
Defensive Design

&

Defensive Coding

Erik Poll

Digital Security

General defensive design principle: Defense in Depth

2

Detection & Reaction

Important example of Defense in Depth:

Don’t just try to prevent security problems,

also try to detect them & react to them

There may be different goals with security cameras

& other forms of monitoring

a) detection & response as it happens

b) investigation after the fact

3

What if … ?

Any design involves trust assumptions (e.g. a TCB)

Useful question to ask for defensive design:

What if these assumptions are broken?

Eg: What if

• key material of card, terminal, or back-end leaks ?

• card is cloned ?

• terminal is compromised ?

• issuance process is compromised ?

• there’s an insider attack by employee with access rights X ?

4

Example: Gemalto key leaks [in 2010/2011, reported in 2015]

5

https://www.wsj.com/articles/dutch-firm-gemalto-investigates-hacking-claim-1424423264

Note: Gemalto is not a telco, but produces SIMs for telcos.

Why should they be hanging on key material anyway?;

Example: Estonian key generation problem

[Nemec at al, The Return of Coppersmith’s Attack: Practical Factorization of Widely

Used RSA Moduli, CCS 2017, ACM, https://dx.doi.org/10.1145/3133956.3133969]

6

Example: Estonian key management problem

[Arnin Parsovs, Estonian Electronic Identity Card: Security Flaws in Key Management,

USENIX Security 2020]

7

Some defensive design tricks

• Having both parties provide nonces always makes attack harder

– even if one of these parties has to be ‘trusted’ for some security

guarantee

• Including more info in (hash used to construct) MAC or signature

always makes attacks harder

– eg card or terminal IDs, sequence no, time stamp,…

• Advantages of counters over nonces:

– avoids risk of crappy RNGs

– makes checking for repeated of nonces in backend easier

– may make other forms of compromise detectable

• Eg, if card includes a counter in the receipts it signs,

then existence of cloned cards is detectable in back-end

8

9

Moral of the story

it’s good to be paranoid!

“Just because you're paranoid doesn't mean they aren't after you.”

-- Joseph Heller, Catch 22

Defensive Coding

against

side channel attacks

Passive side channel attack

observing e.g. power consumption or timing

Active side-channel attack with laser

laser mounted on microscope

with x-y table to move the card

and equipment to trigger timing

12

Side-channels at application level?

As an application programmer

(ie. if you only use crypto APIs, and do not implement them)

should you care about side channel attacks?

13

Application
YourApplet

Platform: VM & APIs

OwnerPINCipherVM/CPU

Confidentiality vs Integrity

Side channels can be a threat to

1. confidentiality

– eg leaking cryptographic keys or PIN codes

– passive attacks by observing timing, power, EM, …

2. integrity

– eg corrupting a cryptographic key

– active attacks to inject faults by card tears, glitching,
lasers, clock frequency, temperature, …

1 is a concern for confidential data, eg keys & PINs, so

concern for implementation of crypto & handling PINs

2 is a concern for any (security-critical) data and code

14

What to attack & how ?

If platform APIs are well-protected, applet developers still

have to worry about esp. active side channels

This requires knowledge or assumptions about which faults

are possible & what their effect on VM/CPU and APIs is

• This goes against the whole idea of the JavaCard platform hiding

low level details… 15

Platform

YourApplet
Fault injection to corrupt integrity of

data or of execution

Attacks to extract confidential info

less of a concern

Any attack (passive of active)

to extract keys, PINs, ...

OwnerPIN

Cipher

VM/

CPU

Fault injections

• Card Tears

• Physical

– putting a 0 or 1 on a databus line

• Glitching (late 1990s)

– briefly dipping voltage of power supply

– affects memory but also functionality

– difficult to do nowadays to corrupt data; but skipping

instructions on a Java Card VM may be possible!

• Light manipulations (early 2000s)

– light flash on chip surface affects its behaviour

16

Fault injections: practical complications

Many parameters for the attacker to play with

- when to do a card tear

- when to glitch; how far to dip the voltage; for how long

- when & where (x and y dimension) to shoot a laser;

for how long; how strong; and which colour?

- Multiple faults?

Multiple glitches are possible, multiple laser attacks harder

This can make fault attacks a hit-and-miss process for the

attacker (and security evaluator)

17

Attack targets of fault injections

• Attacks can be on data or on code

• including data and functionality of the CPU,

eg the program counter (PC)

• Code manipulation may

– turn instruction into NOP

– skip instructions

– skip (conditional) jumps

Default behaviour of CPU is to increment program counter

• Data manipulation may result in

– special values: 0x00 or 0xFF

– just random values

18

Attack targets of fault injections

Fault attacks can target

• crypto

some crypto-algorithms are sensitive to bit flips;

the classic example is RSA

• any other security-critical functionality

any security-sensitive part of the code or data can be

targetted

20

Physical vs Logical Countermeasures

Physical countermeasures

• Prevention – make it hard to attack a card

• Detection: include a detector that can notice an attack

– eg a detector for light or dips in power supply

This starts another arms race: attackers use another fault attack

on such detectors. Popular example: glitch a card and

simultaneously use a laser to disable the glitch detector!

Logical countermeasures

• Program defensively to not leak info or resist faults

– For JavaCard, this can be at platform level or applet level

21

Spot the bugs/potential weaknesses

class OwnerPIN{

boolean validated = false;

short tryCounter = 3;

byte[] pin;

boolean check (byte[] guess) {

validated = false;

if (tryCounter != 0) {

if arrayCompare(pin, 0, guess, 0, 4)

{ validated = true;

tryCounter = 3;}

else {tryCounter--;

ISOException.throwIt(WRONG_PIN); }

else ISOException.throwIt(PIN_BLOCKED); }

22

Basic defensive coding for OwnerPIN

• Decrementing try counter in a safe order

• to defeat card tear attacks

• i.e. it should happen right at the start of check()

• but... you do not want it to become a large negative number
and wrap to become MAXINT after decrementing

• validated should be in transient memory

• ensuring automatic reset to false

• only way to do this in JavaCard: make it a transient arry of
length one

• Does timing of arraycompare leak how many digits of the

PIN code we got right?

• read the JavaDocs for arraycompare !

23

Getting more paranoid: data integrity

What if attacker can corrupt data?

• Checking for illegal values of tryCounter

– eg negative values or greater than 3

• Redundancy in data type representation

– eg record tryCounter*13

or use an error-detecting/correcting code

• Keeping two copies of tryCounter

• Even better: keep one of these copies in RAM

where RAM copy is initialised on applet selection

Why is this better?

Attacker must attack both RAM & EEPROM, and synchronise

these attacks

24

Getting more paranoid: data integrity

• Suppose the VM represents Boolans as follows

• 00 is false

• all other values 01..FF represent true

– Why is that potentially a dangerous choice?

If attacker can corrupt data,
Booleans are likely to turn true

• Better choice: representing true as 85, false as -86 and
throw a SecurityException for any other values

– Why are 85 and -86 good choices ?

Binary representations 01010101 and 10101010
have equal Hamming weight

25

Getting more paranoid: data integrity

• Avoiding use of special values such as 00 and FF

• Use restricted domains and check against them

• Introduce redundancy

when storing data or when performing computations

Eg

• doing the same computation twice & compare results

• for asymmetric crypto: use the cheap operation to check

validity of the expensive one

26

Getting more paranoid: control flow integrity

What if attacker can corrupt control-flow?

Eg with glitching, causing the card to skip instructions

• Doing security-sensitive checks twice

• Changing order of tests

– thinking of how this looks in bytecode

27

if (pinOK) { // allow access

...

}

else { // error handling

...

}

28

Better

if (!pinOK) { // error handling

...

}

else { // allow access

...

}

Better to branch (conditionally jump) to the "good" (ie.

"dangerous") case

if faults can get the card to skip instructions

29

Even more paranoid

if (!pinOK) { // error handling

...

}

else { if (pinOK) {

...

}

else {

// We are under attack!

// Start erasing keys

....

}

30

Getting more paranoid: control flow integrity

• Add control flow integrity checks

eg by setting flags in the code to confirm integrity of the

execution run

Beware: a clever compiler might optimise way a this code!

JavaCard API could be extended with beginSensitive() and

endSensitive() to turn on such countermeasures in the VM

31

byte b = 0x01;

b = b || 0x02;

b = b || 0x04;

b = b || 0x08;

if (b!=0x0F) {// under attack!

...

}

S1;

S2;

S3;

S4;

SensitiveResult (introduced in Java Card 3.0.5)

VM maintains a special variable records the result of the last

sensitive method call, to easily double-check it without invoking the
method twice

boolean res = signature.verify(...); // sets this variable

if (res) {

SensitiveResult.assertTrue(); // double-checks it

// Grant service

} else {

SensitiveResult.assertFalse();

// Deny service

}

https://docs.oracle.com/javacard/3.0.5/api/javacardx/security/SensitiveResult.html

32

try { boolean res = signature.verify(...); if (res) { SensitiveResult.assertTrue(); // Grant service } else { SensitiveResult.assertFalse(); // Deny service } } finally { SensitiveResult.reset(); }

SensitiveArrays (introduced in Java Card 3.0.5)

This class provides methods for creating special arrays with

built-in (unspecified) integrity checks

• The integrity check could be a check-sum

For example

makeIntegritySensitiveArray(ARRAY_TYPE_BOOLEAN,

MEMORY_TYPE_TRANSIENT_RESET,

56)

creates transient sensitive array of booleans with length 56.

• Violations of the integrity check result in a SecurityException

https://docs.oracle.com/javacard/3.0.5/api/javacard/framework/SensitiveArrays.html

33

try { boolean res = signature.verify(...); if (res) { SensitiveResult.assertTrue(); // Grant service } else { SensitiveResult.assertFalse(); // Deny service } } finally { SensitiveResult.reset(); }

When & What to code defensively?

• First step: decide

– which data

– which parts of the execution

are sensitive and should be protected?

• Program annotations can help with this, to mark sensitive

data or operations

– eg using Java annotation mechanism, introducing a tag
like @Sensitive

34

Defensive coding tricks: information leakage

• Make sure code executes in constant time

• Make sure error messages do not leak interesting info

• Would two different error codes in OwnerPIN, WRONG_PIN

and WRONG_LENGTH, leak interesting information ?

This is not really a side-channel attack,

but a (normal I/O) channel attack

35

Coding trick to remove timing sensitivity

Replace

if (b) then { x = e} else {x = e';}

with

a[0]= e;

a[1]= e';

x = b ? a[0] : a[1];

to remove timing sensitivity

– at expense of efficiency, obviously..

36

Example information leaks: e-passports

• Modern passports contain an

ISO 14433 contactless smartcard

• Specs defined by ICAO

• Our open source JavaCard implementation of the spec is at

http://jmrtd.org

• If you have an NFC Android phone, you can read out the chip

with the ReadID - NFC Passport Reader app

37

e-passport security measures

• Protocols have been carefully designed to prevent

information leakage

• The e-passport only provides information after reader

proves knowledge of the Machine Readable Zone (MRZ)

– using BAC or PACE protocol

38

MRZ

39

e-passport access control (using BAC or PACE)

receive additional info

optically read MRZ

nonce N

… MAC(K, … N)

Information leak through error messages

e-passport protocol:

French passports report different error messages when the

MAC is wrong and when the nonce is wrong.

The key K is unique for a specific passport, so replaying an

old message now identifies that specific passport

Passports from some (all?) other countries expose this

through a timing leak

[Tom Chothia & Vitaliy Smirnov, A Traceability Attack against e-Passports, FC 2010]

40

nonce N

… MAC(K, … N)

Earlier information leak found

status word meaning

Belgian 6986 not allowed

Dutch 6982 security status not satisfied

French 6F00 no precise diagnosis

Italian 6D00 not supported

German 6700 wrong length

41

Response to B0 "read binary", and is only allowed after BAC

All passports we had, from different countries, could be

distinguished from the error responses to 3 APDUs

[BSc thesis of Henning Richter]

42

Passport bombs?

http://www.youtube.com/watch?v=-XXaqraF7pI

Your project code

• For your projects, you do not have to do program

defensively to withstand faults

– except that you have to resist card tears

• So you do not have to add your own integrity checks on

data stored on the card; for this you’re expect to simply

trust the card

44

Conclusions

Conclusion: side channels

• Any physical device has side channels

– which may leak info or be usable to introduce faults

• Implementations that are functionally indistinguishable,

can be very different in security against side channels:

– We not just have to implement the right security,

but we have to implement the right security securely
and even to implement all functionality securely

• Technology for fault attacks is improving:

– eg when will two synchronised laser faults be feasible?

• Countermeasures may be at the level of hardware,

the platform & APIs, or the application code

46

Security by Obscurity rules!

Knowing the code of an implementation,

or the layout of data in memory,

can help attackers with fault attacks!

Obscurity makes the life of the attacker harder!

E.g. open source code will be easier to glitch than closed

source code …

47

Side channels going mainstream

• Side channel attacks used to be the concern for

embedded security, esp. smartcards

– where attacker has physical access to do side-channel

attacks on confidentiality (eg DPA) or integrity (eg glitching &

light attacks)

• However, in the last decade side channels

have gone mainstream, thanks to

– micro-architectural attacks

Spectre & Meltdown on confidentiality

– RowHammering as fault injection attack to comprise

integrity

The attacker model is different here: not a physical

attacker, but a malicious execution thread

48

	Slide 1: Defensive Design & Defensive Coding
	Slide 2
	Slide 3: Detection & Reaction
	Slide 4: What if … ?
	Slide 5: Example: Gemalto key leaks [in 2010/2011, reported in 2015]
	Slide 6: Example: Estonian key generation problem
	Slide 7: Example: Estonian key management problem
	Slide 8: Some defensive design tricks
	Slide 9
	Slide 10: Defensive Coding against side channel attacks
	Slide 11: Passive side channel attack
	Slide 12: Active side-channel attack with laser
	Slide 13: Side-channels at application level?
	Slide 14: Confidentiality vs Integrity
	Slide 15: What to attack & how ?
	Slide 16: Fault injections
	Slide 17: Fault injections: practical complications
	Slide 18: Attack targets of fault injections
	Slide 20: Attack targets of fault injections
	Slide 21: Physical vs Logical Countermeasures
	Slide 22: Spot the bugs/potential weaknesses
	Slide 23: Basic defensive coding for OwnerPIN
	Slide 24: Getting more paranoid: data integrity
	Slide 25: Getting more paranoid: data integrity
	Slide 26: Getting more paranoid: data integrity
	Slide 27: Getting more paranoid: control flow integrity
	Slide 28
	Slide 29: Better
	Slide 30: Even more paranoid
	Slide 31: Getting more paranoid: control flow integrity
	Slide 32: SensitiveResult (introduced in Java Card 3.0.5)
	Slide 33: SensitiveArrays (introduced in Java Card 3.0.5)
	Slide 34: When & What to code defensively?
	Slide 35: Defensive coding tricks: information leakage
	Slide 36: Coding trick to remove timing sensitivity
	Slide 37: Example information leaks: e-passports
	Slide 38: e-passport security measures
	Slide 39: e-passport access control (using BAC or PACE)
	Slide 40: Information leak through error messages
	Slide 41: Earlier information leak found
	Slide 42
	Slide 43: Passport bombs?
	Slide 44: Your project code
	Slide 45: Conclusions
	Slide 46: Conclusion: side channels
	Slide 47: Security by Obscurity rules!
	Slide 48: Side channels going mainstream

