Defensive Design
&
Defensive Coding

Erik Poll
Digital Security

Radboud University Nijmegen i‘%}

General defensive design principle: Defense in Depth

AT THE RIK
of WUNDING
JUDGNENTAL ,
[DoON'T THINK.
TREY REALLY
NEAN 1T

Detection & Reaction

Important example of Defense in Depth:

Don’t just try to prevent security problems,
also try to detect them & react to them

There may be different goals with security cameras
& other forms of monitoring

a) detection & response as it happens
b) investigation after the fact

Whatif... ?

Any design involves trust assumptions (e.g.a TCB)

Useful question to ask for defensive design:

What if these assumptions are broken?

Eg: What if
» key material of card, terminal, or back-end leaks ?
« cardis cloned ?
« terminalis compromised ?
« /Ssuance process is compromised ?
« there’s an insider attack by employee with access rights X ?

Example: Gemalto key leaks [in 2010/2011, reported in 2015]

Gemalto Says Alleged Hack Didn’t
Result in Massive Theft of SIM Keys

Company detects ‘sophisticated intrusions’in 2010, 2011

SIM-card company Gemalto said it detected two “sophisticated intrusions” in 2010 and
2011 following a probe into alleged hacks by U.S. and UK. intelligence agencies.

Note: Gemalto is not a telco, but produces SIMs for telcos.
Why should they be hanging on key material anyway?

https://www.wsj.com/articles/dutch-firm-gemalto-investigates-hacking-claim-1424423264

Example: Estonian key generation problem

We report on our discovery of an algorithmic flaw in the construc-
tion of primes for RSA key generation in a widely-used library
of a major manufacturer of cryptographic hardware. The primes
generated by the library suffer from a significant loss of entropy:.

We propose a practical factorization method for various key lengths
including 1024 and 2048 bits.

Despite the general difficulty of obtaining relevant datasets
with public keys from passports or elDs that limited our analysis to
only four countries, we detected two countries issuing documents
with vulnerable keys. The public look ice of Estoni l
for a random sampling of the public keys of citizens and revealed
that more than half of the eIDs of regular citizens are vulnerable
and that all keys for e-residents are vulnerable.

[Nemec at al, The Return of Coppersmith’s Attack: Practical Factorization of Widely
Used RSA Moduli, CCS 2017, ACM, https://dx.doi.org/10.1145/3133956.3133969]

Example: Estonian key management problem

In this paper, we describe several security flaws found in
the ID card manufacturing process. The flaws have been dis-
covered by analyzing public-key certificates that have been
collected from the public ID card certificate repository. In
particular, we find that in some cases. contrary to the secu-
rity requirements, the ID card manufacturer has generated
private keys outside the chip. In several cases, copies of the
same private key have been imported in the ID cards of differ-
ent cardholders, allowing them to impersonate each other. In
addition, as a result of a separate flaw in the manufacturing
process, corrupted RSA public key moduli have been included
in the certificates, which in one case led to the full recovery
of the corresponding private key.

[Arnin Parsovs, Estonian Electronic Identity Card: Security Flaws in Key Management,
USENIX Security 2020]

Some defensive design tricks

Having both parties provide nonces always makes attack harder

— even if one of these parties has to be ‘trusted’ for some security
guarantee

Including moreinfo in (hash used to construct) MAC or signature
always makes attacks harder
— eg card or terminal IDs, sequence no, time stamp,...

Advantages of counters over nonces:
— avoids risk of crappy RNGs
— makes checking for repeated of nonces in backend easier

— may make other forms of compromise detectable

* Eg, if card includes a counter in the receipts it signs,
then existence of cloned cards is detectable in back-end

Moral of the story
it’s good to be paranoid!

“Just because you're paranoid doesn't mean they aren't after you.”
-- Joseph Heller, Catch 22

Defensive Coding
against
side channel attacks

Passive side channel attack

observing e.g. power consumption or timing

Active side-channel attack with laser

laser mounted on microscope
with x-y table to move the card
and equipment to trigger timing

12

Side-channels at application level?

As an application programmer

(ie. if you only use crypto APls, and do not /implement them)

should you care about side channel attacks?

Application
YourApplet

Platform: VM & APIs

VM/CPU

Cipher

OwnerPIN

13

Confidentiality vs Integrity

Side channels can be a threat to
1. confidentiality

— eg leaking cryptographic keys or PIN codes

— passive attacks by observing timing, power, EM, ...
2. integrity

— eg corrupting a cryptographic key

— active attacks to inject faults by card tears, glitching,
lasers, clock frequency, temperature, ...

1 is a concern for confidential data, eg keys & PINs, so
concern for implementation of crypto & handling PINs

2 is a concern for any/ (security-critical) data and code

14

What to attack & how ?

Fault injection to corrupt integrity of

YourApplet data or of execution

l Attacks to extract confidential info
less of a concern

Platform

OwnerPIN

vm/ ' Any attack (passive of active)

CpPU Cipher to extract keys, PINs, ...

If platform APIs are well-protected, applet developers still
have to worry about esp. active side channels

This requires knowledge or assumptions about which faults
are possible & what their effect on VM/CPU and APls is

« This goes against the whole idea of the JavaCard platform hiding
low level details... 15

Fault injections

Card Tears
Physical
— putting a 0 or 1 on a databus line
Glitching (late 1990s)
— briefly dipping voltage of power supply
— affects memory but also functionality

— difficult to do nowadays to corrupt data; but skipping
instructions on a Java Card VM may be possible!

Light manipulations (early 2000s)
— light flash on chip surface affects its behaviour

16

Fault injections: practical complications

Many parameters for the attacker to play with

- when to do a card tear
- when to glitch, how far to dip the voltage; for how long

- when & where (x and y dimension)to shoot a laser;
for how long,; how strong, and which colour?

- Multiple faults?
Multiple glitches are possible, multiple laser attacks harder

This can make fault attacks a hit-and-miss process for the
attacker (and security evaluator)

17

Attack targets of fault injections

Attacks can be on data or on code
including data and functionality of the CPU,
eg the program counter (PC)

Code manipulation may
- turn instruction into NOP
- skip instructions
- skip (conditional) jumps
Default behaviour of CPU is to increment program counter

Data manipulation may result in
- special values: 0x00 or OxFF
- just random values

18

Attack targets of fault injections

Fault attacks can target

 crypto
some crypto-algorithms are sensitive to bit flips;
the classic example is RSA

« any other security-critical functionality

any security-sensitive part of the code or data can be
targetted

20

Physical vs Logical Countermeasures

Physical countermeasures

Prevention — make it hard to attack a card
Detection: include a detector that can notice an attack
— eg a detector for light or dips in power supply

This starts another arms race: attackers use another fault attack
on such detectors. Popular example: glitch a card and
simultaneously use a laser to disable the glitch detector!

Logical countermeasures

Program defensively to not leak info or resist faults
— For JavaCard, this can be at platform level or applet level

21

Spot the bugs/potential weaknesses

class OwnerPIN({
boolean validated = false;
short tryCounter = 3;
byte[] pin;

boolean check (byte[] guess) {
validated = false;
if (tryCounter !'= 0) {
if arrayCompare (pin, 0, guess, 0, 4)
{ validated = true;
tryCounter = 3;}
else {tryCounter--;
ISOException.throwIt (WRONG PIN); }
else ISOException.throwIt (PIN BLOCKED) ; }

22

Basic defensive coding for OwnerPIN

Decrementing try counter in a safe order
- to defeat card tear attacks
« i.e. it should happen right at the start of check()

« but... you do not want it to become a large negative number
and wrap to become MAXINT after decrementing

validated should be in transient memory

« ensuring automatic reset to false

« only way to do this in JavaCard: make it a transient arry of
length one

Does timing of arraycompare leak how many digits of the

PIN code we got right?
read the JavaDocs for arraycompare !

23

Getting more paranoid: data integrity

What if attacker can corrupt data?

« Checking for illegal values of tryCounter
- eg negative values or greater than 3

Redundancy in data type representation
- egrecord tryCounter*13

or use an error-detecting/correcting code
- Keeping two copies of tryCounter

Even better: keep one of these copies in RAM
where RAM copy is initialised on applet selection

Why is this better?

Attacker must attack both RAM & EEPROM, and synchronise
these attacks

24

Getting more paranoid: data integrity

Suppose the VM represents Boolans as follows
00 is false

all other values 01..FF represent true

— Why is that potentially a dangerous choice?

If attacker can corrupt data,
Booleans are likely to turn true

Better choice: representing true as 85, false as -86 and
throw a SecurityException for any other values
— Why are 85 and -86 good choices ?

Binary representations 01010101 and 10101010
have equal Hamming weight

25

Getting more paranoid: data integrity
Avoiding use of special values such as 00 and FF

Use restricted domains and check against them

Introduce redundancy
when storing data or when performing computations
Eg
« doing the same computation twice & compare results

« for asymmetric crypto: use the cheap operation to check
validity of the expensive one

26

Getting more paranoid: control flow integrity

What if attacker can corrupt control-flow?

Eg with glitching, causing the card to skip instructions

 Doing security-sensitive checks twice

« Changing order of tests
- thinking of how this looks in bytecode

27

if (pinOK) { // allow access

}

else { // error handling

28

Better

if ('pinOK) { // error handling

}

else { // allow access

Better to branch (conditionally jump) to the "good" (ie.
"dangerous") case

if faults can get the card to skip instructions

29

Even more paranoid

if ('pinOK) { // error handling

}
else { if (pinOK) {

}

else {
// We are under attack!

// Start erasing keys

30

Getting more paranoid: control flow integrity

« Add control flow integrity checks

eg by setting flags in the code to confirm integrity of the
execution run

byte b = 0x01;
Sl1; b =b || 0x02;
S2; b = b || 0x04;
S3; b =b || 0x08;
S4; if (b!'=0x0F) {// under attack!

}

Beware: a clever compiler might optimise way a this code!

JavaCard API could be extended with beginSensitive () and
endSensitive () to turn on such countermeasures in the VM

31

SensitiveResult (introducedinJava Card 3.0.5)

VM maintains a special variable records the result of the last

sensitive method call, to easily double-check it without invoking the
method twice

boolean res = signature.verify(...);
if (res) {

// sets this wvariable

SensitiveResult.assertTrue(); // double-checks it

// Grant service
} else {

SensitiveResult.assertFalse () ;

// Deny service

https://docs.oracle.coml/javacard/3.0.5/api/javacardx/security/SensitiveResult.html

32

SensitiveArrays (introduced inJava Card 3.0.5)

This class provides methods for creating special arrays with
built-in (unspecified) integrity checks

 The integrity check could be a check-sum

For example
makeIntegritySensitiveArray (ARRAY TYPE BOOLEAN,
MEMORY TYPE TRANSIENT RESET,
56)

creates transient sensitive array of booleans with length 56.

« Violations of the integrity check result in a SecurityException

https://docs.oracle.coml/javacard/3.0.5/apiljavacard/framework/SensitiveArrays.html

33

When & What to code defensively?

First step: decide
- which data
- which parts of the execution
are sensitive and should be protected?

Program annotations can help with this, to mark sensitive
data or operations

— eg using Java annotation mechanism, introducing a tag
like @Sensitive

34

Defensive coding tricks: information leakage

Make sure code executes in constant time
- Make sure error messages do not leak interesting info

Would two different error codes in OwnerPIN, WRONG_ PIN
and WRONG_LENGTH, leak interesting information ?

This is not really a side-channel attack,
but a (normal I/0O) channel attack

35

Coding trick to remove timing sensitivity

Replace

if (b) then { x = e} else {x = e';}
with

a[0]= e;

a[l]l=e';

x =Db ? a[0] : a[l];

to remove timing sensitivity
- at expense of efficiency, obviously..

36

Example information leaks: e-passports geom

Modern passports contain an
ISO 14433 contactless smartcard

Specs defined by ICAO =&}

Our open source JavaCard implementation of the spec is at
http://[jmrtd.org

If you have an NFC Android phone, you can read out the chip
with the ReadID - NFC Passport Reader app

37

e-passport security measures

Protocols have been carefully designed to prevent
information leakage

The e-passport only provides information after reader
proves knowledge of the Machine Readable Zone (MRZ)

— using BAC or PACE protocol

e aspoor T EERINECTTETTN mnul_.mnzu

F Hu:l- Hederianodse KROEBC015
e T E—————
Wan Hiswrsenhairan

S e e——————
GERins Dbl Martcud Sesaskiian
24 DEC/DEC 18971 1334546782
e R e e - e e s @ 2 = 0
Specimen H .‘uII -
26 ALMG LG, 006 Hi -u.Hi-.fH.ﬂ 2013

T -

MRZ <mﬂl EUVENHULIENT t:uuunn:m

\. AHOTBCOTSONLDTI12247H1 1082681 23456TR2<<<<<02 i

D

.

38

e-passport access control (using BAC or PACE)

U
' optically read MRZ = <
<_ S P<AUSCITIZEN<<JOHN<<<<<KL<LLLLLLLLLLLLLL<L<L<<

M0992136<2AUS7906123M1508189<06100178D<<<<02

L\

nonce N

MAC (K, .. N)

>

receive additional info

<€

39

Information leak through error messages

e-passport protocol:

\

<

N/

French passports report different error messages when the
MAC is wrong and when the nonce is wrong.

The key K is unique for a specific passport, so replaying an
old message now identifies that specific passport

nonce N

.. MAC(K, .. N)

Passports from some (all?) other countries expose this
through a timing leak

[Tom Chothia & Vitaliy Smirnov, A Traceability Attack against e-Passports, FC 2010]
40

Earlier information leak found

Response to BO "read binary”, and is only allowed after BAC

status word meaning
Belgian 6986 not allowed
Dutch 6982 security status not satisfied
French 6F00 no precise diagnosis
Italian 6D00 not supported
German 6700 wrong length

All passports we had, from different countries, could be
distinguished from the error responses to 3 APDUs

[BSc thesis of Henning Richter]

41

deVerdieping

Trouw

dinsdag 8 april 2008
66ste jaargang nr 19447

www.trouw.nl

e Legio criminele toepassingen

Na ov-chip
nu ook lek

in pas

De chip in het nieuwe Neder-
landse paspoort en andere
passen is 'lek’. Dieven kun-
nen snel zien of iemand een
paspoort bij zich heeft en uit
welk land hij komt.

Vincent Dekker

Maoderne paspoortenin tassen of bin-
nenzakken verraden draadlocs hun
aamvezigheid én uvitwelk land ze ko-

poort

antwoorden op elke correcte vraag
van een officiee] leesapparaat, zoals
bij de douane. Maar men isvergeten
dat ook te regelen voor antwoorden
op verkeerde vragen. In de praktijk
blijkt dat elk land een eigen manier
heeft bedacht om met foute codes
om te gaan. Analyseer de foutmel-
ding die je terugkrijgt na het bewust
versturenvan eenverkeerde code en
je weet uit welk land het paspoort
komt.”

Foutmeldingen verraden veel over
dewerking van computers en zijn al

Olympische fakkeltocht wacht in
San Francisco volgend protest
| |

Nalondenontaardde ookin |
Parijs de olympische fakkel-
tocht door Tibetprotesten in
chaos. De volgende steden
maken hun borst al nat.

Van onze redactie buitenland

De olympische vlam verliet gister-
avond Parijs, op weg naar de volgen-
de bestemming: San Francisco. Maar
sommige officials beginnen zich
vamwege alle Tibetprotesten af te
vragen of de estafettewel door moet

De route van de vlam door Parijs
werd gisteren ingekort. De protesten
tegen het Chinese ingrijpen in Tibet
veroorzaakten dermate veel chaos
dat de fakkel liefst vijfmaal gedoofd
moest worden-volgens de organisa-
toren één keer vamvege een defect
en vier keer uit voorzorg. De olympi-
sche vlam bleef volgens hen wel per-
manent branden in een busje. Maar

42

Passport bombs?

http://www.youtube.com/watch?v=-XXaqraF 7pl

Your project code

For your projects, you do not have to do program
defensively to withstand faults

— except that you have to resist card tears

So you do not have to add your own integrity checks on
data stored on the card; for this you’re expect to simply
trust the card

44

Conclusions

Conclusion: side channels

Any physical device has side channels
— which may leak info or be usable to introduce faults

Implementations that are functionally indistinguishable,
can be very different in security against side channels:

— We not just have to implement the right security,
but we have to implement the right security securely
and even to implement a// functionality securely

Technology for fault attacks is improving:
— eg when will two synchronised laser faults be feasible?

Countermeasures may be at the level of hardware,
the platform & APIs, or the application code

46

Security by Obscurity rules!

Knowing the code of an implementation,
or the layout of data in memory,
can help attackers with fault attacks!

Obscurity makes the life of the attacker harder!

E.g. open source code will be easier to glitch than closed
source code ...

47

Side channels going mainstream

Side channel attacks used to be the concern for
embedded security, esp. smartcards

— where attacker has physical access to do side-channel
attacks on confidentiality (eg DPA) or integrity (eg glitching &
light attacks)

However, in the last decade side channels
have gone mainstream, thanks to

— micro-architectural attacks @o’}

Spectre & Meltdown on confidentiality

— RowHammering as fault injection attack to comprise
integrity

The attacker model is different here: not a physical

attacker, but a malicious execution thread

48

	Slide 1: Defensive Design & Defensive Coding
	Slide 2
	Slide 3: Detection & Reaction
	Slide 4: What if … ?
	Slide 5: Example: Gemalto key leaks [in 2010/2011, reported in 2015]
	Slide 6: Example: Estonian key generation problem
	Slide 7: Example: Estonian key management problem
	Slide 8: Some defensive design tricks
	Slide 9
	Slide 10: Defensive Coding against side channel attacks
	Slide 11: Passive side channel attack
	Slide 12: Active side-channel attack with laser
	Slide 13: Side-channels at application level?
	Slide 14: Confidentiality vs Integrity
	Slide 15: What to attack & how ?
	Slide 16: Fault injections
	Slide 17: Fault injections: practical complications
	Slide 18: Attack targets of fault injections
	Slide 20: Attack targets of fault injections
	Slide 21: Physical vs Logical Countermeasures
	Slide 22: Spot the bugs/potential weaknesses
	Slide 23: Basic defensive coding for OwnerPIN
	Slide 24: Getting more paranoid: data integrity
	Slide 25: Getting more paranoid: data integrity
	Slide 26: Getting more paranoid: data integrity
	Slide 27: Getting more paranoid: control flow integrity
	Slide 28
	Slide 29: Better
	Slide 30: Even more paranoid
	Slide 31: Getting more paranoid: control flow integrity
	Slide 32: SensitiveResult (introduced in Java Card 3.0.5)
	Slide 33: SensitiveArrays (introduced in Java Card 3.0.5)
	Slide 34: When & What to code defensively?
	Slide 35: Defensive coding tricks: information leakage
	Slide 36: Coding trick to remove timing sensitivity
	Slide 37: Example information leaks: e-passports
	Slide 38: e-passport security measures
	Slide 39: e-passport access control (using BAC or PACE)
	Slide 40: Information leak through error messages
	Slide 41: Earlier information leak found
	Slide 42
	Slide 43: Passport bombs?
	Slide 44: Your project code
	Slide 45: Conclusions
	Slide 46: Conclusion: side channels
	Slide 47: Security by Obscurity rules!
	Slide 48: Side channels going mainstream

