Radboud University of Nijmegen

Radboud
¢ University
< Nijmegen

A -Ayy

o

Software Security

OWASP
Open Source Review Project

Arne Aarts (s4667271)
Michail Kapsalakis (s4667700)
Sander Peters (s4677595)
Le Phuoc Tho (s4674936)

1. Organization

Initial scanning was performed using the Fortify tool, and performing a scan on every single
piece of code. Upon having a brief look at all the error categories as a group, the errors were
divided amongst the group members based on what sort of error it was (SQL injection, cross-site
scripting, etc.). These errors were then located and double-checked by the group members, and,
where relevant, the corresponding checkbox in the OWASP Verification Standard was marked as
a Fail.

It was quickly found out that after a round of static analysis with Fortify only about 20% of the
checkboxes were filled in. To fill in the rest of them, the decision was made to divide the
categories of the OWASP Verification Standard (V2-V9) among the group members. These
could then be filled in after a manual code review or through use of the web application. In case
of doubt or uncertainty, questionable points would be discussed with the rest of the group, and if
no clear consensus could be reached, they could be marked as such on the verification standard.

At times, inconclusive statements were made as a result of sampling. There were situations
where it was not feasible to go through all the code to look for the absence of something. In these
cases, certain pieces of code were reviewed, and the results of this were (perhaps incorrectly)
extrapolated to the entire code.

In the following weeks, group members reviewed each other's verdicts in pairs, to see if there
weren’t any mistakes or points of disagreement. This led to some minor revisions in the
verification standard.

To conclude the project, we worked on this report. In the final weeks, the group members also
performed some final revisions on the checklist of verdicts, as well as rewriting them in a more
clear and consistent way, making them readable to others. There was no strict division in who
wrote what part of the report, people volunteered for parts they wanted to write, and others added
onto it and made changes as necessary.

2. Verdict

Verification Verdict Explanation
The testcms.php parses requested URL and redirect to
2.1 Pass i . . .
login page if the request relate to admin actions.
2.2 Pass Login.php and reset.php use input type for password.
24 Pass All authentications are handled at server side by users.php
code.
All login failures are safely handled when running the
2.6 Pass .. .
application for checking purpose.
Password fields allow everything. They do however not
2.7 Pass .
encourage anything.
As indicated from Fortify, login.php and reset.php files use
2.8 Fail autocompletion in the form, which allows browsers to
retain information in their history.
As indicated from the code of edit.php file, the user can
. change the password, however there is only one field for
2.9 Fail . : .
the password input and there is no password confirmation
field.
All communication are transported unencrypted (unless
2.16 Fail the server is configured with a valid certificate to secure
communication via HTTPS).
Password recovery is conducted in a way that the user will
2.17 Pass : . .
receive an email to follow a link for password reset.
Limited information prompted to input, such as "Incorrect
2.18 Pass pass", "Account not found". Hence information
enumeration is unlikely possible.
There is no default passwords involved in the operation.
2.19 Pass After the installation of TestCMS the default password of
database in config.php file has been changed.
290 Fail There is no control to check automatic password attacks
such as captcha.
2.22 Pass The application uses a hash value in the link for password

2

reset.

2.24 Fail There are no secret questions.
2.27 Fail There are no checks whatsoever on passwords.
. The authentication process is primitive, it works by
2.30 Fail ..
comparing input user and password (hash) from database.
As 2.1 passed, all admin pages are authentication required,
2.32 Pass .
therefore untrusted parties cannot access them.
Don’t know -
31 Security It is not clear from the requirement what it is expected to
' requirement | be checked.
unclear
Cookie is set to expired when logout, hence If the admin
3.2 Pass logged out, the attacker doesn't have access with the
stealing cookies.
By the use of the application and code review, particularly
33 Fail in session.php, there is no function to manage timeout and
invalidate the session.
It is technically a Pass, but there is a problem with the
3.5 Pass redirection in the front-end pages, because it is in the same
tab and the user cannot see the logout functionality.
Session id is not accessed by any function to display on
URL, error message or logs (only user.php,
3.6 Pass configuration.php and functions.php gets session value).
Furthermore, URL rewrite depends on hosting
environment (rewriting rule in Apache for example).
. The web app doesn't generate a new session_id after the
3.7 Fail e
authentication.
NA -checkis | The length of session id depends on the php.ini's
3.11 beyond scope of | parameter session.hash bits per character, which is on the
code server-side.
With the use of Fortify and review of the code, it is
3.12 Fail obvious that the HttpOnly and Secure Attributes are not
set.
3.16 NA - other The requirement is not relevant to the content management

web application.

This requirement is not relevant to this web application.

3.17 NA-other Maybe, only the administrator would be able to see the
active session list.

. User changes his password and remains connected to the

3.18 Fail Lo
web application.

In the web application a “User” account has the same

4.1 Fail privileges with an “Administrator” account. A “User” can
also delete the account of an “Administrator”.

It does not seem intended for a user to access all other
, information in the system, yet the system allows this. All
Don’t know - .\

4.4 Other sensitive data is however only available in the admin area
which is protected by sessions, so a guest could not see any
data of a user.

. The default htaccess file does not forbid directory

4.5 Fail .
browsing.

Don't know - not We did not observe any failing, nor were we able to find

4.8 clear how to . , O

. where this happens so we don’t know if it fails securely.
check this

4.9 Trivial pass There is no access control client side.

4.13 Fail The website doesn't use CSRF tokens at all.

All access control on the admin area seems to be based on

4.16 Pass) .
cookie sessions.

Buffer overflows in PHP are not common, but they are
NA- check is [possible. This is a fault of bugs in PHP, and not in the
5.1 beyond scope of | code. However, the application does not do any input
code verification checks on, for example, length, that might help
combat these bugs.

53 Fail Requests are properly denied, but they are not logged.

55 Pass All user input goes through a cleaning function in
input.php.

As indicated by Fortify, db.php and installer.php execute

5.10 Fail an SQL query built from untrusted input without

performing and validation or input sanitizing.

5.11 Trivial pass | LDAP is not used.
5.12 Trivial pass | There is no direct access to the OS command line.
The template.php class parses a file path, but this does not
5.13 Pass use data from any LFI-vulnerable functions, so it is not a
problem.
Don’t Know - The rss.php class makes an XML DOM tree. It does not
5.14 Other seem to be injectable, but our knowledge of XML injection
is not enough to know if this is really true.
The input/output does not get properly validated according
5.15 Fail to fortify. This is a systematic fault that happens
throughout the project.
599 Fail system/classes/post/php does no sanitization checks on the
' posted or edited HTML.
The program uses crypt(), which is based on DES. DES is
7.2 Pass .
not vulnerable to oracle padding.
The program uses PHP's default crypt() function in
7.7 Fail installer.php and users.php, which uses DES, considered a
very insecure algorithm. They are also not salted.
The amount of information given when an error occurs is
2.1 Pass settable in an option file, the default setting is to return an
' 500 error page back. Thus by default no information can
leak through errors.
9.1 Pass We were unable to find any forms that cache.
9.3 Pass Sampling did not find any URL parameters used for
’ sensitive input.
9.4 Pass The cache settings use no-store by default, though there is
' no specification for this in the PHP files themselves.
Only cookies are used for session management. The
9.9 Pass cookies are randomized, and they do not contain any

sensitive data.

3. Reflection

In general, the ASVS list was well-understood. We recognize its usefulness, as it is quite
exhaustive and, in most cases, clear. However, we found certain exceptions in which the ASVS
was confusing. One of such verifications is 3.16 which does not clearly indicate whether the
numbers of site visitors should be limited or once a user log in, there should not be another log in
with the same credential. We were confused by 3.1, 3.16 and 4.4. This is an inevitable result due
to the restrictions of natural language, which may sometimes be interpreted differently by
different people. Hence making a clear reference context for each verification could be an
enhancement for ASVS.

We found the usefulness of Fortify and RIPS to be lacking with regards to OWASP. While it is
useful to get a good first glance of vulnerabilities in the web application with minimal effort, it
was not especially useful with regards to ticking things off on the checklist. There is no
integration between the ASVS and these static analysis tools, and as a whole the checkmarks
gathered from these tools covered less than 20% of the ASVS list.

Although the time investment required for using these tools is very small, they still don’t seem to
be especially useful for this purpose. A static analysis tool specifically developed for security
standard verification would be more helpful. Though this will most likely increase the
complexity of the tool and increase the amount of false positives. Thus reducing the usability of
said tool. Therefore, a manual code review will probably remain inevitable.

We experienced the manual code review to be the most difficult and time-intensive part. This
was partially as a result of inexperience, as many of us had little to no experience with PHP, and
of course none of us had ever seen this particular web application before. It certainly was the
bottleneck, as we spent by far the most time on it. Finding out how the pieces of code worked
and interlinked was a difficult pursuit and often required different team members to look at it
together. It would also have helped a lot if we had some more documentation for the web
application, such as a class diagram or other design documents, so we’d have a better
understanding of the underlying software architecture.

The security review process itself could also be improved, as simply dividing people among
different chapters of the ASVS checklist proved to be fairly arbitrary and not that efficient. A
better strategy might have been to divide the code instead. This way the reviewer only needs to
concern itself with that piece of code and which points could be applicable. This approach would
most likely scale better since the amount of requirements in the ASVS is static. We think it might
be even better to integrating periodic security reviews during development. This way compliance

with the ASVS can be documented piecemeal, hopefully reducing the complexity of the task.
And might provide useful documentation for later stages of the applications life cycle.

Finally, we suggest the following improvements to TestCMS code: All points that failed the
ASVS need to be fixed. Most important of which are the missing permission management
system and any failures that directly relate to the top 10 security holes: Injection, weak session
management, XSS and CSRF. It is important for there to be a good collaboration between the
designer, developer and code reviewer to improve efficiency and accuracy. The code has to be
more secure in order to avoid the malicious users to attack the application.

