
TRU/e master in cyber security NWI-2IRU15

Software Security ’15 - ’16

OWASP Open Souce Review Project

Bor de Kock / 4666798

b.b.d.kock@student.tue.nl

Pieter Kokx / 4671953

p.a.kokx@student.tue.nl

Ylona Meeuwenberg / 4671066

y.w.a.meeuwenberg@student.tue.nl

December 2015

0 Organization

The evaluation was carried out as follows: �rstly, the group gathered in a few sessions to

install the TestCMS on a server, run some basic tests, analyze the code with the Fortify tool

and set up the basis for both the written report and the ASVS Checklist. A division of the

requirements was then made: this was in general done by category based on the expertise of

the group members.

Our group was mixed in experience and background: one of us got a Bachelor's in mathemat-

ics, the others in computer science. One of us has a lot of experience in web development,

the others don't. This was both an advantage | di�erent types of requirements could be

split over people with di�erent skills | as well as a disadvantage | as it is harder to get

a second opinion or a double-check on some of the work. What we did to tackle this issue

was walking though the spreadsheet page-by-page, explaining our decisions and judging the

criteria together. This real-life-variant on rubber duck debugging helped us identify issues

with the reasoning for some of the items, but also made the group members learn more about

other parts of the project and the knowledge behind it.

For a signi�cant part of the requirements, we used the live version of the application we ran

on a local web server. Take a look at a requirement like V2.9:

Verify that the changing password functionality includes the old password, the new password,

and a password con�rmation.

Looking at a working version of the application is a fast and easy way of checking the re-

quirement: looking through the code will only make it harder to get the same result.

For the rest of the requirements, we used a combination of Fortify and manual code searching.

Fortify was used to produce a list of problems with the code. For each problem, we checked

whether the problem actually exists and how it maps to a requirement. Those requirements

software security 1

TRU/e master in cyber security NWI-2IRU15

were �lled in �rst. For the rest of the requirements, we either looked through the code to

locate defects and problems, or we used grep to search through all �les with a keyword.

1 Verdict

For all veri�cation requirements, a verdict and motivation is given in the accompanying

spreadsheet �le. In this report, we will give a short, general remark per chapter in the

OWASP ASVS.

V2 Authentication Verification Requirements

The problems with authentication are large. There are no restrictions on passwords strength,

no guidelines are provided. Users can pick any password for any period of time, whether or

not they used it earlier. It is even possible for users to change the passwords of other users.

All of these problems result in failing a lot of requirements.

V3 Session Management Verification Requirements

Session management is included in PHP, so most of the requirements are a trivial pass due to

the PHP standards. The functions that are managed by the application are not that strong.

There are no additional functionalities, compared to PHP.

V4 Access Control Verification Requirements

The access control is handled poorly. It is possible to change your own status to admin-

istrator. When your are an administrator, you can delete other accounts, including other

administrators. You can put an account on inactive, but this doesn't mean that this account

can't do anything. If the users of the inactive account, want to make it active, he just have

to push a button.

V5 Malicious input handling verification requirements

Fortify did give a lot of SQL injection errors. Most of these were false positives, but Fortify

was triggered because the application had a custom database class.

V6 Output encoding / escaping

V6 is trivially satis�ed: This section was incorporated into V5 in Application Security Veri-

�cation Standard 2.0. ASVS requirement 5.16 addresses contextual output encoding to help

2 software security

NWI-2IRU15 TRU/e master in cyber security

prevent Cross Site Scripting. [1]

V7 Cryptography at rest verification requirements

Only the functions crypt() and hash() are used. These functions are proven to be unsafe.

This is summarized well in the fortify error: \Antiquated encryption algorithms such as DES

no longer provide su�cient protection for use with sensitive data. Encryption algorithms

rely on key size as one of the primary mechanisms to ensure cryptographic strength. Crypto-

graphic strength is often measured by the time and computational power needed to generate

a valid key. Advances in computing power have made it possible to obtain small encryption

keys in a reasonable amount of time."

V8 Error handling and logging verification requirements

There are only a few things that are logged, and only basic error messages are logged. More

information, like the IP address where the request originated, are not stored anywhere. An-

other issue is that logs are publicly visible if you used the installation instructions. This can

be changed in the server con�guration.

V9 Data protection verification requirements

TestCMS doesn't keep track of a lot of sensitive data. The login form however, may leak

passwords.

V10 Communications security verification requirements

The V10 requirements all apply to the communication over TLS. This means that the verdict

depends on the con�guration of TLS in the system. The administrator of the server should

take care of these requirements.

2 Reflection

Getting from code to code review, a lot of steps were needed.

As stated in the section on organization, we had some situations where not all group members

had the expertise to provide a clear answer. This was solved mostly by dividing up the work,

and evaluating with the entire group in a thorough way.

As for the tools used, it was sometimes hard to decide on the proper way to asses a certain

requirement. We answered quite a few of them based on the results of running the code,

which is a very e�ective strategy but not truly what a code review is about. Fortify helped a

software security 3

TRU/e master in cyber security NWI-2IRU15

lot by providing clearly stated problems and analyzing a lot of issues, but a lot of the work

still had to be done by hand.

A problem with Fortify was that quite some false positives appeared, mostly these were

alleged possible SQL Injections. We disproved all of those by looking through the source

code ourselves, and to be sure we also ran the SQLmap suite on the running version of the

CMS.

In the end, the ASVS provided us with a very clear way of reviewing the code and \�lling

in the blanks" about the requirements that were given. That is, however, also the weakness

of this approach: it is very tempting to focus on giving the right verdicts, where the focus

should be on the code in general. This is something the ASVS could focus on to a larger

extent.

Working as a group was not an issue, but we preferred dedicating a few larger timeslots to

the course over planning a lot of afternoon sessions. This greatly reduced the overhead and

made the work more e�cient in general.

In terms of lessons learned for developing web applications, not all of us were aware of the

OWASP ASVS Checklist. Those that were, will perform security assessments and develop-

ment earlier on in the process to avoid having to �x issues later on. Those of us who where

not aware yet, now need what issues to avoid in general while building web applications and

developing other software.

References

[1] OWASP, Application Security Veri�cation Standard 3.0, October 2015

4 software security

Verdict Explanation
Pass The system fullfills the requirement
Fail The system fails the requirement

Trivial Pass (N/A)

The requirement does not apply, so it is
trivially satisfied. (For example, for V7.4,
if no cryptographic algorithms are used,
then all these algorithms have been FIPS
140-2 validated)

Don't know - security requirement unclear

You do not know what the verdict should
be, since you do not sufficiently
understand the requirement

Don't know - not clear how to check this

You do not know what the verdict should
be, since you do not know how you
would check whether this requirement
holds

Don't know - no time to look into this

You do not know what the verdict should
be, since you do not have the time to
check this

Don't know - other

You do not know what the verdict should
be for some other reason, specify in
comments.

Regarding tools: if no tools are used feel free to leave the
relevant column open. If you use an unlisted tool please
chose "other" and specify which in the comments.

NA - check is beyond scope of code

You believe the requirement is not
relevant for this system, since the
relevant code is not part of the code you
were asked to review.

Don't know - other

You believe the requirement is not
relevant for this system, since the check
is beyond the scope of the system, such
as server configuration.

NA - other

You believe the requirement is not
relevant for this system for some other
reason, specify in the comments.

ASVS
Level Verification Requirement Verdict Source Code Referen Comment Tool Use

V2.1 1

Verify all pages and resources require authentication
except those
specifically intended to be public (Principle of complete
mediation). Pass The pages other than in the /admin/ directory are locked.

V2.2 1
Verify all password fields do not echo the user’s password
when it is entered. Fail Echos to the source code if reset by admin Foritfy

V2.4 1
Verify all authentication controls are enforced on the server
side. Pass

V2.6 1
Verify all authentication controls fail securely to ensure
attackers cannot log in. Pass

V2.7 1

Verify password entry fields allow, or encourage, the use of
passphrases, and do not prevent long passphrases/highly
complex passwords being entered. Pass There are no limits

V2.8 1

Verify all account identity authentication functions (such as
update profile, forgot password, disabled / lost token, help
desk or IVR) that might regain access to the account are at
least as resistant to attack as the primary authentication
mechanism. Pass

V2.9 1

Verify that the changing password functionality includes the
old password, the new password, and a password
confirmation. Fail There is only one field: new password. Other

V2.12 2

Verify that all suspicious authentication decisions are
logged. This should include requests with relevant
metadata needed for security investigations. Fail There are hardly any log files. Specifically, none related to the authentication.

V2.13 2

Verify that account passwords make use of a sufficient
strength encryption routine and that it withstands brute
force attack against the encryption routine. Fail Crypt is used. It is proven to be unsafe if used with default parameters.

V2.16 1

Verify that credentials are transported using a suitable
encrypted link and that all pages/functions that require a
user to enter credentials are done so using an encrypted
link. If encryption is to be used, this should be configured

V2.17 1

Verify that the forgotten password function and other
recovery paths do not reveal the current password and that
the new password is not sent in clear text to the user. Fail Password is sent in clear text.

V2.18 1
Verify that information enumeration is not possible via login,
password reset, or forgot account functionality. Pass

V2.19 1

Verify there are no default passwords in use for the
application framework or any components used by the
application (such as “admin/password”). Pass There is an 8-char random password upon installation.

V2.20 1

Verify that request throttling is in place to prevent
automated attacks against common authentication attacks
such as brute force attacks or denial of service attacks. Fail There are no limits on the amount of passwords you can try. There is no time-out.

V2.21 2

Verify that all authentication credentials for accessing
services external to the application are encrypted and
stored in a protected location.

V2.22 1

Verify that forgotten password and other recovery paths
use a soft token, mobile push, or an offline recovery
mechanism. Fail

V2.23 2

Verify that account lockout is divided into soft and hard lock
status, and these are not mutually exclusive. If an account
is temporarily soft locked out due to a brute force attack,
this should not reset the hard lock status. Fail It is possible to manually lock an account. This is the only locking option.

V2.24 1

Verify that if knowledge based questions (also known as
"secret questions") are required, the questions should be
strong enough to protect the application. Fail There are no security questions.

V2.25 2
Verify that the system can be configured to disallow the use
of a configurable number of previous passwords. Fail This is not possible.

V2.26 2

Verify re-authentication, step up or adaptive authentication,
two factor authentication, or transaction signing is required
before any application-specific sensitive operations are
permitted as per the risk profile of the application. Fail There is only one authentication factor, a password

V2.27 1
Verify that measures are in place to block the use of
commonly chosen passwords and weak passphrases. Fail There are no requirements on passwords.

V2.30 1
Verify that if an application allows users to authenticate,
they use a proven secure authentication mechanism. Pass

V2.31 2

Verify that if an application allows users to authenticate,
they can authenticate using two-factor authentication or
other strong authentication, or any similar scheme that
provides protection against username + password
disclosure. Fail

V2.32 1
Verify that administrative interfaces are not accessible to
untrusted parties Fail

All users can access all administrative panes, no matter their roles. They can even change administrator's
passwords.

NA - check is beyond scope of system

ASVS
Level Verification Requirement Verdict Source Code Referen Comment Tool Use

V3.1 1

Verify that there is no custom session manager, or
that the custom session manager is resistant
against all common session management attacks. Trivial Pass (N/A)

V3.2 1
Verify that sessions are invalidated when the user
logs out. Trivial Pass (N/A)

V3.3 1
Verify that sessions timeout after a specified
period of inactivity. Pass

V3.5 1

Verify that all pages that require authentication
have easy and visible access to logout
functionality. Pass

V3.6 1

Verify that the session id is never disclosed in
URLs, error messages, or logs. This includes
verifying that the application does not support
URL rewriting of session cookies. Fail .\system\classes\session.php

V3.7 1

Verify that all successful authentication and re-
authentication generates a new session and
session id. Trivial Pass (N/A)

V3.10 2

Verify that only session ids generated by the
application framework are recognized as active by
the application. Trivial Pass (N/A)

V3.11 1

Verify that session ids are sufficiently long,
random and unique across the correct active
session base. Trivial Pass (N/A)

V3.12 1

Verify that session ids stored in cookies have their
path set to an appropriately restrictive value for
the application, and authentication session tokens
additionally set the “HttpOnly” and “secure”
attributes Fail

V3.16 1
Verify that the application limits the number of
active concurrent sessions. Fail .\system\classes\session.php There is no limit.

V3.17 1

Verify that an active session list is displayed in the
account profile or similar of each user. The user
should be able to terminate any active session. Fail

V3.18 1

Verify the user is prompted with the option to
terminate all other active sessions after a
successful change password process. Fail Not such an option.

This is not done by PHP by default

There is no list of current active sessions.

ASVS
Level Verification Requirement Verdict Source Code Referen Comment Tool Use

V4.1 1

Verify that the principle of least privilege exists -
users should only be able to access functions, data
files, URLs, controllers, services, and other
resources, for which they possess specific
authorization. This implies protection against
spoofing and elevation of privilege. Fail

V4.4 1

Verify that access to sensitive records is protected,
such that only authorized objects or data is
accessible to each user (for example, protect
against users tampering with a parameter to see or
alter another user's account). Fail

V4.5 1

Verify that directory browsing is disabled unless
deliberately desired. Additionally, applications
should not allow discovery or disclosure of file or
directory metadata, such as Thumbs.db,
.DS_Store, .git or .svn folders. This is in the web server configuration.

V4.8 1 Verify that access controls fail securely. Pass

V4.9 1

Verify that the same access control rules implied by
the presentation layer are enforced on the server
side. Pass

V4.10 2

Verify that all user and data attributes and policy
information used by access controls cannot be
manipulated by end users unless specifically
authorized. Fail .\system\functions\users.php

V4.12 2
Verify that all access control decisions can be
logged and all failed decisions are logged. Pass

V4.13 1

Verify that the application or framework uses strong
random anti-CSRF tokens or has another
transaction protection mechanism. Fail There is no anti-CSRF protection.

V4.14 2

Verify the system can protect against aggregate or
continuous access of secured functions, resources,
or data. For example, consider the use of a
resource governor to limit the number of edits per
hour or to prevent the entire database from being
scraped by an individual user. Fail .\system\functions\posts.php There are no limits.

V4.15 2

Verify the application has additional authorization
(such as step up or adaptive authentication) for
lower value systems, and / or segregation of duties
for high value applications to enforce anti-fraud
controls as per the risk of application and past
fraud. Fail

V4.16 1

Verify that the application correctly enforces
context-sensitive authorisation so as to not allow
unauthorised manipulation by means of parameter
tampering. Fail

Users can escalate their own privileges to administrator level.

Users can escalate their own privileges to administrator level.

NA - check is beyond scope of system

Users can escalate their own privileges to administrator level.

Users can escalate their own privileges to administrator level.

Users can escalate their own privileges to administrator level.

ASVS
Level Verification Requirement Verdict Source Code Reference Comment Tool Use

V5.1 1

Verify that the runtime environment is not
susceptible to buffer overflows, or that security
controls prevent buffer overflows. Trivial Pass (N/A) PHP has built-in protection against buffer overflows.

V5.3 1
Verify that server side input validation failures
result in request rejection and are logged. Fail Validation errors aren't logged.

V5.5 1
Verify that input validation routines are enforced
on the server side. Pass

V5.10 1

Verify that all SQL queries, HQL, OSQL, NOSQL
and stored procedures, calling of stored
procedures are protected by the use of prepared
statements or query parameterization, and thus
not susceptible to SQL injection Don't know - other Some parts of queries are fed with parameters of unclear origin.

V5.11 1

Verify that the application is not susceptible to
LDAP Injection, or that security controls prevent
LDAP Injection. Trivial Pass (N/A) No LDAP.

V5.12 1

Verify that the application is not susceptible to OS
Command Injection, or that security controls
prevent OS Command Injection. Pass Looking for results by using grep for exec, shell_exec and ` (backtick operator) do not give results (t Other

V5.13 1

Verify that the application is not susceptible to
Remote File Inclusion (RFI) or Local File Inclusion
(LFI) when content is used that is a path to a file. Pass Should be OK. There is the possibility that there is one LFI and RFI in the autoloader. (grep) Other

V5.14 1

Verify that the application is not susceptible to
common XML attacks, such as XPath query
tampering, XML External Entity attacks, and XML
injection attacks. Trivial Pass (N/A) No usage of XML (grep) Other

V5.15 1

Ensure that all string variables placed into HTML
or other web client code is either properly
contextually encoded manually, or utilize
templates that automatically encode contextually
to ensure the application is not susceptible to
reflected, stored and DOM Cross-Site Scripting
(XSS) attacks. Fail login.php The data is included in dynamic content that is sent to a web user without being validated. Foritfy

V5.16 2

If the application framework allows automatic
mass parameter assignment (also called
automatic variable binding) from the inbound
request to a model, verify that security sensitive
fields such as “accountBalance”, “role”or
“password”are protected from malicious automatic
binding.

V5.17 2

Verify that the application has defenses against
HTTP parameter pollution attacks, particularly if
the application framework makes no distinction
about the source of request parameters (GET,
POST, cookies, headers, environment, etc.) Fail ./system/admin/theme/error_php.ph Outputs the User-Agent header directly without checking (grep) Other

V5.18 2

Verify that client side validation is used as a
second line of defense, in addition to server side
validation.

V5.19 2

Verify that all input data is validated, not only
HTML form fields but all sources of input such as
REST calls, query parameters, HTTP headers,
cookies, batch files, RSS feeds, etc; using positive
validation (whitelisting), then lesser forms of
validation such as greylisting (eliminating known
bad strings), or rejecting bad inputs (blacklisting). Fail ./system/admin/theme/error_php.ph Outputs the User-Agent header directly without checking (grep) Other

V5.20 2

Verify that structured data is strongly typed and
validated against a defined schema including
allowed characters, length and pattern (e.g. credit
card numbers or telephone, or validating that two
related fields are reasonable, such as validating
suburbs and zip or post codes match). Fail .\system\admin\controllers\metadata Can input text in number of posts per page without an exeption.

V5.21 2

Verify that unstructured data is sanitized to
enforce generic safety measures such as allowed
characters and length, and characters potentially
harmful in given context should be escaped (e.g.
natural names with Unicode or apostrophes, such
asねこor O'Hara) Fail .\system\admin\controllers\metadata Can input special characters.

V5.22 1

Make sure untrusted HTML from WYSIWYG
editors or similar are properly sanitized with an
HTML sanitizer and handle it appropriately
according to the input validation task and
encoding task. Fail Admins, editors and other users can put HTML in text forms, including XSS.

V5.23 2

For auto-escaping template technology, if UI
escaping is disabled, ensure that HTML
sanitization is enabled instead.

V5.24 2

Verify that data transferred from one DOM context
to another, uses safe JavaScript methods, such
as using.innerText and .val. Pass

V5.25 2

Verify when parsing JSON in browsers, that
JSON.parse is used to parse JSON on the client.
Do not use eval() to parse JSON on the client. Pass With the assumption that jQuery and MooTools do this correctly. Because they have fallbacks to eva Other

V5.26 2

Verify that authenticated data is cleared from
client storage, such as the browser DOM, after the
session is terminated. Pass

Don't know - no time to look into this Unclear at the moment. See Template::render. This uses extract, which comes from a parameter. (grep)

Don't know - no time to look into this

Don't know - not clear how to check this

ASVS
Level Verification Requirement Verdict Source Code Reference Comment Tool Use

V7.2 1

Verify that all cryptographic modules fail securely,
and errors are handled in a way that does not
enable oracle padding. Trivial Pass (N/A)

V7.6 2

Verify that all random numbers, random file
names, random GUIDs, and random strings are
generated using the cryptographic module’s
approved random number generator when these
random values are intended to be not guessable
by an attacker. Fail installer.php mt_rand() is not cryptographically secure. Foritfy

V7.7 1

Verify that cryptographic algorithms used by the
application have been validated against FIPS 140-
2 or an equivalent standard. Fail users.php crypt() is used. This is proven to be unsafe Foritfy

V7.9 2

Verify that there is an explicit policy for how
cryptographic keys are managed (e.g., generated,
distributed, revoked, and expired). Verify that this
key lifecycle is properly enforced. Trivial Pass (N/A)

V7.12 2

Personally Identifiable Information should be
stored encrypted at rest and ensure that
communication goes via protected channels. Trivial Pass (N/A)

V7.13 2
Verify that where possible, keys and secrets are
zeroed when destroyed. Trivial Pass (N/A)

V7.14 2
Verify that all keys and passwords are replaceable,
and are generated or replaced at installation time. Trivial Pass (N/A)

ASVS
Level Verification Requirement Verdict Source Code Reference Comment

V8.1 1

Verify that the application does not output error
messages or stack traces containing sensitive
data that could assist an attacker, including
session id, software/framework versions and
personal information Fail ./system/admin/theme/error_php.ph Shows stack traces for admin exceptions.

V8.2 2
Verify that error handling logic in security
controls denies access by default. Pass

V8.3 2

Verify security logging controls provide the ability
to log success and particularly failure events that
are identified as security-relevant. Pass

V8.4 2

Verify that each log event includes necessary
information that would allow for a detailed
investigation of the timeline when an event
happens. Fail Only a basic message is logged.

V8.6 2
Verify that security logs are protected from
unauthorized access and modification. Fail ./system/classes/log.php

V8.7 2

Verify that the application does not log sensitive
data as defined under local privacy laws or
regulations, organizational sensitive data as
defined by a risk assessment, or sensitive
authentication data that could assist an attacker,
including user’s session identifiers, passwords,
hashes, or API tokens. Pass

V8.10 2
Verify that an audit log or similar allows for non-
repudiation of key transactions. Fail No audit log to be found.

Tool Used

By default, logs are world-readable, may be configured to not be world-readable.

ASVS
Level Verification Requirement Verdict Source Code Referen Comment

V9.1 1

Verify that all forms containing sensitive
information have disabled client side caching,
including autocomplete features. Fail login.php One could use the computer after the initial user to see information previously submitted. Foritfy

V9.3 1

Verify that all sensitive data is sent to the
server in the HTTP message body or
headers (i.e., URL parameters are never
used to send sensitive data). Pass

V9.4 1

Verify that the application sets appropriate
anti-caching headers as per the risk of the
application, such as the following:
Expires: Tue, 03 Jul 2001 06:00:00 GMT
Last-Modified: {now} GMT
Cache-Control: no-store, no-cache, must-
revalidate, max-age=0 Cache-Control: post-
check=0, pre-check=0
Pragma: no-cache Pass

V9.5 2

Verify that on the server, all cached or
temporary copies of sensitive data stored are
protected from unauthorized access or
purged/invalidated after the authorized user
accesses the sensitive data. Trivial Pass (N/A) There is no caching.

V9.7 2

Verify the application minimizes the number
of parameters in a request, such as hidden
fields, Ajax variables, cookies and header
values. Pass

V9.9 1

Verify that data stored in client side storage -
such as HTML5 local storage, session
storage, IndexedDB, regular cookies or Flash
cookies - does not contain sensitive or PII). Pass

V9.10 2

Verify accessing sensitive data is logged, if
the data is collected under relevant data
protection directives or where logging of
accesses is required. Trivial Pass (N/A) There is no sensitive data, except for passwords, which cannot be accessed (because are hashed).

V9.11 2

Verify that sensitive data is rapidly sanitized
from memory as soon as it is no longer
needed and handled in accordance to
functions and techniques supported by the
framework/library/operating system. Trivial Pass (N/A) There is no sensitive data, except for passwords, which are hashed as soon as possible.

Tool Used

ASVS
Level Verification Requirement Verdict Source Code Referen Commen

V10.1 1

Verify that a path can be built from a trusted CA to
each Transport Layer Security (TLS) server
certificate, and that each server certificate is valid.

V10.3 1

Verify that TLS is used for all connections
(including both external and backend
connections) that are authenticated or that involve
sensitive data or functions, and does not fall back
to insecure or unencrypted protocols. Ensure the
strongest alternative is the preferred algorithm.

V10.6 2

Verify that all connections to external systems
that involve sensitive information or functions are
authenticated.

V10.11 1

Verify that HTTP Strict Transport Security
headers are included on all requests and for all
subdomains, such as Strict-Transport-Security:
max-age=15724800; includeSubdomains

V10.13 1
Ensure forward secrecy ciphers are in use to
mitigate passive attackers recording traffic.

V10.14 1

Verify that proper certification revocation, such as
Online Certificate Status Protocol (OSCP)
Stapling, is enabled and configured.

V10.15 1

Verify that only strong algorithms, ciphers, and
protocols are used, through all the certificate
hierarchy, including root and intermediary
certificates of your selected certifying authority.

V10.16 1

Verify that the TLS settings are in line with current
leading practice, particularly as common
configurations, ciphers, and algorithms become
insecure.

Tool Used

NA - check is beyond scope of system

NA - check is beyond scope of system

NA - check is beyond scope of system

NA - check is beyond scope of system

NA - check is beyond scope of system

NA - check is beyond scope of system

NA - check is beyond scope of system

NA - check is beyond scope of system

	Organization
	Verdict
	Reflection

