bracha Gilad gilad.bracha@sun.com
Breunesse Cees-Bart ceesb@cs.kun.nl
Clarke David dave@cs.uu.nl
Coglio Alessandro coglio@kestrel.edu
David Alexandre adavid@docs.uu.se
Drossopoulou Sophia sd@doc.ic.ac.uk
Eisenbach Susan sue@doc.ic.ac.uk
El Kadhi Nabil nelkadhi@club-internet.fr
Hamie Ali a.a.hamie@brighton.ac.uk
Huisman Marieke Marieke.Huisman@sophia.inria.fr
Huizing Kees keesh@win.tue.nl
Josko Bernhard josko@offis.de
Kotkas Vahur vahur@cs.ioc.ee
Kuiper Ruurd wsinruur@win.tue.nl
Kungas Peep peep@cs.ioc.ee
Lea Doug dl@cs.oswego.edu
Leavens Gary leavens@cs.iastate.edu
Maffeis Sergio maffeis@di.unipi.it
Markova Gergana gvm@cs.purdue.edu
Mughal Khalid khalid@ii.uib.no
Naumann David naumann@cs.stevens-tech.edu
Pahl Claus cpahl@compapp.dcu.ie
Poetzsch-Heffter Arnd poetzsch@fernuni-hagen.de
Poll Erik erikpoll@cs.kun.nl
Pollet Isabelle ipo@info.fundp.ac.be
Rensink Arend rensink@cs.utwente.nl
Retert William williamr@pabst.cs.uwm.edu
Skoglund Mats matte@dsv.su.se
Teschke Thorsten thorsten.teschke@offis.de
Viroli Mirko mviroli@deis.unibo.it
Vu Le Hanh Hanh.Vu Le@irisa.fr
Wrigstad Tobias tobias@dsv.su.se
Zucca Elena zucca@disi.unige.it

References

[ALZ01] D. Ancona, G. Lagorio, and E. Zucca. Java separate type checking is
not safe. Available in [DEL+01], 2001.

[BE01] P. Boury and N. Elkhadi. Static analysis of Java cryptographic applets.
Available in [DEL+01], 2001.



W04. Formal Techniques for Java Programs 11

[BGH01] G. Barthe, D. Gurov, and M. Huisman. Compositional specification and
verification of control flow based security properties of multi-application
programs. Available in [DEL+01], 2001.

[Boy01] J. Boyland. The interdependence of effects and uniqueness. Available in
[DEL+01], 2001.

[CCFM01] M. Carbone, M. Coccia, G. Ferrari, and S. Maffeis. Process algebra-
guided design of Java mobile network applications. Available in
[DEL+01], 2001.

[CN01] A. Cavalcanti and D. Naumann. Class refinement for sequential Java.
Available in [DEL+01], 2001.

[Cog01a] A. Coglio. Improving the official specification of Java bytecode verifica-
tion. Available in [DEL+01], 2001.

[Cog01b] A. Coglio. Java bytecode verification: A complete formalization.
Technical report, Kestrel Institute, Palo Alto, 2001. Forthcoming at
www.kestrel.edu/java

[DEJ+00a] S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens, P. Müller,
and A. Poetzsch-Heffter, editors. Formal Techniques for Java Pro-
grams. Technical Report 269, Fernuniversität Hagen, 2000. Available
from www.informatik.fernuni-hagen.de/pi5/publications.html.

[DEJ+00b] Sophia Drossopoulou, Susan Eisenbach, Bart Jacobs, Gary T. Leavens,
Peter Müller, and Arnd Poetzsch-Heffter. Formal techniques for Java
programs. In Jacques Malenfant, Sabine Moisan, and Ana Moreira, edi-
tors, Object-Oriented Technology. ECOOP 2000 Workshop Reader, vol-
ume 1964 of Lecture Notes in Computer Science, pages 41–54. Springer-
Verlag, 2000.

[DEL+01] S. Drossopoulou, S. Eisenbach, G. T. Leavens, P. Müller, A. Poetzsch-
Heffter, and E. Poll. Formal techniques for Java programs. Avail-
able from http://www.informatik.fernuni-hagen.de/import/pi5/

workshops/ecoop2001_papers.html, 2001.
[Eis98] S. Eisenbach. Formal underpinnings of Java. Workshop report, 1998.

Available from www-dse.doc.ic.ac.uk/~sue/oopsla/cfp.html.
[HK01] K. Huizing and R. Kuiper. Reinforcing fragile base classes. Available in

[DEL+01], 2001.
[HR99] M. Hennessy and J. Riely. Type-safe execution of mobile agents in

anonymous networks. In Jan Vitek and Thomas Jensen, editors, Se-
cure Internet Programming: Security Issues for Distributed and Mobile
Objects, volume 1603 of Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[IPW99] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java, a minimal
core calculus for Java and GJ. OOPSLA ’99 Conference Proceedings,
pages 132–146, October 1999.

[JLMPH99] B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter. Formal
techniques for Java programs. In A. Moreira and D. Demeyer, editors,
Object-Oriented Technology. ECOOP’99 Workshop Reader, volume 1743
of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[KKT01] P. Küngas, V. Kotkas, and Enn Tyugu. Introducing meta-interfaces into
Java. Available in [DEL+01], 2001.

[LBR01] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06p, Iowa State University, Department of Computer Science,
August 2001. See www.cs.iastate.edu/~leavens/JML.html.



12 Leavens, et al.

[Lei95] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis,
California Institute of Technology, 1995. Available as Technical Report
Caltech-CS-TR-95-03.

[Mor90] Carroll Morgan. Programming from Specifications. Prentice Hall Inter-
national, Hempstead, UK, 1990.

[MPH00] P. Müller and A. Poetzsch-Heffter. A type system for controlling repre-
sentation exposure in Java. Published in [DEJ+00a], 2000.

[MPH01] Peter Müller and Arnd Poetzsch-Heffter. A type system for checking
applet isolation in Java Card. Available in [DEL+01], 2001.

[MPHL01] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification
of frame properties in jml. Available in [DEL+01], 2001.

[MS98] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class
problem. In Eric Jul, editor, ECOOP ’98 — Object-Oriented Program-
ming, 12th European Conference , Brussels, Proceedings, volume 1445
of Lecture Notes in Computer Science, pages 355–382. Springer-Verlag,
July 1998.

[Mül01] P. Müller. Modular Specification and Verification of Object-Oriented Pro-
grams. PhD thesis, FernUniversität Hagen, 2001.

[Pah01] C. Pahl. Formalising dynamic composition and evolution in Java sys-
tems. Available in [DEL+01], 2001.

[SW01] M. Skoglund and T. Wrigstad. A mode system for read-only references
in Java. Available in [DEL+01], 2001.

[vdBBJP01] J. van den Berg, C.-B. Breunesse, B. Jacobs, and E. Poll. On the role
of invariants in reasoning about object-oriented languages. Available in
[DEL+01], 2001.

[Vir01] M. Viroli. From FGJ to Java according to LM translator. Available in
[DEL+01], 2001.


