
Reasoning about Card Tears and Transactions in

Java Card

Engelbert Hubbers and Erik Poll ?

SoS Group, NIII, Faculty of Science, University of Nijmegen
{hubbers,erikpoll}@cs.kun.nl

Abstract. The Java dialect Java Card for programming smartcards
contains some features which do not exist in Java. Java Card distin-
guishes persistent and transient data (data stored in EEPROM and
RAM, respectively). Because power to a smartcard can suddenly be in-
terrupted by a so-called card tear, by someone removing the smartcard
from the reader, Java Card provides a notion of transaction to ensure
that updates of multiple fields in persistent memory can be performed
atomically. This paper describes a way to reason about these Java Card
specific language features.

1 Introduction

The Java Card language for programming smartcards has attracted a lot of at-
tention in the formal methods community, especially people working on formal
methods for Java. In many respects, it provides an ideal target for formal meth-
ods: the language and its API are simple, programs are very small, and their
correctness is critical.

However, although the Java Card programming language for smartcards is
usually presented as a subset of Java, Java Card has several features in addition
to standard Java, which are specific to smartcards. First, Java Card distinguishes
the two kinds of memory that are available on smartcards, persistent (EEPROM)
and transient (RAM). Second, because a smartcard can be subject to a sudden
loss of power due to a so-called card tear –namely when the card is removed from
the reader– Java Card offers a transaction mechanism similar to that found in
databases; this enables a programmer to ensure that several updates to memory
are performed atomically, i.e. either all the updates are performed or none is.
There are more Java Card specific features, but we do not take them into account
in this paper.

To accurately reason about the behavior of Java Card programs –and to do
program verification– these additional features should be taken into account.
Most work on the verification of Java Card programs, with the exception of [1],
ignores these special features. Given the complexities of program verification,
this can certainly be justified for pragmatic reasons: before we try to verify that
a program is correct in the presence of potential card tears, it makes sense to

? Supported by EU-IST project VerifiCard www.verificard.org

www.verificard.org
http://www.verificard.org

2

first verify its correctness under the simplifying assumption that no card tears
occur and no transactions are ever aborted. However, ultimately we would like
to be able to reason about such Java Card features, and this is what we set out
to do in this paper.

The context of this work is the verification of Java programs that have been
specified with JML [2], using the LOOP tool in combination with the theorem
prover PVS. The verification of programs with the LOOP tool ultimately relies
on a denotational semantics of Java and JML, for which a Hoare logic and
weakest precondition calculus have been developed. In short, the LOOP tool
compiles JML annotated Java source code into PVS theories. Proving these
theories in PVS implies that it is formally verified that the Java program behaves
the way it is specified in JML. For a more detailed overview of this LOOP project,
see [3]. One of the achievements of this work has been that a commercial Java
Card application has been completely verified, showing that such verifications of
real Java Card programs are feasible. Still, our verifications ignore the possibility
of card tears, so our next challenge is to take this into account.

To reason about card tears and transactions we need a formal semantics of
these features (or a programming logic which takes them into account). Rather
than defining a semantics of Java Card including these features from scratch,
we will try to desugar Java Card programs with their special features into con-
ventional Java programs, effectively modeling card tears and transactions inside
Java. The central trick we use here is that we model card tears as special ex-
ceptions, a trick also used in [4,5]. Such a modular approach has several benefits
(provided it is successful of course...): it is less work, it is easier to understand,
and because it is independent of a particular semantics or programming logic
for Java, it will be applicable in many other settings, not just the particular
semantics and programming logic of Java that is used in the LOOP project.
Modularity is not just a desirable quality for programs, but also for theories
about programming languages!

The organization of the rest of this paper is as follows: Sect. 2 explains the
peculiarities of Java Card that we want to reason about. Sect. 3, 4 and 5 describe
our approach in detail. Sect. 6 says something about the implementation of our
idea.

2 Card tears and transactions in Java Card

In this section we briefly explain the peculiarities of Java Card as opposed to Java
when it comes to card tears and transactions. For a more complete explanation,
see [6] or the Java Card Runtime Environment (JCRE) specification [7].

Persistent vs. Transient Memory Java Card distinguishes two kinds of
memory that are available on smartcards, persistent (EEPROM) and transient

3

(RAM).1 The main difference is that persistent memory will keep its value when
power is switched off. Java Card objects and their fields are allocated in EEP-
ROM, so the fields of objects will keep their value during a power loss. However,
the Java Card API offers methods to allocate arrays in RAM, so-called transient
arrays. If a field is a transient array, then the contents of this array are lost as
soon as power is lost, but the field itself, which is a reference to the piece of RAM
allocated for the array, keeps its value as this is stored in EEPROM. Reasons
for using RAM rather than EEPROM for (array) field are efficiency –reading
and writing RAM is quicker than EEPROM–, the limited lifetime of EEPROM
–EEPROM can only support a limited number of writes before the chips stops
functioning–, and security –data kept in RAM is harder to spy out and more-
over it is lost as soon as power is lost.2 The stack is also stored in RAM, so the
parameters and result of method calls and local variables are all lost as soon as
power is lost.

Card tears In many card readers it is possible to tear the smartcard out of the
reader while it is in operation. Such a so-called card tear results in a sudden loss
of power. All data stored in RAM is lost when such a card tear occurs. The Java
Card platform incorporates a special clean-up when power supply is restored,
before any normal action applet operation takes place.

Transactions To cope with card tears, the Java Card API offers a so-called
transaction mechanism. This can be used to ensure that several updates to
persistent memory are executed as a single atomic operation, i.e. either all
updates are performed or none at all. The Java Card API offers three meth-
ods for this: beginTransaction, commitTransaction and abortTransaction.
After a beginTransaction all changes to persistent data are executed con-
ditionally. Note that changes to transient data, including local variables, are
executed unconditionally. The transaction is ended by commitTransaction or
abortTransaction; in the former case the updates are committed, in the latter
case the updates are discarded. If a card tear occurs during a transaction, any
updates to persistent data done during that transaction are discarded. This in
fact happens the next time the smartcard powers up during the special clean-up
mentioned before.

Example 1 (Java Card sample). Fig. 1 illustrates the use of the transaction
mechanism, the use of the API method for allocating a transient array, and
the use of JML to specify invariants and postconditions.

Every object of class A has a persistent field p and a field t that is a transient
array of length 1. This means that whenever the smartcard loses power, the

1 Smartcards will also have ROM, which is used for pre-installed program code, but
this is of no concern to the Java Card programmer.

2 Indeed, for security reasons, the contents of transient arrays can also be cleared
automatically at certain events other than card tears, e.g. the de-selection of an
applet.

4

class A {
// persistent field p, allocated in EEPROM
byte p;
//@ invariant p % 2 == 0 && 0<= p && p < 10;

// transient array t , so t [0] is allocated in RAM
byte[] t = makeTransientByteArray(1,CLEAR ON RESET);
//@ invariant t != null && t.length == 1;
//@ invariant t[0] % 2 == 0;

//@ ensures p == \old(p)+2 && t[0] == \old(t[0])+2;
void m() {

beginTransaction();
p++; t[0]++; p++;
if (p < 10) commitTransaction();

else abortTransaction();
t[0]++;
}

}

Fig. 1. Example program using transactions and transient data, with JML spec-
ification

contents of t[0] is lost, but p and t itself –i.e. the pointer to the position in the
RAM memory where t[0] is stored– keep their value.

There are four JML annotations in the example, written as comments starting
with //@. This includes three invariants stating that p is even, that t is not
null and has always length 1 and that t[0] is also even. This also includes
one postcondition (ensures clause) for method m, stating that the method will
increase the values of p and t[0] by 2. The use of the transaction guarantees
that the invariant for p will not be broken if the method m is interrupted by a
card tear. The treatment of transient memory makes sure that the invariants
for t are not broken by a card tear. Note that the postcondition only relates
to normal termination of the method, and does not say anything about what
happens if the method ‘aborts’ because of a card tear.

Incorrect use of this mechanism can result in a TransactionException being
thrown:

– The transactions cannot be nested. So if a new beginTransaction is called
within another transaction a TransactionException is thrown. Likewise
such an exception is thrown if a commitTransaction or abortTransaction
is called while there is no transaction in progress.
Reasoning about this requires no special machinery, as specifications for
enforcing the correct use of the methods for beginning or ending transactions
can easily be expressed in JML.

– A TransactionException is also thrown if certain hardware limitations are
exceeded. Only a finite amount of storage, called the commit buffer, is avail-
able to keep track of the conditional updates done during a transaction. The
size of this commit buffer depends on the specific smartcard hardware. If
there are too many updates inside a transaction, and the available space in
the commit buffer is exhausted, again a TransactionException is thrown.

5

We will ignore the possibility of exhausting the commit buffer, and the result-
ing TransactionException. Proving that this never happens is best done in
an ad-hoc manner, i.e. by counting the maximum number of bytes needed in
the commit buffer for every transaction in a program and checking that this
does not exceed the space of the commit buffer. Including this in a general
program logic would be overly complicated. Also, how much space needed in
the commit buffer for the bookkeeping associated with an individual update
will be specific to the particular implementation of the platform and/or the
underlying hardware.

Some (native) classes in the Java Card API provide persistent data which
is not subjected to card tears: the counter associated with a PIN object, which
keeps track of how many incorrect PINs have been entered, is not restored in
the event of a card tear. Otherwise the transaction mechanism might allow an
unlimited number of guesses for the PIN code.

2.1 What can go wrong, and how to avoid it.

Before we consider ways of describing the semantics of card tears and transac-
tions, and how this might be used as a basis for reasoning about these language
features, we first approach the issue from a different angle, by investigating what
can go wrong if code is subjected to card tears or if it contains transactions, and
what could we do to avoid these problems. Or, in other words, what are the prop-
erties that we fail to establish in our current verifications of Java Card code, but
which we would like to be able to prove.

Invariants Invariants usually play a crucial role in ensuring that a piece of code
behaves correctly. When a card tear occurs, invariants may be left broken as
a result. After all, invariants may temporarily be broken during the execution
of a method.
Typically, the transaction mechanism is used to prevent card tears from
disturbing invariants that involve persistent data, as in Fig. 1.

Postconditions Just ensuring that invariants are not left broken as a result
of a card tear may not be enough to ensure that a method is correct. We
may want to establish additional properties. For example, in our example in
Fig. 1, we might want to ensure that if method m is interrupted by a card
tear, it will either leave p unchanged of increase p by 2, and not say reset p
to 0, which is allowed by the invariant; in this case we would like to establish
p == \old(p) || p == \old(p)+2 as postcondition of m in the event of a
card tear.

There are two mechanisms that we can use to ensure that an invariant is not
left broken (c.q. an additional postcondition is met) after a card tear occurs:

– the transaction mechanism; e.g., in Fig. 1, the transaction mechanism ensures
that the invariant for p is maintained in the event of a card tear.

6

– the clearing of transient memory; e.g., in Fig. 1, the clearing of transient
memory ensures that the invariant for t[0] is maintained (or, rather, re-
established) in the event of a card tear.

The former mechanism is only relevant if an invariant (postcondition) involves
transient data, the second mechanism is only relevant if it involves persistent
data.

Given the nature of transient data, and the fact that transient data typically
serves as scratch-pad memory, it is unlikely that we will be interested in any
invariants or postconditions involving transient data. (Indeed, the whole idea of
an invariant seems at odds with the notion of transient memory.) So, for many
Java Card applications, it will not be necessary to take the clearing of transient
memory into account to establish their correctness.

Invariants which only depend on persistent memory can be dealt without
trying to formalize the transaction mechanism, in two ways:

– Ensure that an invariant is never broken.
It may seem an overly simplistic approach, but in practice, many invari-
ants are never broken. For example, in Fig. 1, the invariant t !=null &&

t.length == 1 will never be broken. This is the approach taken in [1].
Still, one has to be careful about the notion level of atomicity here. E.g.,
an invariant a == b will be temporarily broken during the execution of the
statement int x = (a++) + (b++), even though the invariant will hold be-
fore and after execution of the statement if there are no card tears. When
reasoning at the level of source code our notion of atomicity will be coarser
than what it really is.

– Ensure that the invariant is never broken outside a transaction.
Some invariants will have to be temporarily broken. (E.g. if we are updating
two fields and there is an invariant expressing a relationship between these
fields, the invariant will typically be broken after updating the first of these
fields.) If these invariant involves persistent data, then this should be done
inside a transaction.

3 Modeling card tears

To model card tears inside Java we use the same trick used in [4,5], i.e. card
tears are modeled as a special kind of exception, which can arise at any moment
during execution. Like an exception, a card tear is effectively an abrupt change
of the flow of control. A difference is that whereas an exception can be caught,
a card tear cannot be caught, as there is no VM executing that could execute
an exception handler. However, conceptually we can consider the recovery to a
card tear that happens the next time the card powers up (i.e. the undoing of
any unfinished transaction and the clearing of all transient data) as the excep-
tion handler for a card tear exception. We introduce a special exception class
CardTearException for modeling card tears.3

3 Strictly speaking, CardTearException should not be an Exception, but rather an
Error, because we clearly do not want CardTearExceptions to be caught by any

7

3.1 Throwing a CardTearException

There are several ways to account for the possibility of a CardTearException

being thrown at any moment during execution, namely at a syntactical level, at
a semantic level, or at a logical level:

– One possibility is to do this purely syntactically, by desugaring any sequence
of statements, e.g.

S1; S2;

to include calls to a method possibleCardTear before and after each state-
ment, e.g.

possibleCardTear(); S1; possibleCardTear(); S2; possibleCardTear();

where possibleCardTear is a method which either performs a skip, or
throws a CardTearException. We can even give a possible implementation
of this method possibleCardTear in Java, for instance

possibleCardTear() {
if (cardtear counter−− < 0) throw new CardTearException();

}

where cardtear_counter is a global (i.e. final static) variable, initialized to
an unknown value.
Such a syntactic approach has its limitations, namely the level of atomicity
of statements that we can distinguish at the level of source code syntax. This
notion of atomicity is coarser than it is in reality. E.g. in the example above
we treat the statements Si as atomic, whereas in reality only individual
byte code operations are atomic. For example, a statement such as int x =

(a++) + (b++) would have to be rewritten into a++; b++; int x=a+b; if
we want to include possible card tears after incrementing a or b.4

– Instead of modeling the possibility of card tears syntactically, as sketched
above, an alternative would be to redefine our semantics of Java to include
card tears. For instance, in the LOOP project we use a denotational seman-
tics, and we could redefine the semantics of composition ; and increment
operation ++ to include the possibility of an exception being thrown. Effec-
tively, this comes down to for instance changing the semantics of composition
; to the composition of ;̂, where S1;̂S2 is defined as

possibleCardTear();S1; possibleCardTear();S2; possibleCardTear();

– Another possibility of modeling card tears is at the logical level, i.e. in the
logic used to reason about programs. For instance, if our reasoning about
Java programs uses some Hoare logic, we could adapt all Hoare rules to allow
for the possibility of card tears. Effectively, this comes down to for instance
replacing the Hoare rule for composition ; by the Hoare rule for ;̂.

existing try-catch blocks in a program. However, using Error would introduce a
problem in JML.

4 Still, Java Card does not support the data types double and long, for which assign-
ments are by definition non-atomic; see [8], section 17.4

8

For the remainder of this paper, we leave it open which of the mechanisms above
is used to model the possibility of card tears. Clearly, introducing explicit calls to
possibleCardTear() at all program points quickly makes programs unreadable,
so we prefer to leave the possibility of card tears being thrown implicit.

3.2 Specification and verification using CardTearException

Modeling card tears as exceptions is useful both when it comes to verifying and
specifying Java Card code.

An invariant in JML has to hold if a method throws an exception. So an
immediate consequence of modeling card tears as exceptions is that to verify a
method we must ensure that invariants hold at every program point, as discussed
earlier in Sect. 2 (and as in the approach of [1]).

Another advantage of treating card tears as exceptions is that it becomes
possible to specify the behavior in the event of a card tear in JML, as mentioned
as a wish in Sect. 1. This is not possible in the approach of [1]. For example, we
could specify the behavior of the method m from Fig. 1 as follows:

//@ ensures p == \old(p)+2 && t[0] == \old(t[0])+2;
//@ signals (CardTearException) (p == \old(p) || p == \old(p)+2)
//@ && t[0] == 0;
void m() throws CardTearException{ ... }

Here the JML keyword signals is used to specify an exceptional postcondition,
i.e. a condition that should hold after a certain exception occurs. Note that here
we assume that the undoing of any unfinished transaction and the resetting of
the transient memory occurs immediately after a card tear occurs, so that this
has occurred before we exit the method.

Example 2 (specifications for arrayCopy(NonAtomic)). More example specifi-
cations that use the notion of CardTearException are given in Fig. 2. Here
specifications are given for the Java Card API methods arrayCopy and array-

CopyNonAtomic. These two methods are interesting examples because the only
difference between them is what happens when a card tear occurs during their
execution. The former method is atomic, so either all array entries are copied, or
none are. The latter method is not atomic, so some array entries may be copied
whereas others are not. The JML specifications in Fig. 2, more in particular
the signals clauses, make this difference precise. Note that the specification
of arrayCopyNonAtomic makes no assumptions on the order in which the array
elements are copied.

4 Modeling the clearing of transient memory

We now consider how to model the clearing of transient memory in the event of
a card tear. Because transient data is completely unaffected by transactions, we
can consider this issue in isolation, without taking into account how we model
the transaction mechanism.

9

/∗@ requires src != null && dest != null &&
@ srcOff >= 0 && destOff >= 0 && length >= 0 &&
@ srcOff+length <= src.length && destOff+length <= dest.length;
@
@ assignable dest[destOff..destOff+length−1];
@
@ ensures (\forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(src[srcOff+i]));
@ signals (CardTearException)
@ (\forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(src[srcOff+i]))
@ || (\ forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(dest[destOff+i]));
@∗/

native public static final short arrayCopy(byte[] src,
short srcOff,
byte[] dest,
short destOff,
short length);

/∗@ requires ...
@ assignable ...
@ ensures ...
@
@ signals (CardTearException)
@ (\forall short i; 0 <= i && i < length
@ ; dest[destOff+i] == \old(src[srcOff+i])
@ || dest[destOff+i] == \old(dest[destOff+i]));
@∗/

native public static final short arrayCopyNonAtomic(byte[] src,
short srcOff,
byte[] dest,
short destOff,
short length);

Fig. 2. JML specifications for the API methods arrayCopy and
arrayCopyNonAtomic. In the latter only the differences with the former
are shown.

We model the clearing of transient memory by enclosing every method in a
try-catch, where in the catch the transient memory is cleared, i.e. reset to the
initial default for that type. For the code from Fig. 1, this desugaring results in:

class A {
// persistent field p, allocated in EEPROM
byte p;
//@ invariant p % 2 == 0 && 0<= p && p < 10;

// transient array t , so t [0] is allocated in RAM
byte[] t = makeTransientByteArray(1,CLEAR ON RESET);
//@ invariant t != null && t.length == 1;
//@ invariant t[0] % 2 == 0;

//@ ensures p == \old(p)+2 && t[0] == \old(t[0])+2;
void m() {

try {
beginTransaction();
p++; t[0]++; p++;
if (p < 10) commitTransaction();

else abortTransaction();
t[0]++;

}
catch (CardTearException e) {

for (int i = 0; i < t.length ; i++) t[i] = 0; // clear transient array t

10

throw e; // re−throw the exception
}

}
}

Note that in this particular example the explicit clearing of the transient array
t in the event of a CardTearException will re-establish the invariant t[0] % 2

== 0.

One subtlety in the desugaring above is that during the clearing of transient
memory in the catch block we do not want to allow card tears.

The only question in this desugaring is deciding which transient arrays a
method should clear. The easiest way to decide this is to look at the postcondi-
tions (i.e. the ensures and signals clauses in conjunction with any invariants)
that we want to prove for the method. Letting every method clear only the
transient fields mentioned in its postconditions is sufficient. If a method calls
another method, and a card tear occurs in this inner method call, this may lead
to transient arrays being cleared several times, but as this clearing is clearly an
idempotent operation, this is not a problem.

The only problem that can arise is when a specification refers to a transient
field of another object to which the current object does not have access. In JML
specifications the normal visibility constraints imposed by the Java modifiers
(such as private or protected) can be loosened up, so it is possible for a JML
specification of a method to mention a transient field o.t[0] of some other
object o even though this field is not accessible from within that method. To
cope with this, the object o in question would have to be extended to provide a
method clearTransients() that clears its transient fields.

We should stress again that in Java Card applets transient data typically
serves as scratch-pad memory, so that it is unlikely that we are interested in any
invariants or postconditions involving transient data.

Note that both specifications in Fig. 2 exclude the effect of clearing transient
memory: the signals clauses of arrayCopy and arrayCopyNonAtomic do not
state that if dest or src are transient arrays their contents will have been cleared
in the event of a card tear. We could modify the specifications to include this,
by introducing a further case distinction in the signals clause on whether the
arrays in question are transient or not, and including

(JCSystem.isTransient(dest) != JCSystem.NOT A TRANSIENT OBJECT)
==>

(\forall i; 0 <= i && i < dest.length; dest[i] == 0)

in the signals clause, and a similar statement for src. Here we use the Java
Card API method isTransient, which can be use to test if an array is transient.

However, conceptually it is much more convenient not to make arrayCopy

or arrayCopyNonAtomic responsible for clearing the arrays src and dest if they
are transient, but to leave it up to the methods calling arrayCopy(NonAtomic).

11

5 Modeling transactions

We now turn to the issue of modeling transactions in Java. This comes down
to the question of how conditional updates to persistent fields can be modeled
in such a way that they can be undone in the event of an aborted transaction,
caused by a card tear or by an invocation of abortTransaction. We do this by
mimicking the way this can be implemented in hardware. Such an implemen-
tation involves some extra bookkeeping for persistent fields that are changed
during a transaction. Two values will have to be recorded for these fields: the
‘new’, updated value, as well as the ‘old’ value the field had at the start of the
transaction. There are roughly two strategies for doing this, as discussed in [9].
Suppose a persistent field x is modified during a transaction. One strategy, the
optimistic strategy, is to log the old value of x at the beginning of the transac-
tion, and use the logged value in the event of an aborted transaction to restore x
to its original value. The other, pessimistic, strategy is to work on a temporary
copy of a persistent field x during the transaction, and copy this updated version
of x back to x when the transaction is committed. The optimistic approach en-
tails some extra work in case the transaction is aborted, the pessimistic approach
entails some extra work in case the transaction is committed. We will use the
optimistic approach, introducing an extra ‘backup’ field xbak for every field x,
but we could just as easily have used the pessimistic approach.

Below we show how the code given in Fig. 1 can be desugared to model the
transaction in this way. As discussed in Sect. 3, we assume that at anytime the
special CardTearException can be thrown.

class A {
byte p = 0;
byte pbak; // backup value of p
//@ invariant p % 2 == 0 && 0 <= p && p <= 10;

byte[] t = makeTransientByteArray(1,CLEAR ON RESET);
//@ invariant t != null && t.length == 1;
//@ invariant t[0] % 2 == 0;

static boolean inTransaction = false;

//@ ensures p == \old(p)+2;
//@ signals (CardTearException) p == \old(p) || p == \old(p)+2;
void m() {
try {

pbak = p; // backup p
if (inTransaction) TransactionException.throwIt(IN PROGRESS)
inTransaction = true; // begin transaction
p++; t[0]++; p++;
if (p < 10)

inTransaction = false; // commit transaction
else {

p = pbak; // restore old value of p
inTransaction = false; // abort transaction

}
t[0]++;

} catch (CardTearException e) {
if (inTransaction) {

p = pbak; // restore old value of p
for (int i = 0; i < t.length ; i++) t[i] = 0; // clear transient array t
throw e; // re−throw the exception

}

12

}
}

}

The changes to the code are:

– An extra field pbak is introduced for the bookkeeping of the old value of p
during a transaction.

– A static field (i.e. a global variable) inTransaction is introduced to record
whether a transaction is in progress or not.

– The entire method is included in a try-catch construction, which, in case
of a card tear, undoes the effects of any transaction if a transaction was in
progress.

– Any calls to begin-, commit-, and abortTransaction are replaced by a code
fragments which set inTransaction, and backup or restore the value of p.

In general, at the place where the commit- or abortTransaction we should check
that a transaction is indeed in progress, or else throw a TransactionException,
by including

if (! inTransaction) TransactionException.throwIt(NOT IN PROGRESS);

We have omitted this in the example above because it is obvious that here this
situation does not arise.

One subtlety in the desugaring above is that during the bookkeeping associ-
ated with restoring an aborted transaction we should not allow card tears.

Although the example above is a very simple one, we believe that this desug-
aring of transactions can be used for most Java Card programs.

Similar to the modeling of the clearing of transient memory, the only difficult
issue in this desugaring of transactions is deciding for which persistent fields
should be restored. This issue can be solved in exactly the same way: only
the persistent fields mentioned in the invariant and pre- and postconditions are
relevant for the verification of an individual method, and only for these do we
have to restore the old values in the event of a card tear, i.e. in catch block at
the end of a method, and in the event of an abortTransaction. If a method calls
another method, and a card tear occurs in this inner method call, this may lead
to persistent fields being restored several times, but as this restoring is clearly
an idempotent operation, this is not a problem.

Similar to the modeling of the clearing of transient memory, the only prob-
lem that can arise is when a specification refers to a persistent field of another
object to which the current object does not have access. As we have mentioned
before in JML specifications the normal visibility constraints imposed by the
Java modifiers can be loosened up, so it is possible for a JML specification of a
method to mention a persistent field o.p of some other object o even though this
field is not accessible from within that method. To cope with this, the object o in
question would have to be extended to provide methods backupPersistents()
and restorePersistents() to backup and restore the values of its persistent
fields.

13

6 Implementation

Figure 3 provides an overview of our project. We have described how the pre-
processor can simulate some Java Card issues into a Java model. So far, we have
not tried to mechanize the desugaring we have introduced in this paper.

LOOP compiler

PVS
Theory

(.pvs)

PVS

JavaCard

(.java)

Preprocessor

Other prooftool systems

Explicit
Card Tears

Java

(.java)

Fig. 3. Inbedding of Java Card transactions into Java based proof checking sys-
tems

It is quite easy to do the desugaring for the clearing of transient memory and
for transactions by hand. Main question is how to deal with possibleCardTear.
As discussed in Section 3, there are several ways of dealing with this. Each of
these requires a large amount of work, namely redefining the semantics of all
Java Card statement and expression constructors, reformulating an reproving
all Hoare rule, or redefining the whole weakest precondition strategy.

In the setup for our LOOP/PVS combination we can estimate the amount
of work the last two options imply. It is huge. Therefore we hope that it will
be less work if we take the full syntactical approach. Furthermore it seems wise
to go for the practical approach: just verify that invariants are never broken
outside transactions, as part of PVS strategies, as in [1]. Obviously, for other
proof checking systems, the situation might be different.

7 Conclusion

We have shown how Java Card features such as card tears, transactions, and
transient as opposed to persistent memory can be faithfully modeled inside Java,
making it possible to use existing programming logics for Java to reason about
these features. An advantage of the approach is that it is to a large extent
independent of the Java semantics being used. An added benefit of such a model
inside Java is that it is understandable to a larger audience –the desugarings
should provide anyone with a good knowledge of Java with a clear understanding
of the semantics of card tears and transactions, and with useful basis about

14

reasoning about the features– and that we can use standard JML to specify
properties of these features.

A disadvantage of the approach is that it is somewhat ad-hoc. A definition
of a semantics for Java Card from scratch, be it denotational or operational
semantics, or an axiomatic semantics as Hoare logic or weakest precondition
calculus, would provide less ad-hoc and more rigorous semantics. Furthermore,
it is somewhat unsatisfactory that we have to assume that during our event
handling code there will not be another card tear.

It is important to realize that Java Card programs are extremely simple pro-
grams, without much complicated class hierarchies or OO structure to speak of.
In many applications the only object, apart from some byte arrays used as fields,
is a single object of class javacard.framework.applet. For such programs it is
trivial to decide at compile time what the relevant persistent and transient data
at runtime will be.

To our knowledge, the only other work on Java Card that does not ignore
transactions and card tears is [1]. The approach presented there can be used to
prove that certain invariants are never broken, but cannot establish postcondi-
tions in the event of a card tear, as discussed in Sect. 2.1, or distinguish between
the atomic and non-atomic API methods for copying arrays discussed in Ex. 2.

Unfortunately, the Java model is quite unreadable if it takes all explicit card
tears into account. The implementation of the existing TransactionExceptions
also really decreases readability, which makes this method less practical. On the
other hand, knowing these syntactical problems it should not be too difficult to
implement some of these solutions into the semantics of the proof system. For
our own LOOP tool we are quite convinced that this can be done.

References

1. Beckert, B., Mostowski, W.: A program logic for handling Java Card’s transaction
mechanism. In Pezzè, M., ed.: Fundamental Approaches to Software Engineering,
FASE’2003. Volume 2621 of Lecture Notes in Computer Science. (2003) 246–260

2. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., Poll, E.:
An overview of JML tools and applications. In Arts, T., Fokkink, W., eds.: Eighth
International Workshop on Formal Methods for Industrial Critical Systems (FMICS
03). Volume 80 of Electronic Notes in Theoretical Computer Science (ENTCS).,
Elsevier (2003) 73–89

3. Jacobs, B., Poll, E.: Java program verification at Nijmegen: Developments and
perspective. Technical Report NIII-R0318, Dept. of Computer Science, Univiversity
of Nijmegen (2003)

4. Hartel, P.H., de Jong Frz, E.K.: A programming and a modelling perspective on
the evaluation of Java card implementations. In Attali, I., Jensen, T., eds.: 1st Java
on Smart Cards: Programming and Security (e-Smart). Volume 2041 of LNCS.,
Springer-Verlag, Berlin (2000) 52–72

5. Poll, E., Hartel, P., de Jong, E.: A Java reference model of transacted memory for
smart cards. In: Fifth Smart Card Research and Advanced Application Conference
(CARDIS’2002), USENIX (2002) 75–86

15

6. Chen, Z.: Java Card Technology for Smart Cards. The Java Series. Addison-Wesley
(2000)

7. Sun: Java Card 2.1 Runtime Environment (JCRE) Specification. Sun Micro systems
Inc, Palo Alto, California (1999) http:// java.sun.com/ products/ javacard/.

8. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison-Wesley
(1996)

9. Oestreicher, M.: Transactions in Java Card. In: 15th Annual Computer Se-
curity Applications Conf. (ACSAC), Phoenix, Arizona, IEEE Comput. Soc, Los
Alamitos, California (1999) 291–298 http:// www.acsac.org/ 1999/ abstracts/

thu-b-1500-marcus.html.

	Reasoning about Card Tears and Transactions in Java Card
	Engelbert Hubbers and Erik Poll

