
Software Security

Web application audit

Tim Janssen Gerdriaan Mulder Thom Wiggers

January 2015



Chapter 1

Organisation

We divided the initial work with regards to the audit itself amongst four people.
We decided to divide the work into the ASVS chapters instead of groups of files or
folders. This allowed us to think about the possible security vulnerabilities from a
certain ‘attacker’ viewpoint. When dividing the chapters over the team members
we were taking into account the knowledge of the various ASVS chapters per
person. The various other chapters were divided ad-hoc. We used ShareLaTeX
as a collaboration tool to create the final report.

We used the static analysis tools Fortify, RIPS and RATS to review the source
code. Next to that, we looked through the source code ourselves to spot (obvious)
security flaws. The manual check was done on individual basis. When anyone
of the group had doubts regarding the verdict of a requirement, he would ask
another person of the group to have a look as well.

The three static code analysers were all used. Results from some of those
were used in determining whether a security requirement was satisfied. In the
Reflection chapter, we explain why we think that these tools did not really
contribute to the audit.

We used Docker1 to run the application in a container such that existing
configuration on our systems was not contaminated. In the Reflection chapter,
there are more details about this system.

During the course, we were notified that one of our group members, Matthijs
Lavrijsen, was ill and could not complete the project with us. We did not include
him in the authors list, because we had to redistribute his ASVS chapters quite
early in the project. He has, however, contributed to (parts of) some ASVS
chapters in this project. We would like to thank him for that, and wish him a
speedy recovery.

1https://www.docker.com/what-docker, “Docker allows you to package an application
with all of its dependencies into a standardized unit for software development.”

1

https://www.docker.com/what-docker


Chapter 2

Verdict

This chapter presents the results of our code review based on the OWASP
requirements. We adapted our template from Jakob Bleier, Moritz Neikes,
Martijn Terpstra and Patrick Verleg who took this course last year. The results
are our own.

For each requirement, we will indicate whether the requirement is met by adding
either a FAILED or a PASSED tag. A requirement is passed if both,
we and the tools, could not find a violation of the requirement. If either we or
the tools found a violation, the final verdict is ‘failed’.

In case that a requirement is not met, we will also indicate by which method we
spotted the vulnerability. For example, if Fortify found a vulnerability, we will
indicate this with the tag. Finally, translucent tags indicate that
no vulnerability was spotted with this tool.

2



Chapter 2: Authentication Verification Requirements

2.1 Verify all pages and resources require authentication except those
specifically intended to be public.

PASSED All admin pages require authorization, and there are no other
non-public pages.

2.2 Verify all password fields do not echo the user’s password when
it is entered.

FAILED The reset password field echoes the password back if it for some
reason does not pass validation.

2.7 Verify that password entry fields allow, or encourage, the use of
passphrases, and do not prevent long passphrases/highly complex
passwords being entered.

PASSED They do allow long passwords with special characters to be
entered, but do not encourage it.

2.8 Verify that all account identify authentication functions (such
as update profile, forgot password, disabled/lost token, help desk
or IVR) that might regain access to the account are at least as
resistant to attack as the primary authentication mechanism.

FAILED There are no resistances against attacks (nor are there on pass-
words).

2.9 Verify that password changing functionality includes the old
password, the new password, and a password confirmation

FAILED No password confirmation or old password is requested, ever.

3



2.12 Verify that all suspicious authentication decisions are logged.
This should include requests with relevant metadata needed for
security investigations.

FAILED While there is a log, it is not used in the authentication module.

2.13 Verify that account passwords make use of a sufficient strength en-
cryption routine and that it withstands brute force attack against
the encryption routine

FAILED The application uses unsalted crypt() (DES) for the password.
This is neither strong nor brute force resistant.

2.16 Verify that credentials are transported using a suitable encrypted
link and that all pages/functions that require a user to enter
credentials are done so using an encrypted link.

IRRELEVANT This is a configuration issue: the application should be run on
an HTTPS-only server.

2.17 Verify that the forgotten password function and other recovery
paths do not reveal the current password and that the new pass-
word is not sent in the clear to the user.

FAILED The new password isn’t sent in the clear, however, the current
password is part of the hash that is sent to the user by email.

2.18 Verify that information enumeration is not possible via login,
password reset, or forgot account functionality.

FAILED It is possible to figure out what accounts exist via the password
reset form. There is also a timing difference between non-existing
and existing accounts in password validation.

4



2.19 Verify there are no default passwords in the application framework
or any components used by the application

PASSED The application generates a fresh, random password for the
administrator account on install. This password is however not
generated with secure randomness.

2.20 Verify that request throttling is in place to prevent automated
attacks against common authentication attacks suchs as brute
force attacks or denial of service attacks.

FAILED The application does not support this.

2.21 Verify that all authentication credentials for accessing services
external to the application are encrypted and stored in a protected
location.

IRRELEVANT The application does not access external services.

2.22 Verify that forgotten password and other recovery paths use a
soft token, mobile push, or an offline recovery mechanism.

FAILED The application does not support these mechanisms.

2.23 Verify that account logout is divided into soft and hard lock status,
and these are not mutually exclusive. If an account is temporarily
soft locked out due to a brute force attack, this should not reset
the hard lock status.

FAILED The application does not support locked accounts.

5



2.24 Verify that if knowledge based questions (also known as “secret
questions”) are required, the questions should be strong enough
to protect the application.

PASSED No such questions are asked.

2.25 Verify that the system can be configured to disallow the use of a
configurable number of previous passwords.

FAILED There is no such functionality.

2.26 Verify re-authentication, step up or adaptive authentication, two
factor authentication or transaction signing is required before
any application-specific sensitive operations are permitted as per
the risk profile of the application.

IRRELEVANT There are no such sensitive operations, other than changing
passwords, for which see also 2.9.

2.27 Verify that measures are in place to block the use of commonly
chosen passwords and weak passphrases.

FAILED There are no such measures in place.

2.28 Verify that all authentication challenges, whether successful or
failed, should respond in the same average response time.

FAILED As noted before, this is not the case.

2.29 Verify that secrets, API keys, and passwords are not included in
source code, or online source code repositories.

IRRELEVANT This is not relevant for our case.

6



2.30 Verify that if an application allows users to authenticate, they
use a proven secure authentication mechanism.

PASSED Password authentication is a secure mechanism.

2.31 Verify that Verify that if an application allows users to authen-
ticate, they can authenticate using two-factor authentication or
other strong authentication, or any similar scheme that provides
protection against username + password disclosure.

FAILED No two-factor mechanisms are supported.

2.32 Verify that administrative interfaces are not accessible to un-
trusted parties.

PASSED See also 2.1.

7



Chapter 3: Session Management Verification Requirements

3.1 Verify that there is no custom session manager, or that the
custom session manager is resistant against all common session
management attacks.

FAILED A custom session manager is found, which is for example not
protected against session hijacking.

3.2 Verify that sessions are invalidated when the user logs out.
FAILED Sessions are not destroyed when the user logs out e.g. ses-

sion destroy() is not called.

3.3 Verify that sessions timeout after a specified period of inactivity.
FAILED A specified expire period is found in the configuration but does

not appear to be used anywhere.

3.5 Verify that all pages that require authentication have easy and
visible access to logout functionality

FAILED All pages that require authentication have a link which allows
the user to logout in the top-right corner.

3.6 Verify that the session id is never disclosed in URLs, error
messages, or logs. This includes verifying that the application
does not support URL rewriting of session cookies.

FAILED The application does not include the session identifier in the
URLs. URL rewriting is supported by default in PHP, however.

3.7 Verify that all successful authentication and re-authentication
generates a new session and session id

FAILED The application does not generates a new session after each
successful (re-)authentication.

8



3.10 Verify that only session ids generated by the application frame-
work are recognized as active by the application.

FAILED The application uses the default PHP session functionality, and
thus can’t check authenticity.

3.11 Verify that session ids are sufficiently long, random and unique
across the correct active session base.

PASSED Session identifiers are generated by the default PHP session
generator, this generates sufficient long, random and unique
identifiers.

3.12 Verify that session ids stored in cookies have their path set
to an appropriately restrictive value for the application, and
authentication session tokens additionally set the “HttpOnly”
and “secure” attributes.

FAILED The ’HttpOnly’ setting is not enabled.

3.16 Verify that the application limits the number of active concurrent
sessions.

FAILED The application does not limit the number of active concurrent
sessions

3.17 Verify that an active session list is displayed in the account profile
or similar of each user. The user should be able to terminate
any active session

FAILED The user is not able to terminate any active session.

3.18 Verify the user is prompted with the option to terminate all other
active sessions after a successful change password process.

FAILED The user does not have this option.

9



10



Chapter 4: Access Control Verification Requirements

4.1 Verify that the principle of least privilege exists - users should only
be able to access functions, data files, URLs, controllers, services,
and other resources, for which they possess specific authorization.
This implies protection against spoofing and elevation of privilege.

FAILED The user’s role and status properties are never checked to verify
whether they have the required authorization for an action.
Therefore it is possible even for a deactivated user with role
‘user’ to log in and perform admin-level actions such as adding
new admin users.

4.4 Verify that access to sensitive records is protected, such that only
authorized objects or data is accessible to each user (for example,
protect against users tampering with a parameter to see or alter
another user’s account).

FAILED It is possible for an attacker to overwrite an existing installation
by manually crafting a POST request to the installer script with
their desired configuration. This can be seen as a configuration
issue because the install folder was not removed after installation.
However, the installer does not warn the user that they should
do this, and the site functions even when the installer script is
present and executable.

4.5 Verify that directory browsing is disabled unless deliberately de-
sired. Additionally, applications should not allow discovery or
disclosure of file or directory metadata, such as Thumbs.db,
.DS Store, .git or .svn folders.

FAILED The application does not disable directory browsing. Within
the .htaccess file there is a line that explicitly allows to access
directories directly.

4.8 Verify that access controls fail securely.
FAILED The access control code does not fail securely: on line 62 of

testcms.php, User::authed() could return something other
than false in case of an error causing the strict check to fail
and the template to still be rendered.

4.9 Verify that the same access control rules implied by the presen-
tation layer are enforced on the server side.

FAILED When an users account is set to inactive, the user should not be
able to log in. According to the presentation layer, however it is
still possible for an inactive user to log in.

11



4.10 Verify that all user and data attributes and policy information
used by access controls cannot be manipulated by end users unless
specifically authorized.

FAILED A normal user has the same rights as an admin user, so this
requirement is not satisfied. Because an unauthorized normal
user can manipulate admin level data.

4.12 Verify that all access control decisions can be logged and all failed
decisions are logged.

FAILED There is a logging system in place but it does not log all failed
decisions regarding access control.

4.13 Verify that the application or framework uses strong random anti-
CSRF tokens or has another transaction protection mechanism.

FAILED The application does not make use of anti-CSRF tokens.

4.14 Verify the system can protect against aggregate or continuous
access of secured functions, resources, or data. For example,
consider the use of a resource governor to limit the number of
edits per hour or to prevent the entire database from being scraped
by an individual user.

FAILED The system is not protected against aggregate or continuous
access

4.15 Verify the application has additional authorization (such as step
up or adaptive authentication) for lower value systems, and/or
segregation of duties for high value applications to enforce anti-
fraud controls as per the risk of application and past fraud.

FAILED The application does not offer additional authorization nor seg-
regation of duties.

12



4.16 Verify that the application correctly enforces context-sensitive
authorisation so as to not allow unauthorised manipulation by
means of parameter tampering.

FAILED Context-sensitive authorisation is lacking in this application.

13



Chapter 5: Access Control Verification Requirements

5.1 Verify that the runtime environment is not susceptible to buffer
overflows, or that security controls prevent buffer overflows.

IRRELEVANT The latest version of PHP 5.6 has no known buffer overflows in
the core functionality. This is however out of scope.

5.3 Verify that server side input validation failures result in request
rejection and are logged.

FAILED There is a logging system in the CMS that can be enabled
through the config.php file. Input validation is done for some
form fields (such as e-mail). When, for example, e-mail validation
fails, there is no log entry, but the request is rejected nonetheless.
Fail because not all premises are satisfied.

5.5 Verify that input validation routines are enforced on the server
side.

FAILED All inputs are fed through the Input class, however, input valida-
tion is not done everywhere (for example: the offset parameter
in the posts page should be an integer, but there is no check).

5.10 Verify that all SQL queries, HQL, OSQL, NOSQL and stored
procedures, calling of stored procedures are protected by the use
of prepared statements or query parameterization, and thus not
susceptible to SQL injection

FAILED In system/classes/pages.php the sorting parameter in
list all is not fed through the prepared statement, but di-
rectly into the SQL. It must be noted that this sorting option
does not seem to come from user input.

5.11 Verify that the application is not susceptible to LDAP Injection,
or that security controls prevent LDAP Injection.

IRRELEVANT The CMS does not use LDAP.

14



5.12 Verify that the application is not susceptible to OS Command
Injection, or that security controls prevent OS Command Injec-
tion.

PASSED There are no calls to functions that involve OS Command Injec-
tion (e.g. system, exec)

5.13 Verify that the application is not susceptible to Remote File
Inclusion (RFI) or Local File Inclusion (LFI) when content is
used that is a path to a file.

FAILED The CMS is susceptible to LFI in
system/classes/template.php. The template filename
in the render() function can contain directory separators (the
use of the basename() function would prevent this). When the
path exists, the file is given to the parse() function, which
includes the file and puts the (interpreted) contents in the
output buffer.

5.14 Verify that the application is not susceptible to common XML
attacks, such as XPath query tampering, XML External Entity
attacks, and XML injection attacks.

FAILED The RSS class does not seem to filter XML tags, so it is possible
to inject XML through, for example, the configuration option
metadata.description.

5.15 Ensure that all string variables placed into HTML or other web
client code is either properly contextually encoded manually, or
utilize templates that automatically encode contextually to ensure
the application is not susceptible to reflected, stored and DOM
Cross-Site Scripting (XSS) attacks.

FAILED The admin panel is susceptible to XSS attacks through the site
name.

15



5.19 Verify that all input data is validated, not only HTML form fields
but all sources of input such as REST calls, query parameters,
HTTP headers, cookies, batch files, RSS feeds, etc; using positive
input validation (whitelisting), then lesser forms of validation
such as reylisting (eliminating known bad strings), or rejecting
bad inputs (blacklisting)

FAILED There is barely any to no validation on any inputs.

5.20 Verify that structured data is strongly typed and validated against
a defined schema including allowed characters, length and pattern
(e.g. credit card numbers or telephone, or validating that two
related fields are reasonable, such as validating suburbs and zip
or post codes match).

FAILED There is barely any such validation.

5.21 Verify that unstructured data is sanitized to enforce generic safety
masures such as allowed characters and length, and characters
potentially harmful in given context should be escaped

FAILED There is mostly no sanitation.

5.22 Make sure untrusted HTML from WYSIWYG editors or similar
are properly sanitized with an HTML sanitizer and handle it
appropriately according to the input validation task and encoding
task.

FAILED There is no sanitation on the fields that do expect html input.

5.23 For auto-escaping template technology, if UI escaping is disabled,
ensure that HTML sanitization is enabled instead.

IRRELEVANT There are no auto-escaping templates.

16



5.24 Verify that data transferred from one DOM context to another,
uses safe JavaScript methods, such as .innertext and .val

PASSED The javascript actually seems decently written.

5.25 Verify when parsing JSON in browsers, that JSON.parse is used
to parse JSON on the client. Do not use eval() to parse JSON
on the client.

PASSED The javascript actually seems decently written.

5.26 Verify that authenticated data is cleared from client storage, such
as the browser DOM, after the session is terminated.

PASSED The application does not seem to make use of localstorage or
cookies to store authenticated information.

17



Chapter 7: Cryptography at rest verification requirements

7.2 Verify that all cryptographic modules fail securely, and errors
are handled in a way that does not enable oracle padding.

PASSED There are no cryptographic modules in use other than crypt,
which is safe.

7.6 Verify that all random number generators, random file names,
random GUIDs and random strings are generated using the
cryptographic module’s approved random number generator, when
these random values are intended not to be guessable by an
attacker.

PASSED The application does not use random numbers anywhere (for
better or worse).

7.7 Verify that cryptographic algorithms used by the application have
been validated against FIPS 140-2 or an equivalent standard.

IRRELEVANT The application uses the PHP crypt function, which has not been
validated. However, this isn’t really relevant to this application.

7.8 Verify that cryptographic modules operate in their approved modes
according to their published security policies.

FAILED crypt is used, but largely deprecated over password hash in
PHP.

7.9 Verify that there is an explicit policy for how cryptographic keys
are managed (e.g., generated, distributed, revoked, and expired).
Verify that this key lifecycle is properly enforced.

IRRELEVANT There are no cryptographic keys in the application, and any
HTTPS keys would be out of scope for this review.

18



7.11 Verify that all consumers of cryptographic services do not have
direct access to key material. Isolate cryptographic processes,
including master secrets and consider the use of a hardware key
vault (HSM).

IRRELEVANT There is no key material in the web application.

7.12 Personally Identifiable Information should be stored encrypted at
rest and ensure that communication goes via protected channels.

IRRELEVANT There is no such information in the web application and en-
crypted channels are a manner of server configuration (HTTP-
S/HSTS).

7.13 Verify that were possible, keys and secrets are zeroed out when
destroyed.

IRRELEVANT Unclear, since this depends on the behaviour of the PHP Garbage
Collector.

7.14 Verify that all keys and passwords are replaceable, and are gen-
erated or replaced at installation time.

PASSED The installation procedure generates fresh keys and is the only
place that key material is used.

7.15 Verify that random numbers are created with proper entropy even
when the application is under heavy load, or that the application
degrades gracefully in such circumstances.

IRRELEVANT No random numbers are used.

19



Chapter 8: Error handling and logging verification require-
ments

8.1 1 Verify that the application does not output error messages
or stack traces containing sensitive data that could assist an
attacker, including session id,software/framework versions and
personal information.

FAILED The application outputs a stack trace on the posts page when
the offset parameter is not an integer (but, e.g., false).

8.2 Verify that error handling logic in security controls denies access
by default.

FAILED It checks if it can find an error, such as wrong password or
unknown user, but allows access by default.

8.3 Verify security logging controls provide the ability to log success
and particularly failure events that are identified as security-
relevant.

PASSED The application allows for writing success/failure events.

8.4 Verify that each log event includes necessary information that
would allow for a detailed investigation of the timeline when an
event happens.

FAILED The application does not log detailed information that would
allow for a detailed investigation of the timeline, for example the
exact time of the events is not written to the logs (only the date
is written).

8.6 Verify that security logs are protected from unauthorized access
and modification.

FAILED Every file on the server is accessible, as stated in the htaccess
file.

20



8.7 Verify that the application does not log sensitive data as defined
underlocal privacy laws or regulations, organizational sensitive
data as defined by a risk assessment, or sensitive authentica-
tion data that could assist an attacker, including user’s session
identifiers, passwords, hashes, or API tokens.

PASSED No leaking of sensitive information to the log files is found.

8.10 Verify that an audit log or similar allows for non-repudiation of
key transactions.

FAILED The application does not provide non-repudiation of key trans-
actions with only the use of the log files.

21



Chapter 9: Data Protection Verification Requirements

9.1 Verify that all forms containing sensitive information have dis-
abled client side caching, including autocomplete features.

PASSED There is no sensitive information, except for passwords, which
use the proper (non-autocompleting) password fields.

9.2 Verify that the list of sensitive data processed by the application
is identified, and that there is an explicit policy for how access
to this data must be controlled, encrypted and enforced under
relevant data protection directives.

IRRELEVANT Irrelevant due to being a level 3 requirement.

9.3 Verify that all sensitive data is sent to the server in the HTTP
message body or headers (i.e., URL parameters are never used
to send sensitive data).

PASSED All forms use POST requests to send (sensitive) data to the
server.

9.4 Verify that the application sets appropriate anti-caching headers
as per the risk of the application

FAILED The application does not set anti-caching headers at all.

9.5 Verify that on the server, all cached or temporary copies of
sensitive data stored are protected from unauthorized access or
purged/invalidated after the authorized user accesses the sensitive
data

IRRELEVANT The scope of this audit is to look at the CMS, not the webserver
configuration.

22



9.6 Verify that there is a method to remove each type of sensitive
data from the application at the end of the required retention
policy.

IRRELEVANT Irrelevant due to being a level 3 requirement

9.7 Verify the application minimizes the number of parameters in a
request, such as hidden fields, Ajax variables, cookies and header
values.

PASSED Only the PHPSESSID cookie is stored. There are no hidden input
fields in forms. JSON is used to transfer a limited amount of
data.

9.8 Verify the application has the ability to detect and alert on
abnormal numbers of requests for data harvesting for an example
screen scraping.

IRRELEVANT Irrelevant due to being a level 3 requirement.

9.9 Verify that data stored in client side storage - such as HTML5
local storage, session storage, IndexedDB, regular cookies or Flash
cookies - does not contain sensitive or PII).

PASSED No cookies other than PHPSESSID are stored.

9.10 Verify accessing sensitive data is logged, if the data is collected
under relevant data protection directives or where logging of
accesses is required.

IRRELEVANT The system does not contain sensitive data.

23



9.11 Verify that sensitive data is rapidly sanitized from memory as
soon as it is no longer needed and handled in accordance to
functions and techniques supported by the framework/library/op-
erating system.

IRRELEVANT The system does not contain sensitive data.

24



Chapter 10: Communications security verfication require-
ments

10.X TLS requirements
IRRELEVANT All requirements in Chapter 10 are out of scope as they cover

server configuration.

25



Chapter 3

Reflection

The ASVS is a very comprehensive checklist to make sure you’ve thought about
a lot of common security holes. The items on that list however often vary in
terms of how clear they are, or where to check them. Some could span the
entire code base. This makes verifying whether these requirements are met fairly
difficult. The structure of a single level list also inflates how many items there
should be checked, while some items are dependent on each other.

Because a lot of the things on the ASVS list require some reasoning, the
applicability of static analysis tools remains limited to broad checking for some
mistakes across the entire code base. These static analysis tools can, for the
extent we used them at least, not differentiate between sensitive or insensitive
information (except if something is named like password) or decide what pages
should be protected by a session. Manual checking of the code (with some help
from standard *NIX tools such as grep and awk) played a very important role
in this audit.

Since we stopped probing after finding the first issue, static analysis tools did
not really decide many issues between passed or failed. The types of issues the
static analysis tools found were typically so glaring that a casual poke at the
user interface also revealed them. The application also was small enough to
casually read all code. If one would try to find more hidden issues in bigger code
bases, SCA tools may prove more worthwhile.

RATS barely found anything worth mentioning. RIPS was able to find some
cross-site scripting errors, but the more advanced modes popped up more false
positives than useful results.

Matthijs ran the Fortify tool for us on his Windows PC, so that we did not all
to have to try to get it working. The report Fortify produced however was not
very useful, containing dozens of pages of example bugs, and only one tiny list
with some actual issues. The actual user interface was a bit more useful. Fortify
found one hard-to-spot issue, although we independently also found it by hand.

A Dockerfile 1 was set up to help easily run the web application. Running the

1https://gitlab.science.ru.nl/twiggers/software-security-docker/

26

https://gitlab.science.ru.nl/twiggers/software-security-docker/


application helped to gain some insight into how the application worked, and
also revealed things about the authentication infrastructure that made marking
some things on the checklist trivial as they were not present in the application.

We experienced that the convenience with verifying the code differed greatly
amongst the group members. Some of us had lots of experience with PHP and
reviewing code, and found this very easy, but others needed more time for this.
While we started working on the review early, and had actually completed a large
part of it by the end of November, progress then stalled. It was also unfortunate
we did not hear from Matthijs himself that he would not be completing the
course. In a next review, we would take care to keep ourselves on track such
that we have time to get another pair of eyes to look at (parts of) the review.
More frequent meeting could help with this: we only met when we needed to
divide tasks.

TestCMS is largely designed from the ground up. It was constructed reasonably
sensibly, but even they are reinventing the wheel. It is better practice to use
established frameworks and perhaps even template engines in PHP, such that
things like escaping query parameters and HTML output are handled in much
more convenient ways. In some frameworks these things work opt-out instead of
opt-in: this makes forgetting to escape something fairly difficult.

In TestCMS there is also a lot of dead code, which further distracts from the
relevant parts of the application.

Handling the escaping and such in the framework and turning it on by default
also simplifies an audit: instead of having to look at everything, a reviewer can
simply focus on the output handling code and those few places where raw strings
are explicitly printed.

27


	Organisation
	Verdict
	Reflection

