Software Security - Project 11

Ali Reza Ghavamipour Johanna Jung Paulus Meessen
Thomas Rinsma

January 8, 2016

Contents

1 Introduction
1.1 Methodology

2 Owasp requirements
2.1 V2: Authentication Verification Requirements
2.2 V3: Session Management Verification Requirements
2.3 V4: Access Control Verification
2.4 V5: Malicious input handling verification requirements
2.5 V7. Cryptography at rest verification requirements
2.6 V8: Error handling and logging verification requirements
2.7 V9: Data protection verification requirements
2.8 V10: Communications security verification requirements

3 Reflection
3.1 Effectiveness of the code analysis tools
3.2 Completeness and usefulness of OWASP guidelines when com-
bined with static code analysis

4 Further research

12
15
18
19
21
22

23
24

24

25

1 Introduction

In this project we try to asses the security of a web application by means of anal-
ysis through static code analyzers and the OWASP web security guidelines. The
objective is to gain insight in the performance of static code analyzers, specifically
RATS, RIPS and Fortify, with regards to the security guidelines of the OWASP.

Web Applications belong to one of the most used types of software. Many
web application developers are not formally trained in their craft, and quite often
only learn from experience. Even when the developers have some type of formal
training as a programmer, over the past decades the curriculum has seldom been
built up from a security perspective.

Many developers therefore do not have a relevant threat model to apply to the
code they write for web applications. OWASP gives developers a set of guidelines
to help them to craft their code to be resistant to the most prevalent attacks.
For the most prevalent threads, these guidelines describe a set of requirements to
be used to harden the application. It can still be a rather laborious and tedious
effort to work through an entire codebase to verify that the application satisfies
all the requirements, but there are various software applications that can speed
up this process by helping to analyze the code. When using these applications
it becomes way more manageable to work your way through a codebase and to
harden the application.

One of the problems a developer will encounter when trying to figure if her
application is compliant with the requirements when using software to analyze
the code, is that the software is able to verify the presence of (certain) bugs and
vulnerabilities (negative requirement), while the OWASP guidelines are often
about the absence of those bugs or the presence of a certain feature (positive
requirement). This could mean that the tools are often not very well suited to
assess whether an application passes a certain requirement, even though they
might easily spot where the code fails to comply to a requirement.

In the conclusion of this project we want to make three main assessments:

1. How workable are the OWASP guidelines when the developer has to rely
on static code analyzers as the basis for her security knowledge.

2. How do the three code analyzers (RATS, RIPS and Fortify) compare in
terms of spotting vulnerabilities.

3. How effective are the three code analyzers in the assessment of the OWASP
requirements.

In order to try to give a meaningful interpretation, we did an experiment with
a web application called TestCMS V2, which appears to be a custom version of
the Content Management System AnchorCMS, written in PHP. Even though
none of us are seasoned PHP developers, we all have some relevant skills to asses
the security of this piece of software.

1.1 Methodology

After analysis using the above mentioned tools, we assign one of the following
verdicts to each of the investigated requirements:

NOT RELEVANT When the requirement asks for a feature or a functionality
that is not present in our application.

FAIL When the requirement is not met, and this shows from either the use of
the application, or when one or more of the static analysis tools indicates a
severe shortcoming with regards to the requirement. We won’t investigate
the actual danger of these vulnerabilities as we assume, neither will the
developer.

DON’T KNOW When there are reasonable indications or warnings that the
code might not comply to the requirements, even though none of our tools
can point out the specific problem. This might be the case when the re-
quirement asks for a feature of the language. In a real world application
it might be easy to look at the language documentation and search in the
code for places where the default settings are configured. But this can of-
ten change between the different versions of PHP. Requirements with this
property will often contain a short explanation.

PASS When it is either obvious from using the application that the requirement
is passed, or when the requirement is relevant to the application and none
of the tools find any bugs or give any warnings related to this requirement.
Additionally, the tools should be expected to perform checks in the area of
this requirement, or in other words: it is only a pass when the tools do look
for a the vulnerability but don’t find it in the application.

The final assessment of course will be very subjective, especially in the scope
of how this project is defined, but hopefully allow beginning or inexperienced
developers to asses the relevance of the

2 Owasp requirements

2.1 V2: Authentication Verification Requirements

Level 1

i

Description

Verdict

2.1

Verify all pages and resources by default require authentica-
tion except those specifically intended to be public (Principle
of complete mediation).

RATS finds nothing relevant. RIPS finds nothing rele-
vant. When checking manually, we find that all admin pages
require authentication and redirect to the login form when
not authenticated.

PASS

2.2

Verify that all password fields do not echo the user’s password
when it is entered.

RATS finds nothing relevant. RIPS finds nothing rele-
vant. Manually checking shows that the “add user” page, the
“edit user” page, and the login form all show the password
in an input field with a type of password. Meaning that it
will be visible as a series of dots, making it unreadable.

PASS

24

Verify all authentication controls are enforced on the server
side.

Neither RATS nor RIPS find anything relevant and don’t
seem to check for this. Manually checking the code confirms
that this requirement is met.

PASS

2.6

Verify all authentication controls fail securely to ensure
attackers cannot log in.

None of the tools find anything relevant. Manual checking
confirms that all authentication controls fail securely.

PASS

2.7

Verify all password entry fields allow, or encourage, the use
of passphrases, and do not prevent long passphrases/highly
complex password being entered.

None of the tools check for this. Manually checking
the code makes us conclude that no checks are being
performed, and no such thing is being encouraged.

FAIL

2.8

Verify all account identity authentication functions that
might regain access to the account are at least as resistant to
attack as the primary authentication mechanism.

None of the tools find anything relevant. The only sec-
ondary mechanism to regain access to an account is the
password reset mechanism, which required access to the
original email address and can therefore be considered as
resistant to attack.

PASS

2.9

Verify that the changing password functionality includes the
old password, the new password, and a password confirma-
tion.

None of the tools find anything relevant. No old pass-
word is required in the password change form.

FAIL

2.16

Verify that credentials are transported using a suitable
encrypted link and that all pages/functions that require a
user to enter credentials are done so using an encrypted link.

None of the tools find anything relevant. No transport
encryption is implemented in the application, however the
use of TLS or similar technologies is outside the scope of the
application code itself.

NOT RELEVANT

2.17

Verify that the forgotten password function and other
recovery paths do not reveal the current password and that
the new password is not sent in clear text to the user.

None of the tools find anything relevant. Manual code
analysis confirms that the old password is not revealed nor
sent in the clear.

PASS

2.18

Verify that information enumeration is not possible via login,
password reset, or forgotten account functionality.

None of the tools find anything relevant. The login
form does not give a different error when given a nonexistent
account or when given a wrong password. However the
forgotten password form does inform the user when an email
address of a nonexistent account is given.

FAIL

2.19

Verify there are no default passwords in use for the applica-
tion framework or any components used by the application.

None of the tools find anything relevant. The password
for the default admin account is randomly generated at
setup time. The database password is requested from the
administrator.

PASS

2.20

Verify that request throttling is in place to prevent automated
attacks against common authentication attacks such as brute
force attacks or denial of service attacks.

None of the tools find anything relevant. This is out-
side the scope of the application code and should be
implemented at integration level.

NOT RELEVANT

2.22

Verify that forgotten password and other recovery paths use
a soft token, mobile push or an offline recovery mechanism.

None of the tools find anything relevant. Manual anal-
ysis confirms that an MDb5 token is generated upon a
password reset, from the concatenation of the user’s ID,
email address and their old password. This is sent in the
recovery email inside a hyperlink, acting as a soft token.

PASS

2.24

Verify that if knowledge based questions (“secret questions”)
are required, the questions should be strong enough to
protect the application.

None of the tools find anything relevant. No system
for knowledge based questions is implemented.

NOT RELEVANT

2.27

Verify that measures are in place to block the use of com-
monly chosen passwords and weak pass-phrases.

None of the tools find anything relevant. Testing con-
firms that no such measures are in place.

FAIL

2.30

Verify that if an application allows users to authenticate,
they use a proven secure authentication mechanism.

None of the tools find anything relevant. Password
based authentication is used, however the implementation of
this is probably not proven secure.

DON’'T KNOW

2.32

Verify that administrative interfaces are not accessible to
untrusted parties.

None of the tools find anything relevant. The admin
interface is not accessible when not logged in, however testing
turns out that regular non-admin users are able to access
the entire admin interface where they can perform actions
like remove administrators or increase their own level to
administrator.

FAIL

2.2 V3: Session Management Verification Requirements

Level 1
Description Verdict
3.1 | Verify that there is no custom session manager, or that the PASS

custom session manager is resistant against all common session
management attacks.

RATS finds nothing, RIPS says there are ses-
sions used in /system/classes/cookie.php and
/system/classes/session.php. The project uses the de-
fault PHP session manager, which was unsafe in older versions of
PHP. The programmer did comment the intent to use a custom
session manager in the future, but for now it passes.

3.2 | Verify that sessions are invalidated when the user logs out. PASS

RATS finds nothing. RIPS points to
/system/classes/session.php, which has a forget method.
Documentation shows that this method is called by the logout
method in the Users class. Fortify doesn’t flag anything regarding
sessions or cookies as suspicious.

3.3 | Verify that sessions timeout after a specified period of inactivity. PASS

RATS finds nothing. RIPS finds a session expiration time in
config.php of 3600 seconds. Fortify doesn’t flag anything
regarding sessions or cookies as suspicious.

3.5 | Verify that all pages that require authentication have easy and PASS
visible access to logout functionality.

RATS finds nothing. RIPS shows that the logout method
is available on all pages that include includes/header.php, which
is called by the view-render template. Without actually reading
the code none of the tools actually show if pages can be rendered
without the view method.

Fortify doesn’t flag anything regarding sessions or cookies as suspi-
cious. Fortify does seem to be able to show data leaks.

We shall assign a pass, but that is on the assumption that the
model-view-controller design is implemented correct and Fortify
would have alerted us otherwise.

3.6

Verify that the session id is never disclosed in URLs, error mes-
sages, or logs. This includes verifying that the application does
not support URL rewriting of session cookies.

RATS finds nothing. RIPS shows that sessions are only managed
through the get method of the session class, and this appears
never to be called in a scope that leaks data. It should be
possible to do URL rewriting, but not to malicious intent. From
requirement 3.5 we may assume every page that is called and
requires permissions, verifies the authentication.

Fortify doesn’t have any relevant alerts.

PASS

3.7

Verify that all successful authentication and re-authentication
generates a new session and session id.

RATS finds nothing. RIPS points to where to look in the
source: system/classes/users.php. Here we read on line 91,
that for every successful login an new session is started, with
associated id.

PASS

3.11

Verify that session ids are sufficiently long, random and unique
across the correct active session base.

RATS finds nothing. RIPS points us to the configuration
file and system/classes/session.php. The sessions are managed
by the internal php session manager, but the keys for the sessions
are managed by our application. The keys are the database-record
of the logged in user. So the keys are as unique as the users of the
system.

Fortify doesn’t tell us anything.

As the tool tells us this requirement is not explicitly managed with-
ing the application we have to study the PHP source to figure this
out. Which our test does not require.

DON’'T KNOW

3.12

Verify that session ids stored in cookies have their path set to an
appropriately restrictive value for the application, and authentica-
tion session tokens additionally set the “HttpOnly” and “secure”
attributes

RATS finds nothing. RIPS finds nothing. Fortify finds nothing.
This should fail however, because in the default cookie configura-
tion in PHP both properties are not set. (https://secure.php.
net/manual/en/function.session-set-cookie-params.php)
But due to the rules of this game, we shall give it a pass.

We could construct a rule that searches through the sources for
session.set and have an assessment of how good the defaults are.
This is in fact so reasonable that we might expect it to be built in
our testing tools, and ass such will give it a pass.

PASS

3.16

Verify that the application limits the number of active concurrent
sessions.

RATS finds nothing. RIPS finds nothing. Fortify finds nothing.
This is again part of the PHP internal session management. It is
on by default and under the conditions of our tests probably should
warrant a pass.

DON’'T KNOW

3.17

Verify that an active session list is displayed in the account profile
or similar of each user. The user should be able to terminate any
active session.

RATS finds nothing. RIPS finds nothing. Fortify finds nothing.
But as this is part of the application we can ask RIPS or Fortify to
search for this functionality.

The only information about the session that is given to the user, is
the message in the header that she is currently logged in.

Also, actually using the application shows that this feature is not
present.

FAIL

3.18

Verify the user is prompted with the option to terminate all other
active sessions after a successful change password process.

RATS finds nothing. RIPS finds nothing. Fortify finds nothing.
This functionality is however not present, when actually using the
application.

FAIL

10

Level 2

Description Verdict

3.10 | Verify that only session ids generated by the application framework | DON’T KNOW
are recognized as active by the application.
RATS finds nothing. RIPS finds nothing. Fortify finds nothing.
In the documentation there is no internal model or store for sessions
outside of the PHP session functionality. This should fail.

Level 3
| Description Verdict
3.4 | Verify that sessions timeout after an administratively-configurable | DON’T KNOW

maximum time period regardless of activity (an absolute timeout).

RATS finds nothing. RIPS finds nothing. Fortify finds nothing.

If this functionality is present, it is part of PHP. This is not activate
by default, does not guarantee old session deletion, and can be dis-
abled if the server is configured badly or maliciously. (https://
secure.php.net/manual/en/session.security.php) But there
is no way to detect this using our scanners.

11

2.3 V4: Access Control Verification

Description

Verdict

Verify that the principle of least privilege exists - users should
only be able to access functions, data files, URLs, controllers,
services, and other resources, for which they possess specific
authorization. This implies protection against spoofing and
elevation of privilege.

Neither RATS nor RIPS find anything relevant. Fortify
finds nothing. but after manually checking, nothing exists
about principle of least privilege. Normal users can com-
pletely edit administrator, can change everything like labels,
password, and username further users can make new users,
new administrators can delete administrators account.

FAIL

4.4

Verify that access to sensitive records is protected, such that
only authorized objects or data is accessible to each user (for
example, protect against users tampering with a parameter
to see or alter another user’s account).

RATS, RIPS and fortify dont find anything. There is
not enough protection against some records. Data is acces-
sible and editable for all users with any access permission
level.

FAIL

4.5

Verify that directory browsing is disabled unless deliberately
desired.

RATS and RIPS and fortify dont show anything rele-
vant. Checked manually, directory browsing is disable, user
can see the directories but if try to open any important files,
an error will be appeared ”"No direct access allowed.” .

PASS

4.8

Verify that access controls fail securely.

RATS and RIPS and fortify dont show anything rele-
vant. Manually checked, No function find for handling
errors securely. No specific function found that can throw
exceptions during the authenticating process.

FAIL

12

4.9

Verify that the same access control rules implied by the
presentation layer are enforced on the server side.

RATS finds nothing. RIPS finds nothing. Fortify finds
nothing. Manually checking the code confirms the require-
ments.

PASS

4.13

Verify that the application or framework uses strong random
anti-CSRF tokens or has another transaction protection
mechanism.

There is no Anti CSRF Tokens for PHP codes (it is
used in ASP.NET) but in PHP5 there is a NoCSRF token
instead of Anti CSRF Token. Generally tools show there are
some Cross Site Request Forgery bugs in this CMS. Checked
manually there is no mechanism that can prevent CSRF
attack.

FAIL

4.16

Verify that the application correctly enforces context-sensitive
authorisation so as to not allow unauthorised manipulation
by means of parameter tampering.

Tools nothing find relevant. With considering this def-
inition: http://www.eappdev.com/sap-hr-abap/context-
authorization-check There is no specific Codes and technical
settings for Context-sensitive Structural Authorizations.

FAIL

Level 2

i

Description

Verdict

4.10

Verify that all user and data attributes and policy informa-
tion used by access controls cannot be manipulated by end
users unless specifically authorized.

RATS finds nothing. RIPS finds nothing. Fortify finds
nothing. Everything can be change by users and end users!!

FAIL

13

4.12

Verify that all access control decisions can be logged and all
failed decisions are logged.

None of tools dont find anything relevant. = Manually
checked, logging is disable by default but if you enable this
function nothing important will be logged.

FAIL

4.14

Verify the system can protect against aggregate or continuous
access of secured functions, resources, or data. For example,
consider the use of a resource governor to limit the number of
edits per hour or to prevent the entire database from being
scraped by an individual user.

RIPS, RATS, Fortify nothing find. Checked manually,
there is no protect against aggregate or continuous access
and there is no ability to restrict some functions. All users
can do their accessible features unlimited numbers.

FAIL

4.15

Verify the application has additional authorization (such as
step up or adaptive authentication) for lower value systems,
and / or segregation of duties for high value applications to
enforce anti-fraud controls as per the risk of application and
past fraud.

None of the tools found anything relevant.

DON'T KNOW

Level 3

i

Description

Verdict

4.11

Verify that there is a centralized mechanism (including
libraries that call external authorization services) for protect-
ing access to each type of protected resource.

Nothing find relevant for any specific centralized mech-
anism.

DON'T KNOW

14

2.4 V5: Malicious input handling verification requirements

Level 1
Description Verdict
5.1 | Verify that the runtime environment is not susceptible to buffer PASS

overflows, or that security controls prevent buffer overflows.

According to OWASP! PHP is safe when it comes to buffer
overflows as long as no vulnerable programs or extensions are used.
Additionally, none of the tools flag any possible threats due to
buffer overflow.

5.3 | Verify that server side input validation failures result in request FAIL
rejection and are logged.

The tools do not focus on the logging of failed input valida-
tion. A simple manual check however, showed that at least not
every kind of failed validation is logged. An SQL injection attempt
in the comment form was rejected by the application but was not
logged.

5.5 | Verify that input validation routines are enforced on the server side. FAIL

RIPS as well as Fortify complain about problems concerning
XSS and SQL injection. That suggests, that user input is not
validated on the server side in every case. A manual XSS attack
verified this assumption. A script tag could easily be introduced
in the comments.

5.10 | Verify that all SQL queries, HQL, OSQL, NOSQL and stored FAIL
procedures, calling of stored procedures are protected by the use
of prepared statements or query parameteriation, and thus not
susceptible to SQL injection

Fortify detects 6 issues. Prepared statements are introduced
in db.php. However, the functions are not always called in the way
they are meant to. E.g. see comments.php, line 69.

Lwww.owasp.org/index.php/Buffer_Overflows#Description

15

5.11

Verify that the application is not susceptible to LDAP Injection,
or that security controls prevent LDAP Injection.

Neither Fortify nor RIPS and RATS spot any issues regard-
ing LDAP Injection.

PASS

5.12

Verify that the application is not susceptible to OS Command
Injection, or that security controls prevent OS Command Injection.

Neither the tools nor a code inspection resulted in critical
findings regarding OS Command Injection. Neither system(), nor
exec() or passthru() in used in the code.

PASS

5.13

Verify that the application is not susceptible to Remote File
Inclusion (RFI) or Local File Inclusion (LFI) when content is used
that is a path to a file.

RIPS finds 23 issues regarding file inclusion. RIPS claims
that some file paths depend on user inputs. However, after a closer
look on the code it doesn’t seem like they actually do.

PASS

5.14

Verify that the application is not susceptible to common XML
attacks, such as XPath query tampering, XML External Entity
attacks, and XML injection attacks.

Neither Fortify nor RIPS or RATS spot any issues regarding
XML attacks.

PASS

5.15

Ensure that all string variables placed into HT'ML or other web
client code is either properly contextually encoded manually, or
utilize templates that automatically encode contextually to ensure
the application is not susceptible to reflected, stored and DOM
Cross-Site Scripting (XSS) attacks.

50 issues are detected by Fortify, 300 by RIPS. User input is
used in the HTML without escaping it. This was also verified by a
successful manual XSS attack.

FAIL

16

5.22

Make sure untrusted HTML from WYSIWYG editors or similar
are properly sanitized with an HTML sanitizer and handle it
appropriately according to the input validation task and encoding
task.

WYSIWYG editors or similar are not used in the CMS.

NOT RELEVANT

17

2.5 VT7: Cryptography at rest verification requirements

Level 1
| Description Verdict
7.2 | Verify that all cryptographic modules fail securely, and errors are | DON’T KNOW

handled in a way that does not enable oracle padding.

Fortify did not find any issues concerning error handling of
cryptographic modules.

7.7

Verify that cryptographic algorithms used by the application have
been validated against FIPS 140-2 or an equivalent standard.

Fortify found 5 issues concerning weak encryption. FEach of
them is based on the usage of the function crypt(). “crypt()
will return a hashed string using the standard Unix DES-based
algorithm or alternative algorithms that may be available on the
system.”? However, DES is not validated against FIPS 140-2.
Approved hash algorithms are algorithms following either the
Secure Hash Standard (SHS) or the SHA-3 Standard according to
a recent draft of FIPS 140-2 Annex A® from January 2016. Hence,
this requirement is most likely not satisfied.

DON'T KNOW

2http://php.net/manual /en /function.crypt.php
3http://csre.nist.gov/publications/fips/fips140-2 /fips1402annexa.pdf

18

2.6 V8: Error handling and logging verification require-

ments
Level 1
| Description Verdict
8.1 | Verify that the application does not output error messages | FAIL
or stack traces containing sensitive data that could assist an
attacker, including session id, software / framework versions
and personal information.
None of the tools find anything relevant. The applica-
tion does not seem to display any generated errors but this
might be dependent on the server configuration. The CMS
does however display its version number at the bottom of
every page.
Level 2
| Description Verdict
8.2 | Verify that error handling logic in security controls denies | PASS
access by default.
None of the tools find anything relevant. Error handling is
disabled entirely by default.
8.3 | Verify that security logging protocols provide the ability to | FAIL
log success and particularly failure events that are identified
as security-relevant.
None of the tools find anything relevant. Logging is
disabled by default, and no security related events are logged
if it is enabled.
8.4 | Verify that each log event includes necessary information | FAIL
that would allow for a detailed investigation of the time-line
when an event happens.
None of the tools find anything relevant. Logging is
disabled by default, and no security related events are logged
if it is enabled.

19

8.6 | Verify that security logs are protected from unauthorized | PASS
access and modification.
None of the tools find anything relevant. No security
logs are produced.

8.7 | Verify that the application does not log sensitive data as | PASS

defined under local privacy laws or regulations, organizational
sensitive data as defined by a risk assessment, or sensitive
authentication data that could assist an attacker, including
user’s session identifiers, password hashes, or API tokens.

None of the tools find anything relevant. Logging is
disabled by default, and no security related events are logged
if it is enabled.

20

2.7

V9: Data protection verification requirements

Level 1

i

Description

Verdict

9.1

Verify that all forms containing sensitive information have disabled
client side caching, including autocomplete features.

To disable caching and autocomplete for sensitive data the
HTML tags autocomplete="off” and CONTENT="no-cache”
should be use although they are not supported by every browser.
Neither caching nor autocomplete is disabled for sensitive data.

FAIL

9.3

Verify that all sensitive data is sent to the server in the HTTP
message body or headers (i.e., URL parameters are never used to
send sensitive data).

Sensitive data is always sent via POST.

PASS

9.4

Verify that the application sets appropriate anti-caching headers
as per the risk of the application, such as the following:

Expires: Tue, 03 Jul 2001 06:00:00 GMT

Last-Modified: now GMT

Cache-Control: no-store, no-cache, must-revalidate, max-age=0
Cache-Control: post-check=0, pre-check=0

Pragma: no-cache

As already described in 9.1, caching is disabled nowhere in
the application.

FAIL

9.9

Verify that data stored in client side storage - such as HTML)5
local storage, session storage, IndexedDB, regular cookies or Flash
cookies - does not contain sensitive or PII).

None of the tools found anything relevant. Neither local-
Storage nor IndexedDB are used in the application, cookies do not
store sensitive data.

PASS

21

2.8 V10: Communications security verification require-
ments

This section is about Transport Layer Security (TLS), server certificates and
sensitive data encryption.

After studying through the requirements, we conclude that they all depend
on the server configuration regarding certificates. The server and certificate con-
figuration are separate from the code of the CMS and are installation-specific.
Therefore the tools won’t help us find any vulnerabilities and we can conclude
that this entire chapter falls outside the scope of the project.

We will assign the verdict DON’T KNOW to all of the requirements of
V10.

22

3 Reflection

For this project we have tried to make an assessment of the usability and effec-
tiveness of the OWASP guidelines and several static code analysis tools, in order
to be able to evaluate the security of the TestCMS web application.

While the work we have done in accordance to the methodology described in
the introduction will definitely provide a judgment of these tools and guidelines,
the results will remain very strictly related to the nature of this academic exercise.
It remains important to note that our findings only reflect on our judgment with
respect to the tools and guidelines, and should by no means be interpreted as
an assessment of the web application. In this conclusion we make three main
assessments:

e How workable are the OWASP guidelines, when the developer has to rely on
static code analysis tools as the basis for her knowledge of the application’s
security?

e How do the three code analyzers (RATS, RIPS and Fortify) compare in
terms of spotting vulnerabilities?

e How effective are the three code analyzers are in the assessment of the
OWASP guidelines?

Using the OWASP guidelines, we managed to spot many of the (security)
vulnerabilities present in the CMS. Some of the most serious problems were spot-
ted using the least sophisticated method: just by checking if something works.
Simply using the app proves to be a very adequate measure to spot problems.

The OWASP document makes use of a positive formulation which allows for
easy and practical testing. In many cases the positive criteria can easily be applied
to the relevant web application and a test can be devised to make a distinction
between passing and failing. For example, the presence of a certain feature like a
logout button for certain pages: if you can see one on the relevant page, it passes,
otherwise it fails. In case of such a failure, the positive requirement can be used
as a goal when improving the code.

The problem, however, is that in many cases it is very hard to come up
with a usable and effective test in order to verify or discard a positive criterion,
especially in relatively bad code. To use the example of the logout functionality
again: if the presence of the button is required for a dynamic set of conditions,
our previous experiment might still allow us to find a failure, but it no longer
allows us to verify the condition without an exhaustive search through the entire
set of states the application can be in. Therefore, in order to positively verify
certain positive conditions, we have to find a proof using the source code of the
application, in order to show that all possible states of the required kind have
the property. While still a daunting task, and limited by our interpretation of

23

the scope of the OWASP requirement #, this could allow us to make a reasoned
judgment about the requirement.

Software tools that do (static) code analysis can do two important things that
help us to accomplish these tasks. Firstly, they can help us navigate the foreign
code(base) in order comprehensively reason about all the code that is relevant
for our test. Secondly, they can recognize patterns in the code that are common
signs of failure for certain requirements.

3.1 Effectiveness of the code analysis tools

In terms of the two tasks mentioned above, we found that the three tools (RATS,
RIPS and Fortify) performed strongest for the second one: All tools gave mean-
ingful results that allowed us to answer a number of criteria. The main problem
was however, that the set of problems spotted by the analyzers was only a small
subset of the requirements and therefore a large part of the guideline could not
be answered when a developer has to solely trust on any or all of these tools to
make an assessment.

The ability to navigate through the code was not available in RATS. Both
RIPS and Fortify performed adequately for navigation of the code; comparable
to what a good IDE should provide. In a limited number of cases they were
able to provide meaningful alerts, accompanied by code snippets, suggestions for
exploitation of the bug, and documentation about possible failures. RIPS seemed
to often have some difficulty with the representation of object-oriented PHP code,
which could allow the developer to miss some information. Fortify allows easy
navigation and gives lots of details about taints and code-paths to analyze a
vulnerability. Fortify was overall our preferred tool for this task, though it is a
very bloated software suite and could not help us with many of the requirements.
RIPS comes in second, but still remains valuable for the developers who, arguably,
don’t want to pay 1200 Euro® and the other tools are free. RATS severely under
performed compared to the other tools and was harder to get running than RIPS.
If we could not have used any of the other tools, RATS might only have been
useful to give warnings for one or two possible SQL injections.

3.2 Completeness and usefulness of OWASP guidelines
when combined with static code analysis

The OWASP guidelines specify the following position on penetration testing tools:

“Automated penetration tools are encouraged to provide as much
as possible coverage and to exercise as many parameters as possible

‘https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
®Based on current information HP charges 3500 euro per application or 6000 euro for an
annual subscription to Fortify (https://saas.hpe.com/buy/fortify-on-demand)

24

with many different forms of malicious inputs as possible. It is not
possible to fully complete ASVS verification using automated pene-
tration testing tools alone. Whilst a large majority of requirements
in L1 can be performed using automated tests, the overall majority
of requirements are not amenable to automated penetration testing.
Please note that the lines between automated and manual testing
have blurred as the application security industry matures. Automated
tools are often manually tuned by experts and manual testers often
leverage a wide variety of automated tools.”®

This corresponds to our experiences, though the limited suite of tools tested
for this project manages to fall short even for many of the level 1 requirements.
However, we must keep in mind that the OWASP Application Security Verifica-
tion Standard has the intention to help developers create and maintain applica-
tions that are resistant to the most common threats for web applications. The
software tools provide (a subset) of examples of these common threats present in
the project.

Because the list of common threats for web security hasn’t changed much
during the past decade, and both the OWASP guideline and the tools only manage
to address part of these threats, we cannot advise anyone to use these tools (and
guideline) as a sole security practice. It should however be part of the security
process and can definitely be incredible useful for novice developers.

4 Further research

Outside of the scope of this project we have some thoughts on further research:

e Meditate on a more methodical testing framework for translating the OWASP
positive formulations into practical tests.

e Document how (all) possible alerts from tools are related to the require-
ments. That is, what judgments can be derived from automated tools -
often the fails - and what limitations remain.

e Find a more fine-tuned way to better categorize the DON’T KNOW and NOT
RELEVANT results. There remain a lot of bugs that are not found by the
tools, nor by using the program, nor in the OWASP guidelines.

e Also the limitations of the scope of the tests are not always clear. It should
be possible to generate a partly filled in template for these requirements
based on the (software)stack used for the web application. Some of the
DON’T KNOW could be used to generate a manifest/checklist for deployment.

SFrom: OWASP Application Security Verification Standard 3.0, 2015, p. 19-20.

25

