
Hardware Security

Trusted Execution Environments (TEEs)

&

Trusted Computing

Erik Poll

Digital Security

Radboud University Nijmegen



Exit smartcards, enter apps

2



Exit smartcards

3



Exit smartcards

4



Exit smartcards

5



Another trend:  Offline  ⟶ Online  

• Offline use in the physical world

• Online use in the cyberspace  

• Combinations

• incl. digital onboarding

Very different  risks!  Eg attacks in physical world usually

• do not scale 

• come with risk of getting caught

6



Why TEEs?

7



Recurring security dilemma

• We want a powerful, fast, 

device, with lots of 

features, a nice GUI, and 

rich platform APIs that is 

easy to program

• We want a simple device, 

with a minimal TCB, for 

small & simple 

applications, that we can 

trust  

8

ie. the eternal dilemma between functionality & security



Motivating example: the SIM card

What are the security advantages for the telco?

• The phone hardware & software are not in the TCB for 

authentication

• ie. the telco does not have to trust the phone to keep crypto         

keys for authentication confidential

• ie. the telco only has to trust the SIM                                                        

for confidentiality of keys and integrity of code

Limitation: user has to type in the PIN code to unlock the SIM,                        

so some phone hw & sw in TCB for confidentiality of the PIN

9



Phone OS  

in TCB for I/O 

with user?

SIM card as TEE

10

Main 

CPU

App

Baseband

chip

Phone

Phone OS

Phone OS not in TCB 

for authentication to 

network 



Trusted path?

11

• What is in the TCB when you 

unlock you SIM card?

• Even if main OS is not in the 

TCB, malware on the phone 

could phish this!

– by faking this display 



Secure Environments in mobile phones

12

trusted path

for I/O

1234

Normal Environment

Secure Environment

app

app

app



Secure Environments in mobile phones

What can SE do?

• processing for crypto and               

access control checks

• RNG

• data storage for keys, PINs, 

biometrics

• Fixed functionality provided by 

OEM, or extensible with trustlets

13

1234

trusted path

for I/O

Normal Environment

Secure Environment

app

app

app



Secure Environments in mobile phones

How?

1. physically separate 

a) SIM card

b) Secure Element (RIP?)

c) Apple Secure Enclave &

Android Strongbox Keymaster

2. virtually separate

a) ARM TrustZone TEE                      

(getting less fashionable?)

b) Whitebox crypto (        )

14

Normal Environment

Secure Environment

app

app

app



TEE technologies 

1. Having a separate chip

a) SIM card

b) Apple Secure Enclave

c) Android StrongBox Keymaster (since Android 9)

2. TPM: a separate chip that can monitor the main processor

3. Flicker: which uses TPM 

4. Intel IPT (Identity Protection Technology)

5. ARM TrustZone

6. Intel SGX  

When people talk about TEE, they usually mean 2-6 15



Security of mobile phone with SE vs smartcard  

– More complex and (hence) less secure

+ Mobile phone can do I/O  

+ Mobile phone can do biometrics  

+ Loss of control: dependency on 3rd party device, OS, app store                                                                          

• New and more powerful attacker models, in addition to usual attacks on 

SEs/smartcards                                                                                                               

1) Compromised OS          3) Compromised app                                                                                

2) Compromised SE           4) Malicious app  

• Nearly always online                                                                                                         
This is both good (eg. for monitoring & response and for updating)                                                        

and bad (as attack vector & for phishing)

– One SE can hold many credentials                                                                                                           
Like a multi-application smartcard.  Bad for phishing.

• Enrolment & revocation are totally different:                                                                  
– complex, but + cheaper & more flexible

16



Rest of this lecture

• Security Goals of TEEs

• Technologies to build TEEs

17



Goals of TEE - conceptually

18

integrity & 

confidentiality 

of  code & data

even if  OS is 

compromised

integrity & 

confidentiality 

of  user I/O

even if  OS is

compromised

isolated execution

and 

secure storage

trusted path

for trusted I/O

data

app

+ +



First attempt at defining TEE

Platform that provides applications with the security 

guarantee of isolation

• integrity of behaviour

• integrity & confidentiality of data, at rest & during execution

against very powerful attacker

• malware on the same platform

• and even (partial) compromise of the application or platform 

with a high level of trustworthiness 

• minimal TCB

• ultimately relying on hardware

and mechanisms to attest to the integrity of the system 

• as basis for others to trust it

19

HARDWARE



TEE security goals (1) – ‘isolation’

• Isolated Execution

Execution of an application cannot be compromised.

Integrity & confidentiality of code and of data in use.

• Secure Storage

Integrity, confidentiality and freshness of data at rest.

• Trusted Path: a secure path to and from the user

Integrity & confidentiality of communication

• secure attention sequence, eg. Ctrl-Alt-Delete on 

Windows, or Home button on iOs & Android, is a special 

case of Trusted Path

This is nothing new!                                                                                                    
Any OS aims to provide these properties.

20



platform

These security goals (1) – ‘isolation’  

21

app

1

storage

app

c

app

2

Spoofing remains a tricky concern 

• an app can know it has exclusive use of display or keyboard,    

but how can the human user know who it is talking to?



TEE security goals (2) – ‘assurance’  

Who & what are we dealing with? Can we trust this?

from perspective of an app, remote party, or local human user

• Platform Integrity 

– Can we trust or verify platform integrity?

• (Remote) Attestation

– Can a (remote) party verify integrity of platform or  app?

• Identification & Authentication

– Can we authenticate the identity of a platform or app?

– Ultimately, this requires some device identity 

• Secure Provisioning

– Mechanism to send data to specific software module on a 

specific device  

• eg for DRM, updating, or sync-ing apps across devices

22



• Security Goals of TEEs

• Technologies to build TEEs

• TPM

• Flicker & SGX

• ARM TrustZone

23



Trusted Computing & TPM

24



Trusted Computing

• Initiative by industry consoritium

– initially TCPA (Trusted Computing Platform Alliance),       

succeeded by TCG (Trusted Computing Group)

including Microsoft, AMD, Intel, IBM, HP,....

• Goal: common open spec of TPM (Trusted Platform Module)

• TPM is separate chip on the motherboard 

– that monitors the CPU & offers services  to the CPU,               

aka protected capabilities that use shielded locations,           

incl. authenticated boot

NB the main CPU remains in control!

25



Platform Integrity: Secure vs Authenticated Boot

26

Secure boot                               Authenticated boot



Secure vs Authenticated Boot

• Secure Boot: ensuring that the right system is booted                                                                        

– At each step of the boot process,                                                            

before code is loaded & executed, the integrity is checked, 

eg using code signing

– The boot process is halted if integrity checks fails

– The integrity checks have to be trusted, of course

• Authenticated Boot: checking which system has booted

– At each step of the boot process,                                                                      

a cryptographic hash of the code is computed (a integrity 

measurement),  and chained with earlier hash

– The boot process is never halted, but integrity measurement 

can be checked later

– The computation, storage & reporting of integrity 
measurements has to be trusted, of course 

• hence.... the TPM

27



Protected Capabilities of TPM

• Crypto, incl. secure key storage & random number generation

• Integrity metric reporting

– chip can compute & report integrity measurements 

• stored in PCRs (Platform Configuration Registers)

– for attesting to the state of device, incl. authenticated boot

• Special kind of secure storage: sealing of data

– access to data conditional to device being in a particular 

state

• ie you can only access the data if the integrity measure of 

the code is a certain value

• Typical use case: DRM

28



Using TPM for TEE? 

Basic idea:

• TPM measures hash of all software loaded since BIOS boot,          

incl. OS, and even application code, and attests to the integrity

so that

• software running on the machine and external parties can verify 

system state (remote attestation)

• access to remote services or local data can be conditional on 

system state

– by using sealed storage of data 

• eg this file can only be opened for a given software stack

– by using remote attestation for remote services

• eg attesting that this is a genuine Intel processor running a 

correct version of Windows

29



Trusted Computing controversy (early 2000s)

Lots of debate about: openness, privacy, and control

• TPM cannot prevent user running Linux on Intel hardware,              

but can prevent LibreOffice on Linux from opening .doc files

– by using sealed storage

• TPM is ‘a way for Bill Gates to make the Chinese pay for software’? 

• Privacy concern: TPM has a unique serial number

– But DAA for anonymous remote attestation to reduce privacy 

impact

• attesting that eg.  'this is some legitimate copy of Windows 

running on some AMD machine'

More info:

• Ross Anderson’s FAQ                                                              

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

• [Felten, Understanding Trusted Computing, IEEE Security & Privacy 2003]

30



Trusted Computing               ?

Big practical problems built-in from start

• Software stack is far too dynamic

– with continuous patching of OS, variety in device drivers, 

etc., the chance that ‘identical’ computers produce identical 

integrity measurement is small

• OS is far too big to be trusted as TCB

– the idea that checking the integrity of boot sequence incl. the

entire OS will ensure absence of malware is silly

• Microsoft stopped development of NGSCB aka Palladium,              

their intended ‘trusted OS’ that would use the TPM, in 2004.

• TPM is still used for Bitlocker

31



Flicker & SGX

-
providing secure sessions/enclaves   

on main CPU

32



App

Normal Execution      vs       Execution using Flicker

33

OS is in the TCB for   

entire App 

OS

CPU

S

TPM
CPU TPM

Flicker

session

Part of the App, S,        

executed in Flicker session

• OS no longer in TCB for S  

App

OS S



Dynamic Root of Trust in TPM v1.2

• TPM v1.2 added for dynamic PCRs 

– not for integrity measurement starting at boot,               
but for integrity measurement starting from later point 
in time

– set to -1 on boot; can be set to 0 by CPU, to record integrity 

measurement from that point on

• Special register PCR 17 : 

– can only be reset by one special instruction of CPU 

• SKINIT on AMD SVM, SENTER on Intel TXT/LaGrande

– resets the CPU, disables interrupts and DMA

– measures & executes Secure Loader Block

34



Flicker TEE

Flicker uses TPM with dynamic PCRs for trusted execution, 

briefly switching to secure mode & back to normal,                  

with the following steps

1. all normal execution (incl. OS) is suspended

2. Flicker session: small piece of code executed using SKINIT  

– with code integrity measurement in PCR 17

– possible accessing & updating sealed memory

3. normal execution (incl. OS) resumes

Code executed in Flicker Session isolated from all other execution: 

• No code executed before or after can influence or observe it

• Only 250 lines of software in TCB

• Downside: the code cannot use any OS services

35



Flicker TEE

• sensitive code fragment called PAL (Piece of Application Logic)

• PAL is included in the SLB (Secure Loader Block) that is passed 
to the SKINIT instruction

Example uses: 

• running some crypto code with access to key material in sealed 

memory

• a password check with access to password

36

[McCune et al., Flicker: An Execution Infrastructure for TCB Minimization, EuroSys 2008]



Intel SGX

Parts of app can be done in secure enclaves

• Similar to Flicker session, so main OS no longer in TCB

• Each enclave has its own code & data, but can access all 

memory of the app

– Confidentiality & integrity of code & data protected

– Entry points into enclave's code are secured

• to stop ROP (Return-Oriented Programming) style attacks

37

App1 App2 

Enclave API 

Enclave 1 :
code + data

Intel SGX

OS  

Enclave 2 :
code + data



Intel SGX – capabilities & limitations

• HW provides Isolation, Attestation, Sealed Storage

• Context switch to enclave is fast

• But: side-channel attacks on SGX exist

– Malicious enclave can eg extract RSA private key used by

other enclave on same machine

– Malicious enclave code is impossible to detect or analyse, as 

it is protected by the enclave mechanism

38



ARM Trustzone
-

providing a secure & an insecure world

39



ARM TrustZone

ARM TrustZone is a single processor (SoC) offering 2 modes:

• ‘normal world’ and ‘secure world’

– Extra 33rd bit on the bus, to indicate the mode

– Device could have an indicator (eg LED) for the mode

– Separation of memory, peripherals, DMA, and interrupts

– Context switch between worlds is slow

• Intended use

– Untrusted OS, eg Android, runs in the normal world,     

providing REE (Rich Execution Enviroment)  for normal apps

– Secure world provides TEE for sensitive applications  & 

services (aka trustlets)

• TrustZone available on many Android smartphones/tablet, but 

use of secure world for for manufacturer-internal purposes

40



ARM TrustZone

41

ARM Trustzone

Normal World Secure World

app

1

REE

app

2

TEE

trustlet

1

trustlet

2



TrustZone SoC hardware architecture

42

[source: Ekberg et al., The Untapped Potential of  Trusted Execution Environments on Mobile 

Devices, IEEE Security & Privacy 2014]



TrustZone software architecture

43

[source: Ekberg et al., The Untapped Potential of  Trusted Execution Environments on Mobile 

Devices, IEEE Security & Privacy 2014]



Secure storage in untrusted world?

44

platform

app   

A

app

Persistent storage can be done in untrusted world, if  we use 

encryption plus integrity & freshness checks.   

Trusted app still needs some secure storage in trusted world

• for crypto keys for confidentiality & integrity

• for sequence numbers to ensure freshness (Data Rollback 

Protection)

secure

storage

for app A?

storage



Trustonic

• TrustZone only provides two worlds

– protection one way: trusted protected from untrusted, not vv

• Trustonic provides multiple isolated enviroments within 

the secure world 

– like Global Platform isolates applets on JavaCard smart card

• Samsung KNOX does something similar

45

ARM TrustZone platform

Secure worldNormal world

Trustonic
Android  



Trustonic/KNOX software architecture

46

[source: Ekberg et al., The Untapped Potential of  Trusted Execution Environments on Mobile 

Devices, IEEE Security & Privacy 2014]



Analysis of TrustZone security failures

Cerdeira et al, SoK: Understanding the Prevailing Security 

Vulnerabilities if TrustZone-assisted TEEs, IEEE S&P 2020

• SoK = Systemisation of Knowledge

Security problems due to

• software bugs in trusted OS and trusted apps

• architectural deficiencies

• large attack surface, dangerous API calls,                        

no ASLR, no stack canaries, … 

• hardware attacks

• voltage  & clock manipulations (CLKSCREW)

• micro-architectural side-channels via caches, branch

prediction, or RowHammering

47



last month

https://eprint.iacr.org/2022/208

Feb 20, 2022

48



Comparison & Conclusions



Separate processors or not?

• TrustZone and SGX use the same processor for both 

trusted and untrusted code

• TPM involves a separate processor

• Apple Secure Enclave and Android Strongbox Keymaster

also involve a separate execution environment

– processor + RNG + (limited) storage,                                                           

but without TPM’s functionality to monitor the main processor

– beware: not all implementations of Android KeyStore API are 

hardware-backed!

• Advantage of using the same processor:                                                          

lots of CPU power, lots of memory 

• Disadvantage: more security risk of side channels 

50



Open questions

• Will smartcards disappear and will we use our 

smartphones for everything?

– If so, will we use TEEs like ARM Trustzone & SGX or separate 

processors like Apple Secure Enclave & Android Strongbox 

Keymaster?

– Or will some security-sensitive apps choose not use any 

special hardware features?

• How can we compare the security of app-based solutions 

to smartcard-based solution?

• How do we evaluate the security of app-based solutions?

51


