
Software Security

Introduction

Erik Poll
Digital Security

Radboud University Nijmegen

1

A brief history of software security: January 2002

https://news.microsoft.com/2012/01/11/memo-from-bill-gates/ 2

Highest priority for Microsoft:

... trustworthiness ...

• Availability

• Security

• Privacy

Twenty years later (Sept 2022 & May 2023)

EU & US announce regulation for software security

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy

3

proposed regulation

to complement

NIS2 framework

So: problem solved?

https://www.cisa.gov/news-events/bulletins

https://cve.mitre.org/cve/search_cve_list.html

Homework for the coming: check out

a) the latest US-CERT bulletin

b) recent CVEs for the browser, PDF viewer, and other
software you

c) some of their CVSS scores

4

Goals of this course

• How does security typically fail in software?

• Why does software often fail?

 What are the underlying root causes?

• What are ways to make software more secure?

 incl. principles, methods, tools & technologies

– incl. practical experience with some of these

 Focus more on defence than on offense

5

Practicalities: prerequisites

• Basic security knowledge

• TCB (Trusted Computing Base),

CIA (Confidentiality, Integrity, Availability),

Authentication, ...

• Basic knowledge of programming, in particular

– C(++) or assembly/machine code

– eg. malloc(), free(), *(p++), &x

strings in C using char*

– Java or some other typed OO language

– eg. public, final, private, protected,

Exceptions

– bits of PHP and JavaScript

6

The kind of C(++) code you’ll see next week

char* copy_and_print(char* string) {

char* b = malloc(strlen(string));

strcpy(b,string); // copy string to b

printf(”The string is %s.”, b);

free(b);

return(b);

}

int sum_using_pointer_arithmetic(int a[]) {

int sum = 0;

int *pointer = a;

for (int i=0; i<4; i++){

sum = sum + *pointer;

pointer++; }

return sum;

}

7

The kind of Java code you’ll see next month

public int sumOfArray(int[] pin)

throws NullPointerException,

ArrayIndexOutOfBoundsException {

int sum = 0;

for (int i=0; i<4; i++){

sum = sum + a[i];

}

return sum;

}

8

The kind of object-oriented code you’ll see next month

final class A implements Serializable {

public final static int SOME_CONSTANT = 2;

private B b1;

public B b2;

protected A ShallowClone(Object o)

throws ClassCastException {

a = new(A);

x.b1 = ((A) o).b1; // cast o to class A

x.b2 = ((A) o).b2;

return a;

}

}

implements java.io.Serializable

9

Exam material & mandatory reading

• slides

• my written lecture notes

• (parts of) some articles

I’ll be updating this in Brightspace as we go along

NB keep track of Brightspace announcements

If you do not log into Brightspace regularly,

have these announcements forwarded to your email

10

Not exam material

• Join the student CTF group if you’re interested in the

practical side of security

– in Discord https://discord.gg/bD8D7S5euv

– IRL Tuesdays at 17:30 in Mercator fishbowl

• I recommend the Risky.Biz podcast

to keep up with weekly security news

11

Not exam material

• OWASP Netherlands meet-up (i.e. free pizza!!)

Sept 21 in Utrecht & Oct 19 in Nijmegen

See https://owasp.org/www-chapter-netherlands/#div-upcoming

Register for the (low-traffic) OWASP-NL mailing list to be

informed of such events

12

Practicalities: form & examination

• 2-hrs lecture every week

– read associated papers & ask questions!

• project work

– PREfast for C++ (individual or in pairs)

– group project (with 4 people) on fuzzing

– exercise on web site sanitisations

– project on static analysis with Semmle (individual or in

pairs)

• written exam

Bonus point for group project, computed as (grade-6)/4

13

Today

• What is "software security"?

• Some root causes of the problems

• The solution to the problems

14

Motivation

15

What is software security?

Intersection of security & software engineering:

• prevent design-level & implementation-level security

vulnerabilities and pro-actively design & build systems that

resist attacks

• prevent users from harming themselves & others by bad

security choices

– the same for programmers, sys admins, ...

• detect vulnerabilities that arise - accidentally or

intentionally - and react to them

• mitigate risks

before and after detecting problems

16

How do computer systems get ‘hacked’?

By attacking

• software

• humans

Or: the interaction between software & humans

• crypto

• hardware

• …

17

Fairy tales

Many discussions about security begin with Alice and Bob

How can Alice communicate securely with Bob,

when Eve can modify or eavesdrop on the communication?

Alice Bob

Eve

18

This is an interesting

problem,

but it is not the biggest

problem

19

The big problem

Alice & her computer are communicating with another computer

How to prevent Alice or her computer from getting hacked ?

Or how to detect this? And then react ?

Solving earlier problem, securing the communication, does not help!

possibly malicious

input

20

Changing nature of attackers

Traditionally, hackers were amateurs motivated by ‘fun’

• by script kiddies & more skilled hobbyists

• NB if you like that, join the RU-CTF team!

Nowadays hackers are professional:

• cyber criminals

with lots of money & (hired) expertise

Important game changers: ransomware & bitcoin

• state actors

with even more money & in-house expertise

• hackers for hire

e.g. NSO group, Zerodium, …

21

Prices for 0days

22

Prices for 0days

23

Apple & Google payouts

24

Software security: crucial facts

• There are no silver bullets!

Firewalls, crypto, or special security features do not

magically solve all problems

“if you think your problem can be solved by cryptography, you

do not understand cryptography and you do not understand

your problem” [Bruce Schneier]

• Security is emergent property of entire system

– like quality

– or maybe: property of the ongoing process?

• Security should be - but hardly ever is - integral
part of the design, right from the start

25

security software ≠ software security

Adding security software can make a system more secure

i.e. software specifically for security, such as

– TLS, IPSEC, firewall, VPN, …

– AV (AntiVirus), WAF (Web Application Firewall)

– access contro

– NIDS (Network Intrusion Detection System)

– EDR (Endpoint Detection and Response)

– RASP (Runtime Application Self-Protection)

– …

But all software must be secure, not just the security software

• That buffer overflow in your PDF viewer can still be exploited…

• Adding security software may add software bugs and make things

less secure:

Check out https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=firewall

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=VPN

26

Root causes

27

Quick audience polls

• Did you ever take a course on C(++) programming ?

• Were you taught C(++) as a first programming language?

• Did this these courses

• warn about buffer overflows?

• warn about format string attacks?

• explain how to avoid them?

Major causes of problems are

• lack of awareness

• lack of knowledge

• irresponsible teaching of dangerous programming

languages

28

Quick audience poll

• Did you ever build a web-application?

– in which programming languages?

• Do you know the secure way of doing a SQL query in this
language (to prevent SQL injection)?

Major causes of problems are

• lack of awareness

• lack of knowledge

29

More root causes: security vs functionality

Primary goal of software is providing functionality & services

Managing associated risks is a secondary concern

When there is often a trade-off/conflict between

– security

– functionality, convenience, speed , …

then security typically looses out

• Users complain about missing features or broken

functionality, but not about insecurity

• Developers like adding features, not thinking about

security

30

Root causes: complexity

• Have anyone here read the HTML specification?

• Has anyone here read the URL specification?

Which one? There are two!

• Even security features we add to prevent problems are

hopelessly complex

– Has anyone read the TLS specifications?

31

Functionality & complexity vs security

Lost battles?

• Programming languages & APIs

we want these easy to use, powerful and efficient,

but they can be insecure, dangerous and error-prone

• Operating systems (OSs)

 with huge OS, with huge attack surface

• Web browsers

with ever fancier features, JavaScript, Web APIs to access

microphone, web cam, location, …

• Email clients

– which handle with all sorts of formats & attachments

32

Recap

Problems are due to

• lack of awareness

– of threats, but also of what should be protected

• lack of knowledge

– of potential security problems, but also of solutions

• people choosing functionality over security

• compounded by complexity

– software written in complex languages, using large complex

APIs, and running on complex platforms

33

Types of software security problems

34

Typical software security flaws

Flaws found in Microsoft's first security bug fix month (2002)

37%

20%

26%

17%

0%

buffer overflow

input validation

code defect

design defect

crypto

35

‘Levels’ at which security flaws can arise

1. Design flaws

introduced before coding

2. Implementation flaws aka bugs aka code-level defects

introduced during coding

As a rule of thumb, coding & design flaws equally common

Vulnerabilities can also arise on other levels

3. Configuration flaws

4. Unforeseen consequences of the intended functionality

• eg. spam: not enabled by flaws, but by features!

36

The dismal state of software security

The bad news

people keep making the same mistakes

The good news

people keep making the same mistakes

…… so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

37

Security in the

Software Development Life Cycle

(SDLC)

[Material cover in CyBok chapter on Secure Software Lifecycle

by Laurie Williams, see course web page]

38

How can we make software secure?

We do not know how to do this!

We will always

• have vulnerabilities that have not been found (yet)

• overlook attack vectors

• make implicit assumptions that are – or become – invalid

• overlook ways in which functionality can be abused

• miss security properties that are important

• …

39

How can we make software more secure?

We do know how to do this!

• Knowledge about standard mistakes is crucial

– These depends on programming language, “platform”,

APIs/technologies used, type of application

– There is LOTS of info available on this nowadays

• But this is not enough: security to be taken into account

from the start, throughout the software development life

cycle

– Several ideas, best practices, methodologies to do this

40

Security in Software Development Lifecycle

Requirements

and use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests

Static

Analysis

Pen

testing

Security
incidents

Deployment

Training

Evolution of Security Measures

Security-by-Design

Privacy-by-Design

Patch

Management

System

Coding

guidelines

41

Bug bounty

program

Patch

“Shifting left”

Organisations always begin tackling security at the end of

the SDLC, and then slowly evolve to tackle it earlier

1. First, do nothing

2. Some security issue is discovered:

a) Still do nothing, if there’s no (economic) incentive

b) Or: patch

3. If this happens often: update mechanism for regular patching

4. Do security testing: eg. hire pen-testers or bug bounty program

5. Use static analysis tools when coding

6. Give security training to programmers

7. Think of abuse cases, and develop security tests for them

8. Think about security before you start coding, eg with

security architecture review

9. ...

42

DAST, SAST, ...

Security people keep inventing 4 letter new acronyms

• DAST

– Dynamic Application Security Testing

– ie. testing

• SAST

– Static Application Security Testing

– ie. static analysis

• IAST

– Interactive Application Security Testing

– manual pen-testing

• RASP

– Run-time Application Security Protection

– ie. monitoring

43

Methodologies for secure software development

Early ones

• Microsoft SDL

with extension for Secure DevOps (DevSecOps)

• Touchpoints and BSIMM by Gary McGraw

• OWASP Open SAMM (Software Assurance Maturity Model)

Recent incarnations include

• NIST SSDF

• Grip op SSD (Secure Software Development)

Ongoing initiative by Dutch government organisations

https://www.cip-overheid.nl/en/category/products/secure-software/

• …

Complemented with Top N lists of dos or don’ts, checklists &

cheatsheets, roadmaps, assessment methods, …

44

Microsoft’s SDL Optimisation Model

45

Security in the software development life cycle

[Source: Gary McGraw, Software security, Security & Privacy Magazine,

IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

McGraw’s Touchpoints

46

OpenSAMM

12 security practices grouped in 4 business functions

47

BSIMM (Building Security In Maturity Model)

Unfortunately, info about this has largely disappeared behind

paywall of the corporate website of Synopsys

110 activities in 12 practices across 4 domains

48

BSIMM: comparing your security maturity

49

But first…

50

Discussing security is meaningless without answering

1. What are your security requirements?

What does it mean for the system to be secure?

2. What is your attacker model?

Against what does the system have to be secure?

– Attack surface / attack vectors

– Attacker’s motivations & capabilities

– Also: what are your security assumptions ?

• Including: what are the TCBs (Trusted Computing Bases)

for specific security properties controls?

Aka threat modelling

51

Security requirements

a) ‘This application cannot be hacked’

• Generic default requirement ☺

• Vague & not actionable

• Negative security model

b) More specific security requirements

• In terms of Confidentiality, Integrity and Availability (CIA)

• Or, usually better, in terms of Access Control

 i.e. Authentication & Authorisation

• Not just Prevention but also Detection & Reaction/Response

• Positive security model

• Also thinking in negative terms can be useful

52

Threat modelling

Draw diagram of the system and then brainstorm about

attacks & defenses using e.g. STRIDE or attack trees

• Spoofing

• Tampering

• Repudiation

• Information Disclosure

• Denial of Service

• Elevation of privilege

Read
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

if these STRIDE notions are not clear

MITRE ATT&CK is probably too detailed for threat modelling

53

prevention vs detection & reaction

54

prevention vs detection & reaction

• Prevention seems to be the way to ensure security, but

detection & response often more important and effective

– Eg. breaking into a house with large windows is trivial;

despite this absence of prevention, detection & reaction still

provides security against burglars

– Most effective security requirement for most persons and

organisations: make good back-ups, so that you can recover

after an attack

• NB don't ever be tempted into thinking that good
prevention makes detection & reaction superfluous.

• Hence important security requirements to include are

– doing monitoring

– having logs for auditing and forensics

– having someone actually inspecting the logs

– ...

55

For you to read & do

1. To read: CyBok chapter on Secure Software Lifecycle

2. To do: check out

a) the latest US-CERT bulletin

b) recent CVEs for the browser, PDF viewer and other software
you use on a regular basis

c) some of their CVSS scores

3. To do: brush up on you C(++) knowledge

58

The kind of C(++) code you will see next week

char* copy_and_print(char* string) {

char* b = malloc(strlen(string));

strcpy(b,string); // copy string to b

printf(”The string is %s.”, b);

free(b);

return(b);

}

int sum_using_pointer_arithmetic(int a[]) {

int sum = 0;

int *pointer = a;

for (int i=0; i<4; i++){

sum = sum + *pointer;

pointer++; }

return sum;

}

59

	Slide 1: Software Security Introduction
	Slide 2: A brief history of software security: January 2002
	Slide 3: Twenty years later (Sept 2022 & May 2023)
	Slide 4: So: problem solved?
	Slide 5: Goals of this course
	Slide 6: Practicalities: prerequisites
	Slide 7: The kind of C(++) code you’ll see next week
	Slide 8: The kind of Java code you’ll see next month
	Slide 9: The kind of object-oriented code you’ll see next month
	Slide 10: Exam material & mandatory reading
	Slide 11: Not exam material
	Slide 12: Not exam material
	Slide 13: Practicalities: form & examination
	Slide 14: Today
	Slide 15: Motivation
	Slide 16: What is software security?
	Slide 17: How do computer systems get ‘hacked’?
	Slide 18: Fairy tales
	Slide 19
	Slide 20: The big problem
	Slide 21: Changing nature of attackers
	Slide 22: Prices for 0days
	Slide 23: Prices for 0days
	Slide 24: Apple & Google payouts
	Slide 25: Software security: crucial facts
	Slide 26: security software ≠ software security
	Slide 27: Root causes
	Slide 28: Quick audience polls
	Slide 29: Quick audience poll
	Slide 30: More root causes: security vs functionality
	Slide 31: Root causes: complexity
	Slide 32: Functionality & complexity vs security Lost battles?
	Slide 33: Recap
	Slide 34: Types of software security problems
	Slide 35: Typical software security flaws
	Slide 36: ‘Levels’ at which security flaws can arise
	Slide 37: The dismal state of software security
	Slide 38: Security in the Software Development Life Cycle (SDLC) [Material cover in CyBok chapter on Secure Software Lifecycle by Laurie Williams, see course web page]
	Slide 39: How can we make software secure?
	Slide 40: How can we make software more secure?
	Slide 41: Security in Software Development Lifecycle
	Slide 42: “Shifting left”
	Slide 43: DAST, SAST, ...
	Slide 44: Methodologies for secure software development
	Slide 45: Microsoft’s SDL Optimisation Model
	Slide 46: Security in the software development life cycle
	Slide 47: OpenSAMM
	Slide 48: BSIMM (Building Security In Maturity Model)
	Slide 49: BSIMM: comparing your security maturity
	Slide 50: But first…
	Slide 51: Discussing security is meaningless without answering
	Slide 52: Security requirements
	Slide 53: Threat modelling
	Slide 54: prevention vs detection & reaction
	Slide 55: prevention vs detection & reaction
	Slide 58: For you to read & do
	Slide 59: The kind of C(++) code you will see next week

