
Software	Security	
OWASP	Open	Source	Review	Project	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Date:	 	 Jan	8,	2015	
	
Group:	 	 7	
	
Students:	 Berry	Busser	(RU-4492196)	

berrybusser@hotmail.com	
	

Mark	Vink	(RU-4378008)		
info@markvink.nl	

	
Niels	Harder	(RU-4517326)	
niels.h.nl@gmail.com	

	 	

Jan	8,	2016	

	
2	

Table	of	contents	
	
Table	of	contents	..	2	
1.	Organisation	..	3	
2.	Verdict	..	4	
V2:	Authentication	Verification	Requirements	..	4	
V3.	Session	management	...	9	
V4.	Access	control	..	11	
V5:	Malicious	input	handling	verification	requirements	..	13	
V6:	Output	encoding	/	escaping	..	15	
V7:	Cryptography	at	rest	verification	requirements	..	16	
V8:	Error	handling	and	logging	verification	requirements	...	17	
V9:	Data	protection	verification	requirements	...	20	
V10:	Communications	security	verification	requirements	..	22	

3.	Refection	...	24	

Jan	8,	2016	

	
3	

1.	Organisation	
Briefly	describe	the	way	you	organized	the	review.	
	
The	 review	 has	 been	 carried	 out	 by	 three	 team	 members	 with	 varying	 degrees	 of	
knowledge	 and	 experience	 when	 it	 comes	 to	 PHP.	 The	 reviewers	 have	 examined	 the	
source	of	the	application	until	each	of	them	had	a	basic	(or	even	good)	understanding	of	
the	way	it	functions.	
	
After	 getting	 a	 basic	 idea	 of	 the	 workings	 of	 the	 application	 the	 work	 was	 split	 by	
category	 of	 security	 requirements.	 	 Team	 members	 with	 more	 PHP	 knowledge	 have	
checked	the	more	technical	requirements.		
	
For	every	requirement	the	following	steps	have	been	followed:	

1. Test	the	related	functionality	in	a	running	copy	of	the	application.	
2. Use	the	“Fortify	static	code	analyzer”	tool	to	check	for	systematically	detectable	

vulnerabilities.	
3. Manually	verify	the	findings	of	the	tool	to	make	sure	there	are	no	false	positives.	
4. Identify	 related	 source	 files	 and	 manually	 check	 these	 for	 suspected	

vulnerabilities.	
5. Document	the	findings	and	have	this	reviewed	by	another	team	member.	

	
If	 the	Fortify	 tool	has	already	determined	a	verification	 to	 fail	consistently	 the	manual	
checks	 as	 described	 in	 step	 4	 have	 been	 deemed	unnecessary.	 The	 last	 step	 has	 been	
implemented	to	make	sure	that	multiple	members	have	reviewed	a	verification	and	the	
chance	for	false	positives	and	false	negatives	is	decreased.		 	

Jan	8,	2016	

	
4	

2.	Verdict	
Give	your	judgment	for	each	of	the	verification	requirements,	with	a	short	motivation.	

V2:	Authentication	Verification	Requirements	
Authentication	 is	 the	 act	 of	 establishing,	 or	 confirming,	 something	 (or	 someone)	 as	
authentic,	that	is,	that	claims	made	by	or	about	the	thing	are	true.	Ensure	that	a	verified	
application	satisfies	the	following	high	level	requirements	
	
2.1	 Verify	 all	 pages	 and	 resources	 by	 default	 require	 authentication	 except	 those	
specifically	intended	to	be	public	(Principle	of	complete	mediation).	
When	 following	 the	application	 flow,	 starting	 from	“testcms-v2/index.php”.	 It	 includes	
bootstrap.php	which	starts:s	
/** Handle routing */
TestCMS::run(); 	
	
Within	this	run()	in	testcms.php,	the	code	enters	an	admin	area.	This	area	defines	three	
public	 places/actions.	 All	 others	 places/actions	 within	 the	 admin	 area	 include	 this	
authentication	function.		
// public admin actions	
$public = array('users/login', 'users/amnesia', 'users/reset');	

// redirect to login	
if(Users::authed() === false and in_array(trim($controller, '_controller').
'/' . $action, $public) === false) {	
 return Response::redirect(Config::get('application.admin_folder') . 	
 '/users/login');	 	
	
Uses::auth()	creates	a	default	authentication	to	pages	within	the	admin	area’s	except	a	
few	 public	 pages.	 There	 is	 no	 other	 landing	 page	within	 the	 root	 of	 “testcms-v2”	 that	
bypasses	 the	 include	 of	 “system/bootstrap.php”	 Thereby	 we	 judge	 this	 requirement	
with	a	PASS.		
	
2.2	Verify	that	all	password	fields	do	not	echo	the	user’s	password	when	it	is	entered.	
A	full	 text	search	 for	$post['pass']	/	password	/	pass	within	the	project	reveals	no	
echo	 user’s	 passwords	 from	 password	 fields.	 Except	 on	 “\testcms-
v2\system\admin\theme\users\reset.php”	 where	 it	 seems	 to	 echo	 the	 password,	
thereby	we	judge	this	requirement	as	FAIL:	
	
<input name="password" id="password" type="password" value="<?php echo
Input::post('password'); ?>"> 	
	
Although	 this	 page	 does	 not	 seem	 to	 be	 reachable	 from	 the	 GUI,	 it	 does	 seem	 to	 be	
included	from	the	public	functions	reset($hash) and	recover_password():	
$hash = hash('md5', $user->id . $user->email . $user->password);
$link = Url::build(

array('path' => Url::make('admin/users/reset/' . $hash))
); 	
	
	
	 	

Jan	8,	2016	

	
5	

2.4	Verify	all	authentication	controls	are	enforced	on	the	server	side.	
The	 authentication	 control	 source	 code	 is	written	 in	PHP.	As	PHP	 is	 server	 side	 code,	
this	authentication	 is	 thereby	enforced	on	the	server.	Furthermore	there	doesn’t	seem	
to	be	any	JavaScript	code	regarding	authentication.	Although	there	might	be	client	side	
issues	with	the	third	party	JavaScript	files	jquery.js	and	mootools.js.	The	static	analysis	
tool	Fortify	warns	that	these	files	may	be	vulnerable	to	JavaScript	hijacking:		
	
	“Applications	that	use	JavaScript	notation	to	transport	sensitive	data	can	be	vulnerable	to	
JavaScript	 hijacking,	 which	 allows	 an	 unauthorized	 attacker	 to	 read	 confidential	 data	
from	a	vulnerable	application.”	
	
	
	
	
	
	
Thus	judging	this	requirement	with	a	FAIL.	
	
2.6	Verify	all	authentication	controls	fail	securely	to	ensure	attackers	cannot	log	in.	
This	 depends	 on	 the	 definition	 of	 “securely”	 which	 could	 result	 in	 judging	 this	
requirement	 with:	 don’t	 know	 –	 security	 requirement	 unclear.	When	 trying	 to	 log	 in	
with	wrong	credentials,	 it	returns	the	message	“Incorrect	details”.	Which	sounds	like	a	
good	 thing	 to	 do.	 Returning	 detailed	 messages	 like	 “wrong	 username”	 or	 “wrong	
password”	are	bad	and	would	give	hints	to	the	attacker.	Which	is	not	the	case	with	this	
CMS.		
	
When	the	database	is	offline	(or	with	wrong	database	credentials)	when	trying	to	log	in,	
an	unhandled	exception	 is	returned.	This	case	 it	 returned	“SQLSTATE[HY000]	[2002]	A	
connection	 attempt	 failed	 because	 the	 connected	 party	 did	 not	 properly	 respond	 after	 a	
period	 of	 time,	 or	 established	 connection	 failed	 because	 connected	 host	 has	 failed	 to	
respond.	in	“C:\xampp\htdocs\testcms-v2\system\classes\db.php	on	line	25.”	
Furthermore	it	returns	the	stack	trace	with	the	source	code	that	causes	the	error,	in	this	
case:	
#0 C:\xampp\htdocs\testcms-v2\system\classes\db.php(25): PDO-
>__construct('mysql:dbname=te...', 'root', 'toor')

This	an	unhandled	exception	leaks	out	the	database	type,	local	file/webserver	location,	
username,	password,	small	part	of	the	database	name	and	the	type	of	approach	within	
PHP	 of	 creating	 queries	 (PHP	 Data	 Objects	 in	 this	 case).	 Thereby	 judging	 this	
requirement	with	a	big	FAIL.	
	
2.7	Verify	password	entry	fields	allow,	or	encourage,	the	use	of	passphrases,	and	do	not	
prevent	long	passphrases/highly	complex	passwords	being	entered.	
There	are	no	HTML	and	JavaScript	validations	or	requirements	on	the	password	fields.	
Nor	 is	 there	 in	 the	PHP	function	add()	within	users.php	and	 in	 the	 function	 insert()	 in	
db.php	which	 are	 responsible	 for	 creating	 a	 new	user.	 At	 the	 database	 level	 the	 table	
“users”	contains	a	“password”	field	with	the	type	“text”.	This	means	there	is	no	defined	
maximum	 character	 length	 restriction	 on	 the	 database,	 apart	 from	 the	 maximum	
character	length	that	the	text	field	itself	has,	which	is	65.535	characters.		Because	there	
are	 no	 restrictions,	 this	 allows	 the	 use	 of	 passphrases	 and	 it	 does	 not	 prevent	 long	
passphrases	 /	 highly	 complex	 passwords	 from	 being	 entered.	 On	 the	 other	 hand,	 a	
single	character	can	be	used	as	a	passwords,	there	are	no	minimum	requirements.	But	
this	is	not	in	the	scope	of	this	requirement	(see	requirement	2.27),	thereby	judging	this	
requirement	with	a	PASS.	

Jan	8,	2016	

	
6	

	
2.8	 Verify	 all	 account	 identity	 authentication	 functions	 (such	 as	 update	 profile,	 forgot	
password,	disabled	/	lost	token,	help	desk	or	IVR)	that	might	regain	access	to	the	account	
are	at	least	as	resistant	to	attack	as	the	primary	authentication	mechanism.	
The	edit()	 function	within	 the	user	controller,	which	 is	 triggered	when	sending	a	post	
against	 “/testcms-v2/index.php/admin/users/edit/#”	 (where	 #	 is	 the	 id	 of	 the	 user	
within	MySQL),	 does	 not	 check	 the	 	 authorization	 and	 authentication	 of	 the	 action.	 In	
other	words,	 the	edit()	 function	does	not	check	who	you	are	and	 if	you	are	allowed	to	
execute	this	function	with	the	given	parameters.	All	it	verifies	is	if	the	userid	exists	and	if	
the	form	action	is	a	post.	It	does	not	even	check	the	old	password	when	updating	your	
password.	 Neither	 does	 the	 update()	 function	 in	 the	 user	 model	 class	 have	 enough	
checks	to	prevent	a	malicious	update.		
Furthermore	as	described	in	2.1,	you	can	modify	anyone’s	profile	as	long	as	you	can	log	
in	 with	 any	 account.	 Thus	 regain	 access	 to	 your	 old	 account.	 Hereby	 judging	 this	
requirement	with	a	FAIL.	
	
2.9	Verify	 that	 the	 changing	 password	 functionality	 includes	 the	 old	 password,	 the	 new	
password,	and	a	password	confirmation.	
As	 shown	 on	 the	 image	 on	 the	 right,	 when	
updating	 a	 user,	 your	 own	 or	 someone	
else’s,	only	a	new	passwords	is	asked.	No	old	
password	 and	 a	 passwords	 confirmation	 is	
required.	 Anyone	 can	 change	 anyone’s	
password.	 This	 does	 not	 comply	 with	 this	
requirement.	 Thereby	 judging	 this	
requirement	with	FAIL.	
	
	
2.16	 Verify	 that	 credentials	 are	 transported	 using	 a	 suitable	 encrypted	 link	 and	 that	 all	
pages/functions	 that	 require	a	user	 to	enter	 credentials	 are	done	 so	using	an	encrypted	
link.	
There	 is	no	SSL	encryption,	but	this	 is	because	of	 the	assignment	which	requires	us	to	
install	 the	 testcms-v2	 on	 our	 local	machines.	 Furthermore	 you	 have	 to	 pay	 for	 a	 SSL	
license.	Anyway,	when	logging	in	the	credentials	of	the	users	are	send	as	plain	text.	They	
are	 send	 as	 post	 parameters	 as:	 “user=username&pass=password”.	 Hereby	 judging	 this	
requirement	as	a	FAIL.	
	
2.17	Verify	that	the	forgotten	password	function	and	other	recovery	paths	do	not	reveal	
the	current	password	and	that	the	new	password	is	not	sent	in	clear	text	to	the	user.	
The	forgotten	password	function	asks	only	for	an	email-address.	This	email-address	is	then	
used	to	send	a	confirmation	about	the	password	change	with	a	link	to	follow	to	create	a	new	
password.		We	know	that	the	password	is	stored	in	the	database	as	a	hash	and	without	a	
salt	with	the	PHP	crypt()	function:	$password	=	crypt($post['password']);.	As	the	password	is	
hashed	and	not	send	in	the	clear	to	the	user,	we	judge	this	requirement	with	PASS.	
	
2.18	 Verify	 that	 information	 enumeration	 is	 not	 possible	 via	 login,	 password	 reset,	 or	
forgot	account	functionality.	
Within	the	“forgot	your	password”	page,	you	can	enter	an	email	address.	 If	such	email	
exists,	it	will	return	the	message:	“We	have	send	you	an	email	to	confirm	your	password	
change”.	 If	 the	 email	 address	 doesn’t	 exists,	 it	 will	 return	 the	 message:	 “Account	 not	
found”.	This	makes	 information	enumeration	possible	and	 thereby	 this	 requirement	 is	
judged	as	FAIL.	
	

Jan	8,	2016	

	
7	

2.19	Verify	 there	 are	 no	 default	 passwords	 in	 use	 for	 the	 application	 framework	 or	 any	
components	used	by	the	application	(such	as	“admin/password”).	
This	CMS	has	a	default	 administrator	named	 “admin”,	but	no	default	password	can	be	
found.	A	password	 is	 generated	upon	 installation	 of	 the	CMS	 and	 the	database	 by	 the	
following	 lines	 of	 code:
$password = random(8);
$sql = str_replace('[[now]]', time(), file_get_contents('test.sql'));
$sql = str_replace('[[password]]', crypt($password), $sql); 	
The	function	random	is	a	self-defined	function	that	takes	an	integer	as	string	length	for	
random	characters	between	“0-9a-zA-Z”.		This	password	is	then	fed	to	the	PHP	function	
crypt	which	returns	a	hashed	string	using	 the	standard	Unix	DES-based	algorithm	and	
takes	the	$sql	variable	as	the	salt.	
Because	 there	 is	 no	 default	 password	 and	 the	 admin	 password	 upon	 installation	 is	
generated,	this	requirement	is	judged	as	PASS.	
	
2.20	 Verify	 that	 request	 throttling	 is	 in	 place	 to	 prevent	 automated	 attacks	 against	
common	authentication	attacks	such	as	brute	force	attacks	or	denial	of	service	attacks.	
There	 are	 no	 occurrence	 of	 the	words	 “http_throttle”	 and	 “throttle”	within	 the	whole	
project.	 Ideally	 you	 would	 not	 do	 this	 in	 PHP	 but	 in	 Apache,	 with	 for	 example	
“mod_security”	or	“mod_throttle”.	There	are	other	solutions	in	both	hard-	and	software.	
But	this	exceeds	the	scope	of	our	installation	of	the	testcms-v2	on	our	local	machines	for	
this	 assignment.	 Thereby	we	 give	 this	 requirement	 a	NA	 –	 check	 is	 beyond	 scope	 of	
code.	

2.22	 Verify	 that	 forgotten	 password	 and	 other	 recovery	 paths	 use	 a	 soft	 token,	mobile	
push,	or	an	offline	recovery	mechanism.	
The	 recovery	 paths	 such	 as	 the	 forgotten	 password	 create	 a	MD5	 hash	 of	 the	 userid,	
email	and	password.	This	hash	is	then	used	to	create	a	link	to	reset	the	password.	This	
link	 is	 send	 to	 the	 user	where	 they	 can	 create	 a	 new	 password	without	 knowing	 the	
original	password.	
$hash = hash('md5', $user->id . $user->email . $user->password);	
$link = Url::build(array('path' => Url::make('admin/users/reset/'.$hash)));	 	
	
The	requirement	defines	that	the	forgotten	password	mechanism	must	either	use	a	soft	
token,	mobile	push	or	an	offline	recovery	mechanism,	but	it	is	not	defining	requirements	
on	 these	 three	mechanisms.	 It’s	 good	 that	 the	password	 is	being	hashed,	 although	 the	
chosen	hashing	algorithm	could	have	been	better.	If	sending	an	email	with	a	link	can	be	
considered	as	a	soft	token.	Thereby	judging	this	requirement	as	PASS.	
	
2.24	 Verify	 that	 if	 knowledge	 based	 questions	 (also	 known	 as	 "secret	 questions")	 are	
required,	the	questions	should	be	strong	enough	to	protect	the	application.	
There	is	no	“secret	questions”	present	in	this	application.	There	is	no	GUI,	source	code	
noir	 database	 fields	 that	 could	 indicate	 the	 use	 of	 the	 “secret	 questions”.	 Lacking	 this	
functionality	will	result	in	a	FAIL	judgment.	
	
2.27	Verify	 that	measures	 are	 in	 place	 to	block	 the	use	of	 commonly	 chosen	passwords	
and	weak	passphrases.	
As	mentioned	in	chapter	2.7,	there	are	no	restrictions	on	passwords.	A	single	character	
can	be	used	as	a	passwords,	and	there	are	no	minimum	requirements	on	the	character	
types.	 For	 example	 if	 a	 password	 should	 contain	 an	 upper	 letter	 and	 a	 symbol.	 This	
means	 that	 there	 are	 no	 measures	 in	 place	 to	 block	 the	 use	 of	 commonly	 chosen	
passwords	and	weak	passphrases.	Thereby	judging	this	requirement	with	a	FAIL.	
	 	

Jan	8,	2016	

	
8	

2.30	Verify	 that	 if	 an	application	allows	users	 to	authenticate,	 they	use	a	proven	 secure	
authentication	mechanism.	
This	 again	 depends	 on	 the	 definition	 of	 a	 proven	 secure	 authentication	 mechanism.	
What	we	know	is	that	within	the	authentication	step	the	password	is	check	with	crypt:		
if(crypt($post['pass'], $user->password) != $user->password)
	
The	 PHP	 documentation	 on	 the	 crypt()	 function	 encourages	 to	 use	 the	
alternative	functions	 instead,	 functions	which	are	more	secure	 then	crypt().	This	 leads	
us	to	believe	that	the	authentication	implementation	is	not	a	proven	secure	mechanism.	
Thereby	judging	this	requirement	as	a	FAIL.	
	
2.32	Verify	that	administrative	interfaces	are	not	accessible	to	untrusted	parties	
As	 described	 in	 chapter	 2.1.	 There	 is	 a	 default	 authentication	 mechanism	 on	 the	
administrative	interfaces	of	the	CMS.	This	prevents	untrusted	parties,	for	as	long	as	they	
don’t	 have	 an	 account	 on	 the	 website	 with	 the	 current	 setup,	 to	 access	 the	
administrative	 interfaces.	 There	 do	 not	 seem	 to	 be	 other	 ways	 to	 access	 these	
administrative	 interfaces	 then	 via	 the	 default	 authentication	 mechanism.	 Thereby	
judging	this	requirement	with	PASS.	
	
	
	 	

Jan	8,	2016	

	
9	

V3.	Session	management	
One	 of	 the	 core	 components	 of	 any	web-based	 application	 is	 the	mechanism	by	which	 it	
controls	and	maintains	 the	 state	 for	a	user	 interacting	with	 it.	This	 is	 referred	 to	 this	as	
Session	 Management	 and	 is	 defined	 as	 the	 set	 of	 all	 controls	 governing	 state-full	
interaction	between	a	user	and	the	web-based	application.	
	
Note,	 the	 CMS	 is	 using	 the	 PHP	 session	 functions,	 thereby	 the	 outcome	 of	 these	
requirements	 depend	 on	 the	 PHP	 version	 running	 on	 the	 server	which	 is	 hosting	 the	
CMS.	For	 the	current	chapter,	 the	environment	has	PHP	version	5.6.14	 installed	which	
was	released	on	01	October	2015.	
	
3.1	Verify	that	there	is	no	custom	session	manager,	or	that	the	custom	session	manager	is	
resistant	against	all	common	session	management	attacks.	
The	CMS	does	not	use	a	custom	session	manager.	It	has	a	session.php	which	contains	a	
Session	 class.	 But	 all	 this	 class	 does	 is	 calling	 the	 PHP	 session	 functions,	 it	 does	 not	
manage	it.	Thereby	judging	this	requirement	with	PASS.	
	
3.2	Verify	that	sessions	are	invalidated	when	the	user	logs	out.	
When	the	users	chooses	to	log	out,	the	Users::logout()	function	is	triggered.	Then	short	
after	Session::forget()	is	called	to	unset	the	session	key.	As	the	session	key	is	only	stored	
in	the	PHP	session	variable	which	is	unset,	that	session	is	then	invalid.	Thereby	judging	
this	requirement	with	PASS.	
	
3.3	Verify	that	session’s	timeout	after	a	specified	period	of	inactivity.	
There	 seem	 to	 be	 configurations	 in	 place	which	 define	 that	 the	 session	 should	 expire	
after	3600	seconds.	Which	 is	 after	one	hour.	But	 this	 configuration	never	 seems	 to	be	
used.	 No	 occurs	 can	 be	 found	 of	 $_SESSION[‘expire’],	 $_SESSION[‘last_activity’],	
$_SESSION[‘created’]	and	$_SESSION[‘start’]	which	could	suggest	that	the	CMS	ends	the	
session.	There	 are	no	 cookies	 regarding	 session	 timeouts	within	 the	CMS	and	nothing	
can	be	found	in	relevant	classes	and	full	project	searches	(all	searches	where	done	case	
insensitive).	 This	 leads	 us	 to	 believe	 that	 the	 session	 timeout	 is	 not	 in	 effect,	 thereby	
judging	this	requirement	with	FAIL.	
	
3.5	Verify	that	all	pages	that	require	authentication	have	easy	and	visible	access	to	logout	
functionality.	
Wherever	the	user	may	go	within	the	CMS	or	at	the	public	pages,	if	the	user	is	logged	in,	
they	will	always	see	a	message	on	the	top	right	of	the	screen	that	they	are	logged	in,	as	
who	they	are	logged	in	and	with	a	direct	link	to	log	out.	It’s	clearly	visible	and	it’s	a	one	
click	logout	functionality.	This	requirement	is	judged	with	PASS.	
	
3.6	 Verify	 that	 the	 session	 id	 is	 never	 disclosed	 in	 URLs,	 error	 messages,	 or	 logs.	 This	
includes	verifying	that	the	application	does	not	support	URL	rewriting	of	session	cookies.	
The	 session	 id	 is	 not	 visible	 in	 the	 URL’s	 nor	 has	 it	 been	 seen	 in	 error	 messages,	
unhandled	 exceptions	 or	 logs.	 The	 application	 does	 not	 support	 URL	 rewriting	 of	
session	 cookies.	 The	 session	 id	 never	 seems	 to	 be	 disclosed.	 Thereby	 judging	 this	
requirement	with	PASS.	
	 	

Jan	8,	2016	

	
10	

3.7	Verify	that	all	successful	authentication	and	re-authentication	generates	a	new	session	
and	session	id.	
As	 the	 generation	 of	 a	 session	 within	 the	 CMS	 is	 handled	 by	 the	 PHP	 function	
session_start(),	PHP	documentation	says:	“It	creates	a	session	or	resumes	the	current	one	
bases	on	a	session	identifier	passed	via	a	GET	or	POST	request,	or	passed	via	a	cookie“.	Our	
session	 is	 stored	 in	 a	 cookie	 which	 never	 seems	 to	 change.	When	 including	 the	 PHP	
function	session_id()	which	gets	the	current	session	id.	It	is	clearly	visable	that	no	new	
session	id	is	generated	after	one	is	created.	Even	after	logging	out	and	then	logging	in	as	
a	 different	 user.	 The	 session	 id	 remains	 the	 same.	 Thereby	 judging	 this	 requirement	
with	FAIL.	
	
3.11	 Verify	 that	 session	 ids	 are	 sufficiently	 long,	 random	 and	 unique	 across	 the	 correct	
active	session	base.	
One	given	session	id	is	“od96aptccasd74lussq95g2f72”	which	is	both	26	characters	and	bytes	
long.	 As	 the	 PHP	 function	 strlen()	 returns	 the	 number	 of	 bytes	which	 is	 used	 on	 the	 PHP	
session	 id.	 The	 “Insufficient	 Session-ID	 Length”	 vulnerability	 within	 the	 OWASP	
vulnerabilities	 list	 states	 that	“Session	 identifiers	should	be	at	 least	128	bit	 long	to	prevent	
brute-force	 session	 attacks”	 128	 equals	 to	 16	 bytes.	 This	means	 that	 our	 session	 id	 of	 26	
bytes	 is	 sufficiently	 long.	 PHP	 uses	 a	 hashing	 algorithm	 to	 create	 the	 PHP	 session	 id.	 This	
creates	 randomness	 and	 enough	 uniqueness	 for	 this	 requirement.	 Thereby	 judging	 this	
requirement	with	PASS.	
	
3.12	 Verify	 that	 session	 ids	 stored	 in	 cookies	 have	 their	 path	 set	 to	 an	 appropriately	
restrictive	value	for	the	application,	and	authentication	session	tokens	additionally	set	the	
“HttpOnly”	and	“secure”	attributes	
Backed	 by	 the	 Fortify	 tool:	 “The	program	creates	a	 cookie	 in	 cookie.php	at	 line	19,	 but	
fails	 to	 set	 the	 HttpOnly	 flag	 to	 true”.	 It	 is	 missing	 the	 7th	 parameter	 to	 set	 HttpOnly,	
thereby	judging	this	requirement	with	FAIL.	
	
3.16	Verify	that	the	application	limits	the	number	of	active	concurrent	sessions.	
The	 application	 does	 not	 seem	 to	 limit	 the	 number	 of	 active	 concurrent	 sessions.	 No	
source	code	can	be	found	that	should	limit	these	sessions.	It	was	possible	to	be	logged	
into	 the	 site	 on	 3	 different	 machines	 with	 the	 same	 username	 and	 password.	 All	 3	
machines	could	browse	through	the	pages	without	one	of	 the	machines	getting	 logged	
out.	Thereby	judging	this	requirement	with	FAIL.	
	
3.17	Verify	that	an	active	session	list	is	displayed	in	the	account	profile	or	similar	of	each																
user.	The	user	should	be	able	to	terminate	any	active	session.			
There	does	not	seem	to	be	a	GUI	which	contains	a	list	of	active	sessions	of	the	user.	Nor	
is	 there	 any	 source	 code	 found	 which	 could	 contain	 such	 functionality.	 Users	 cannot	
terminate	any	active	session,	nor	can	the	admin.	Thereby	judging	this	requirement	with	
FAIL.	
	
3.18	 Verify	 the	 user	 is	 prompted	with	 the	 option	 to	 terminate	 all	 other	 active	 sessions	
after	a	successful	change	password	process.	
The	same	issues	as	requirement	3.17,	there	does	not	seem	to	be	a	GUI	or	source	code	which	
could	 contain	 such	 functionality.	 Users	 can’t	 terminate	 all	 other	 active	 sessions	 after	 a	
successful	change	password	process.	Thereby	judging	this	requirement	with	FAIL.	

	 	

Jan	8,	2016	

	
11	

V4.	Access	control	
The	 approach	 to	 this	 verification	 started	 with	 the	 default	 landing	 page.	 From	 there	
we’ve	 looked	 for	 pages/resources/directories	 that	 should	 require	 authentication	 and	
checked	if	they	did.	
	
4.1	Verify	that	the	principle	of	least	privilege	exists	–	users	should	only	be	able	to	
access	 functions,	 data	 files,	 URLs,	 controllers,	 services,	 and	 other	 resources,	 for	
which	 they	 possess	 specific	 authorization.	 This	 implies	 protection	 against	
spoofing	and	elevation	of	privilege.	
Upon	 inspection	 of	 the	 Users:authed()	 method.	We’ve	 found	 that	 it	 authenticates	 the	
user	 based	 on	 having	 a	 session	 key	 or	 not.	 This	 is	 actually	 pretty	 bad	 because	 as	we	
created	a	new	user	 called	 “testuser”	with	a	 role	 “User”	 instead	of	 “Administrator”.	We	
were	 able	 to	 access	 the	 admin	 area	 with	 the	 “testuser”	 user	 and	 update	 the	
administrator’s	profile.	The	different	user	roles	have	no	effect.	There	 is	no	principle	of	
least	privilege	and	thereby	this	requirement	is	judged	with	FAIL.	
	
4.4	Verify	that	access	to	sensitive	records	is	protected,	such	that	only	authorized	
objects	 or	 data	 is	 accessible	 to	 each	 user	 (for	 example,	 protect	 against	 users	
tampering	with	a	parameter	to	see	or	alter	another	user's	account).	
Since	every	registered	user	has	administrator	rights,	or	in	other	words,	every	registered	
user	 as	 full	 access.	 Then	 every	 registered	 user	 can	 read/change/delete	 everyone’s	
profile.	 So	 there	 is	no	access	 control	 to	 sensitive	 records.	The	only	 thing	 that	protects	
the	access	to	sensitive	records	is	by	not	having	an	account.	
To	make	matters	worse,	it	is	possible	to	tamper	with	parameters	to	alter	another	user’s	
profile.	When	updating	a	profile	you	can	 intercept	your	HTTP	request	 and	change	 the	
last	 integer	 in	 the	 POST	 URL.	 The	 POST	 URL	 looks	 like:	 	 “POST	 /testcms-
v2/index.php/admin/users/edit/2	 HTTP/1.1”.	 The	 value	 that	 is	 underlined	 can	 be	
changed	to	1,	then	you	have	overwritten	the	whole	admin’s	profile.	This	requirement	is	
judged	with	FAIL.		
	
4.5	 Verify	 that	 directory	 browsing	 is	 disabled	 unless	 deliberately	 desired.	
Additionally,	 applications	 should	 not	 allow	 discovery	 or	 disclosure	 of	 file	 or	
directory	metadata,	such	as	Thumbs.db,	.DS_Store,	.git	or	.svn	folders.	
This	is	typically	a	webserver	feature	concern	(Apache,	IIS,	etc.)	that	may	be	on	by	default	
and	 should	 be	 turned	 off.	 The	 CMS	 may	 have	 an	 “.htaccess”	 file	 instructing	 the	
webserver	 to	 turn	 on	 or	 of	 ‘Indexes’.	 Although	 an	 “htaccess.txt”	 exists,	 there	 does	 not	
exists	an	“.htaccess”	which	is	used	by	Apache.	Unfortunately	this	does	not	prevent	direct	
disclosures	 to	 files	 as	 http://localhost/testcms-v2/.gitignore	 and	
http://localhost/testcms-v2/htaccess.txt	are	readable.		
	
We’ve	 also	 created	 a	 directory	 with	 a	
single	 test	 file	 and	 browsed	 to	 that	
directory	 via	 the	 browser.	 The	 result	 is	
shown	 in	 the	 picture	 to	 the	 right.	 This	
proves	 that	directory	browsing	 is	enabled	
and	thus	not	prevented	within	the	CMS	or	
by	 default	within	 the	webserver.	 Thereby	
judging	this	requirement	with	FAIL.	
	
	
	
	
	

Jan	8,	2016	

	
12	

4.8	Verify	that	access	controls	fail	securely.		
Within	the	base	landing	page	“/testcms-v2/index.php”	we	have	found	that	they	defined:	
// Block direct access to any PHP files
define('IN_CMS', true);
	
Next	they	use	the	following	line	of	code	at	the	top	of	each	.php	document	that	requires	
authentication:	
<?php defined('IN_CMS') or die('No direct access allowed.');		
These	.php	documents	are:		

• “/testcms-v2/system/admin/theme/functions.php”	
• “/testcms-v2	/theme/functions.php”	
• “/testcms-v2	/config.php”	
• “/testcms-v2	/config.default.php”	
• All	files	in	“/testcms-v2/system/”		

o except	the	public	pages	within	“/testcms-v2/system/admin/theme/”	

If	 someone	 tries	 to	 access	 these	 files	 directly,	 they	would	 be	 shown	 the	message	 “No	
direct	 access	 allowed.”	 and	 the	 code	 execution	 is	 halted.	 This	 mechanism	 fails	 secure	
enough	to	judge	this	requirement	with	a	PASS.	
	
4.9	Verify	that	the	same	access	control	rules	implied	by	the	presentation	layer	are	
enforced	on	the	server	side.	
The	access	controls	rules	described	above	in	chapter	4.8	are	defined	in	PHP.	As	PHP	is	
server	 side	 code,	 these	 rules	 are	 enforced	 on	 the	 server.	 Thereby	 judging	 this	
requirement	with	PASS.	
	
4.13	 Verify	 that	 the	 application	 or	 framework	 uses	 strong	 random	 anti-CSRF	
tokens	or	has	another	transaction	protection	mechanism.	
From	 the	 “Cross-Site	 Request	 Forgery	 (CSRF)	 Prevention	 Cheat	 Sheet”	 on	 the	OWASP	
website,	they	state	that:	“Cross-Site	Scripting	is	not	necessary	for	CSRF	to	work.	However,	
any	 cross-site	 scripting	 vulnerability	 can	 be	 used	 to	 defeat	 token,	Double-Submit	 cookie,	
referrer	and	origin	based	CSRF	defenses.”	As	we	will	further	discus	XSS	vulnerabilities	in	
chapter	 5.16,	 we	 have	 stated	 that	 “The	 application	 is	 very	 vulnerable	 to	 XSS	 attacks”.	
Thereby	making	the	CMS	vulnerable	to	CSRF.	As	we	were	unable	to	find	tokens	or	other	
anti-CSRF	defenses	used	within	the	CMS.	We	judge	this	requirement	with	FAIL.	
	
4.16	Verify	that	the	application	correctly	enforces	context-sensitive	authorization	
so	as	to	not	allow	unauthorized	manipulation	by	means	of	parameter	tampering.	
As	described	in	chapter	4.4,	it	is	full	possible	to	make	use	of	parameter	tampering.	There	
is	 no	 form	of	 authorization	 to	not	 allow	unauthorized	manipulation.	 	 Thereby	 judging	
this	requirement	with	FAIL.	
	
	 	

Jan	8,	2016	

	
13	

V5:	Malicious	input	handling	verification	requirements	
The	most	common	web	application	security	weakness	is	the	failure	to	properly	validate	
input	 coming	 from	 the	 client	 or	 from	 the	 environment	 before	 using	 it.	 This	weakness	
leads	 to	 almost	 all	 of	 the	major	 vulnerabilities	 in	web	 applications,	 such	 as	 cross	 site	
scripting,	SQL	injection,	interpreter	injection,	locale/Unicode	attacks,	file	system	attacks,	
and	buffer	overflows.	
	
5.1	Verify	that	the	runtime	environment	is	not	susceptible	to	buffer	overflows,	or	
that	security	controls	prevent	buffer	overflows.	
There	are	a	few	places	with	functions	that	should	be	checked,	these	are:	

• Using	the	search	bar	–	functions/search.php	&	posts.php.	
• Logging	 in	 as	 an	 admin	 or	 using	 the	 “forgotten	 password”	 function	 –	

classes/user.php.	
• Posting	a	new	comment	–	classes/comments.php.	

When	 searching	 the	 function	 in	 posts.php	 is	 indirectly	 called.	 This	 function	 does	 not	
have	any	buffers	to	be	overflowed.	The	same	can	be	said	for	the	other	 files	mentioned	
above.		
	
The	 webserver	 where	 this	 application	 is	 hosted	 will	 also	 most	 likely	 limit	 the	 URL-
length,	 preventing	 overflows	 from	 the	 search	 parameter.	 It	 should	 be	 noted	 than	 an	
arbitrarily	 large	input	(1	million+	characters)	 in	a	field	will	produce	an	internal	server	
error	due	to	exceeding	the	maximum	packet	size	of	MySQL.	However,	according	to	the	
Fortify	code	analyzer	and	manual	verification	there	seems	to	be	no	indication	of	a	buffer	
overflow	vulnerability.	Thereby	we	judge	this	verification	with	a	PASS.		
	
5.3	Verify	that	server	side	input	validation	failures	result	in	request	rejection	and	
are	logged.		
The	 application	 seems	 to	 offer	 logging	 functionality	 in	 the	 file	 /classes/log.php.	 This	
functionality	seems	to	remain	unused	as	it’s	supposed	to	write	to	system/logs/error.log,	
which	 does	 not	 seem	 to	 exist	 even	 after	 creating	 errors	 or	 providing	 invalid	 input.	
Therefore	we	judge	this	verification	with	a	FAIL.	
	
5.5	Verify	that	input	validation	routines	are	enforced	on	the	server	side	
The	only	client-side	input	validation	to	be	found	is	checking	for	valid	e-mail	addresses	in	
the	 relevant	 parts	 of	 the	 application.	 This	 includes	 leaving	 a	 comment,	 recovering	
passwords	and	changing	an	account’s	registered	e-mail	address.	In	all	of	these	places	the	
e-mail	 address	 is	 verified	 on	 the	 server	 with	 the	 “FILTER_VALIDATE_EMAIL”	 filter.	
Therefore	we	judge	this	with	a	PASS.	
	
5.10	Verify	that	all	SQL	queries,	HQL,	OSQL,	NOSQL	and	stored	procedures,	calling	
of	 stored	procedures	 are	 protected	 by	 the	 use	 of	 prepared	 statements	 or	 query	
parameterization,	and	thus	not	susceptible	to	SQL	injection.	
This	 can	 easily	 be	 checked	 by	 a	 static	 analysis	 tool.	 That	 is	 why	 we	 have	 decided	 to	
examine	 the	 evidence	 collected	 by	 Fortify.	 	 Multiple	 SQL	 injection	 vulnerabilities	 are	
found,	 5	 excluding	 the	 vulnerability	 in	 the	 installer	 of	 the	 application.	 Upon	 further	
examination	of	‘classes/comments.php”	we	can	see	the	following	statement:	
$sql = "insert into comments (" . implode(', ', $keys) . ") values (" . implode(',
', $values) . ")"; 	

	
The	‘$values’	variable	is	an	array	with	user-input,	clearly	this	statement	is	not	prepared	
in	a	safe	way	and	thus	the	verification	is	judged	with	a	FAIL.	
	 	

Jan	8,	2016	

	
14	

	
5.11	 Verify	 that	 the	 application	 is	 not	 susceptible	 to	 LDAP	 Injection,	 or	 that	
security	controls	prevent	LDAP	Injection.	
The	Fortify	 tool	 is	 unable	 to	 find	 any	LDAP	 injection	 vulnerabilities.	 Furthermore,	 the	
application	seems	to	use	the	MySQL	database	instead	of	LDAP.	As	LDAP	does	not	seem	
to	be	used	there	also	seems	to	be	no	related	security	risk.	We	judge	this	verification	with	
a	PASS.	
	
5.12	 Verify	 that	 the	 application	 is	 not	 susceptible	 to	 OS	 Command	 Injection,	 or	
that	security	controls	prevent	OS	Command	Injection.	
Analyzing	the	source	of	the	application	does	not	show	any	places	where	an	OS	command	
is	 directly	 called.	 The	 Fortify	 tool	 also	 does	 not	 seem	 to	 have	 found	 any	 command	
injection	vulnerabilities.	Therefore	we	judge	this	verification	with	a	PASS.	
	
5.13	Verify	that	the	application	is	not	susceptible	to	Remote	File	Inclusion	(RFI)	or	
Local	File	Inclusion	(LFI)	when	content	is	used	that	is	a	path	to	a	file.	
This	verification	was	tested	with	the	application	running	on	the	Apache	webserver,	the	
application	files	were	in	a	folder	called	“htdocs”.	It	seems	to	be	impossible	to	traverse	to	
the	parent	folder,	which	is	good.	
It	 should	be	noted	 that	by	default	 the	 “install”	 folder	of	 the	CMS	 is	 still	 present	 in	 the	
folder,	 one	 can	 easily	 open	 files	 in	 the	 install	 folder.	 This	 folder	 contains	 an	 SQL	 file,	
which	reveals	the	structure	of	the	database,	and	perhaps	a	skilled	attacker	could	trigger	
the	installer	to	reinstall	the	CMS.	
However,	 assuming	 that	 the	 install	 folder	 is	 deleted	 as	 intended,	 this	 verification	 is	
judged	with	a	PASS.	
	
5.14	Verify	that	the	application	is	not	susceptible	to	common	XML	attacks,	such	as	
XPath	query	tampering,	XML	External	Entity	attacks,	and	XML	injection	attacks.	
From	manual	 verification	 it	 seems	 that	 the	 application	 does	 not	 use	 XML	 objects	 for	
things	 like	 database	 storage.	 The	 Fortify	 tool	 does	 not	 report	 any	 XML	 related	 errors	
either	and	thus	this	verification	is	judged	with	a	PASS.	
	
5.15	Ensure	that	all	string	variables	placed	into	HTML	or	other	web	client	code	is	
either	 properly	 contextually	 encoded	 manually,	 or	 utilize	 templates	 that	
automatically	encode	contextually	to	ensure	the	application	is	not	susceptible	to	
reflected,	stored	and	DOM	Cross-Site	Scripting	(XSS)	attacks.	
The	application	is	very	vulnerable	to	XSS	attacks.	The	Fortify	tool	reports	50	out	of	59	
critical	 errors	 to	 be	 XSS	 related.	 The	 vulnerabilities	were	 tested,	 users	 can	 insert	 any	
HTML	or	JavaScript	they	want	into	a	comment	and	it	will	be	executed.	One	of	the	many	
possible	attacks	this	could	lead	to	is	stealing	an	administrator’s	cookies	(unnoticed)	and	
gaining	complete	control	of	the	CMS.	The	injected	JavaScript	in	the	comment	even	gets	
executed	when	 the	 admin	 opens	 the	 CMS	 to	 edit	 the	 post.	 This	 verification	 is	 clearly	
judged	as	a	FAIL.	
	
5.22	Make	 sure	untrusted	HTML	 from	WYSIWYG	editors	or	 similar	are	properly	
sanitized	 with	 an	 HTML	 sanitizer	 and	 handle	 it	 appropriately	 according	 to	 the	
input	validation	task	and	encoding	task.	
As	 stated	 before,	 the	 input	 fields	 for	 a	 comment	 can	 be	 used	 to	 insert	 any	 HTML	
elements	into	the	page.	This	verification	is	therefore	judged	with	a	FAIL.	
	 	

Jan	8,	2016	

	
15	

V6:	Output	encoding	/	escaping	
This	section	was	incorporated	into	V5	in	Application	Security	Verification	Standard	2.0.	
ASVS	requirement	5.16	addresses	contextual	output	encoding	to	help	prevent	Cross	Site	
Scripting.	 	

Jan	8,	2016	

	
16	

V7:	Cryptography	at	rest	verification	requirements	
7.2	Verify	that	all	cryptographic	modules	fail	securely,	and	errors	are	handled	in	a	
way	that	does	not	enable	oracle	padding.	
The	 areas	 of	 the	 application	making	 use	 of	 cryptography	 (excluding	 the	 installer)	 are	
user-related	 functionality.	Namely	 adding	 a	 user,	 logging	 in,	 resetting	 a	 password	 and	
updating	a	user.	
The	 application	 uses	 DES	 as	 a	 method	 of	 encryption,	 which	 requires	 a	 mode	 of	
operation.	It	 is	not	clear	which	mode	of	operation	is	used,	 if	the	Cipher	Block	Chaining	
(CBC)	mode	is	used	then	there	is	the	possibility	of	an	oracle	padding	attack.	It	is	unclear	
which	 mode	 of	 operation	 is	 used,	 therefore	 this	 verification	 is	 judged	 with	 DON’T	
KNOW.	
	
7.7	 Verify	 that	 cryptographic	 algorithms	 used	 by	 the	 application	 have	 been	
validated	against	FIPS	140-2	or	an	equivalent	standard.	
The	functionality	regarding	users	is	reported	by	Fortify	to	use	weak	encryption,	namely	
DES.	 This	 is	 extremely	 outdated	 and	 will	 be	 cracked	 in	 a	 short	 amount	 of	 time	 on	
modern	 machines.	 	 Furthermore,	 the	 following	 piece	 of	 code	 from	 the	 user-creation	
process	shows	that	password	hashes	are	not	salted:	
$post['password'] = crypt($post['password']);	

	
According	to	the	FIPS140-2	standard	the	DES	function	is	no	longer	acceptable.	It	is	also	
worth	noting	that	a	“unique	application	key	used	for	signing	passwords”	is	created	when	
installing	the	app,	but	it	seems	like	this	key	is	never	used.	Therefore	this	verification	is	
judged	with	a	FAIL.	
	 	

Jan	8,	2016	

	
17	

V8:	Error	handling	and	logging	verification	requirements	
The	primary	objective	of	error	handling	and	logging	is	to	provide	a	useful	reaction	by	the	
user,	administrators,	and	 incident	 response	 teams.	The	objective	 is	not	 to	 create	massive	
amounts	of	logs,	but	high	quality	logs,	with	more	signal	than	discarded	noise.	
	
8.1	 Verify	 that	 the	 application	 does	 not	 output	 error	 messages	 or	 stack	 traces	
containing	 sensitive	 data	 that	 could	 assist	 an	 attacker,	 including	 session	 id,	
software/framework	versions	and	personal	information.	
In	the	base	file	system/bootstrap.php	there	is	a	custom	handler	registered	for	the	case	
any	 errors	 or	 exceptions	 may	 occur.	 These	 handlers	 point	 to	 the	 class	 Error	 in	
classes/error.php.	 Method	 ‘native’	 is	 called	 when	 a	 usual	 error	 occurs	 and	 method	
‘exception’	when	an	exception	is	thrown.	Based	on	the	configuration	the	error	is	logged	
and/or	 displayed	 to	 the	 visitor.	 It	 depends	 on	 the	 configuration	 set	 by	 the	 website	
owner	if	any	error	is	displayed.	
The	version	of	the	CMS	is	displayed	on	the	admin	login	page	which	is	publicly	available.	
Since	 this	 has	 nothing	 to	 do	 with	 error	 messages,	 and	 the	 displaying	 of	 errors	 is	
configurable,	this	verification	is	judged	as	PASS.	
		
8.2	Verify	that	error	handling	logic	in	security	controls	denies	access	by	default.	
The	 only	 page	with	 security	 controls	 is	 the	 page	where	 administrators	 login	 onto	 the	
administrator	 panel.	 This	 page	 is	 secured	 by	 a	 form	 asking	 the	 visitor	 to	 provide	 a	
username-password	pair.	Posts	on	this	 form	are	handled	by	the	class	Users_controller.	
This	specific	method	displays	the	login	page	by	default	and	redirect	the	user	only	in	case	
valid	credentials	were	presented.	Therefore	we	judge	this	verification	as	PASS.	
	
8.3	 Verify	 security	 logging	 controls	 provide	 the	 ability	 to	 log	 success	 and	
particularly	failure	events	that	are	identified	as	security-relevant.		
In	 relevance	 of	 the	 given	 CMS	 system,	 successful	 and	 unsuccessful	 login	 attempts	 are	
considered	to	be	security-relevant.	The	outcome	of	the	login	process	is	only	displayed	to	
the	visitor	 in	case	of	an	error	(missing	or	invalid	credentials).	Since	there	is	no	proper	
logging	in	place	we	judge	this	verification	as	FAIL.	
	
8.4	Verify	that	each	log	event	includes	necessary	information	that	would	allow	for	
a	detailed	investigation	of	the	timeline	when	an	event	happens.		

[info]	-->	Requested	URI:	admin/users/login	
[info]	-->	Translated	URI:	admin/users/login	
[info]	-->	Controller	action:	users_controller/login	
[error]	 -->	Theme	 file	 themes/default/users/login.php	not	 found.	 in	
/Users/mark/Development/testcms-v2/system/classes/template.php	on	line	56	

	
In	the	table	above	an	example	is	shown	of	logged	events	in	case	of	an	error.	Events	are	
shown	 in	 order	 of	 occurrence	 and	 this	 will	 allow	 an	 administrator	 to	 dig	 in	 the	
sequence/timeline.	Although	we	believe	it's	also	important	to	log	information	about	the	
specific	time	and	visitor.	The	information	may	be	enough	in	some	cases	but	will	not	help	
in	a	detailed	investigation.	Therefore	we	have	to	judge	this	verification	as	FAIL.	
	
	 	

Jan	8,	2016	

	
18	

8.5	Verify	 that	all	events	 that	 include	untrusted	data	will	not	execute	as	 code	 in	
the	intended	log	viewing	software.		

[info]	-->	Requested	URI:	<script>alert(1)</script>	
[info]	-->	Translated	URI:	<script>alert(1)</script>	
[info]	-->	Controller	action:	Routes/<script>alert(1)<	
[warning]	-->	Action	does	not	exist	

	
Since	 the	 CMS	 system	 does	 log	 additional	 information	 messages	 like	 which	 URI	 is	
requested,	it	is	easy	to	inject	executable	code	(PHP/JavaScript)	in	the	logging	file.	There	
is	 no	 software	 provided	 to	 inspect	 loggins;	 users	 should	 rely	 on	 own	 native	 tools	 for	
opening	and	viewing	the	log	files.	Therefore	executable	code	in	logging	does	not	form	a	
real	threat.	We	judge	this	verification	as	PASS.	
	
8.6	 Verify	 that	 security	 logs	 are	 protected	 from	 unauthorized	 access	 and	
modification.		

[error]	 -->	 SQLSTATE[HY000]	 [1045]	 Access	 denied	 for	 user	 'root'@'localhost'	 (using	
password:	 YES)	 in	 /Users/mark/Development/testcms-v2/system/classes/db.php	 on	
line	25	

	
Log	 files	 are	 not	 protected	 from	 unauthorized	 access.	 Every	 visitor	 with	 knowledge	
about	the	CMS	system	can	obtain	the	logs	using	his	web	browser	by	surfing	to	the	right	
URL.	 If	 directoryindex	 is	 allowed	 by	 the	 serving	 server,	 the	 user	 can	 easily	 visits	 the	
location	 ‘/system/logs/’	 to	get	 the	 full	 list	of	 available	 logs	 files.	 If	 that	 is	not	 the	case	
then	individual	log	files	may	accessed	by	visiting	the	right	location	based	on	the	date	of	
the	 file.	 For	 example	 ‘system/logs/2015-12-28.log’	 contains	 all	 errors	 occurred	 on	
December	 29,	 2015.	 This	 behavior	 can	 potentially	 leak	 confidential	 information	 like	
database	usernames	as	shown	in	the	table	above.	Therefore	we	judge	this	verification	as	
FAIL.	
	
8.7	Verify	 that	 the	application	does	not	 log	sensitive	data	as	defined	under	 local	
privacy	 laws	 or	 regulations,	 organizational	 sensitive	 data	 as	 defined	 by	 a	 risk	
assessment,	 or	 sensitive	 authentication	 data	 that	 could	 assist	 an	 attacker,	
including	user’s	session	identifiers,	passwords,	hashes,	or	API	tokens.	
The	 CMS	 system	 does	 log	 very	 minimal	 information;	 only	 level	 (info/warning/error)	
and	 a	message.	 This	message	 does	 not	 include	 any	 personal	 or	 sensitive	 information	
unless	 this	message	was	 passed	 by	 an	 exception.	 The	 only	 helping	message	we	 could	
find	contained	the	database	name	and	username.	Therefore	we	judge	this	verification	as	
PASS.	
	
	 	

Jan	8,	2016	

	
19	

8.8	 Verify	 that	 all	 non-printable	 symbols	 and	 field	 separators	 are	 properly	
encoded	in	log	entries,	to	prevent	log	injection.	
public static function write($severity, $message) {	
 ...	
 $line = '[' . $severity . '] --> ' . $message . PHP_EOL;	

 if($fp = @fopen(PATH . 'system/logs/' . date("Y-m-d") . '.log', 'a+')){	
 fwrite($fp, $line);	
 fclose($fp);	
 }	
}	 	
	
Messages	which	 are	 logged	 by	 the	 CMS	 are	 not	 encoded	 in	 any	 form	 and	 therefore	 is	
vulnerable	to	log	injection.	We	have	to	judge	this	verification	as	FAIL.	
	
8.9	Verify	that	log	fields	from	trusted	and	untrusted	sources	are	distinguishable	in	
log	entries.	
The	 CMS	 system	 only	 logs	 messages	 with	 the	 level	 info/warning	 and	 error.	 Info	 and	
warning	messages	are	only	produced	by	the	CMS	itself	and	therefore	is	considered	as	a	
trusted	source.	Error	messages	are	only	logged	then	passed	via	an	error	handler.	In	that	
last	 case	 we	 are	 certainly	 sure	 the	 errors	 have	 occurred.	 Therefore	 we	 judge	 this	
verification	as	PASS.	
	
8.10	 Verify	 that	 an	 audit	 log	 or	 similar	 allows	 for	 non-repudiation	 of	 key	
transactions.		
A	key	transaction	can	be	considered	as	any	action	performed	by	administrative	users	
using	the	admin	panel.	Such	actions	may	include:	

- Adding	and	editing	blog	posts.	
- Adding	and	editing	pages.	
- Updating	and	removing	comments.	
- Adding	and	editing	other	administrators.	

	
None	of	these	actions	are	specifically	logged;	only	visited	locations	are	but	this	does	not	
tell	us	if	an	action	has	occurred	on	that	location.	Furthermore	log	messages	or	locations	
are	 not	 bound	 to	 corresponding	 visitors,	 making	 it	 unable	 to	 trace	 back	 the	 source.	
Therefore	this	verification	is	judged	as	FAIL.	
	
8.11	Verify	that	security	logs	have	some	form	of	integrity	checking	or	controls	to	
prevent	unauthorized	modification.		
Log	 files	does	not	have	any	property	proving	 the	 integrity	of	 the	 files.	 It	 is	possible	 to	
edit	 the	 files	 on	 the	 server	 without	 the	 administrator	 noticing.	 Therefore	 this	
verification	is	judged	as	FAIL.	
	
8.12	Verify	that	the	logs	are	stored	on	a	different	partition	than	the	application	is	
running	with	proper	log	rotation.		
Log	 files	 are	 rotated	 based	 on	 the	 date	 the	 error	 occurred.	 Server	 administrators	 are	
responsible	 to	 archive	 dated	 log	 files.	 These	 files	 are	 written	 within	 the	 accessible	
webroot,	in	the	same	partition	as	the	application.	Therefore	this	verification	is	judged	as	
FAIL.	
	
	
	

Jan	8,	2016	

	
20	

V9:	Data	protection	verification	requirements	
There	 are	 three	 key	 elements	 to	 sound	 data	 protection:	 Confidentiality,	 Integrity	 and	
Availability	 (CIA).	 This	 standard	 assumes	 that	 data	 protection	 is	 enforced	 on	 a	 trusted	
system,	 such	 as	 a	 server,	 which	 has	 been	 hardened	 and	 has	 sufficient	 protections.	 The	
application	has	to	assume	that	all	user	devices	are	compromised	 in	some	way.	Where	an	
application	 transmits	 or	 stores	 sensitive	 information	on	 insecure	devices,	 such	as	 shared	
computers,	phones	and	tablets,	 the	application	 is	responsible	 for	ensuring	data	stored	on	
these	devices	is	encrypted	and	cannot	be	easily	illicitly	obtained,	altered	or	disclosed.	
	
9.1	Verify	that	all	forms	containing	sensitive	information	have	disabled	client	side	
caching,	including	autocomplete	features.		
Since	 this	 is	 a	 content	management	 system	 for	managing	 publicly	 available	 websites,	
there	is	not	much	sensitive	information	posted	on	forms.	There	a	few	forms	which	may	
contain	 sensitive	 information;	 the	 first	 to	 sign	 into	 the	 administration	 interface,	 the	
forms	for	resetting	your	password,	and	the	form	for	creating	a	new	admin	user.	None	of	
these	 forms	 have	 autocomplete	 disabled,	 which	 mean	 admin	 users	 could	 leak	
information	in	their	own	browser.	Therefore	this	verification	is	judged	as	FAIL.	
	
9.2	Verify	that	the	list	of	sensitive	data	processed	by	the	application	is	identified,	
and	that	there	is	an	explicit	policy	for	how	access	to	this	data	must	be	controlled,	
encrypted	and	enforced	under	relevant	data	protection	directives.	
There	 isn't	 really	 sensitive	 information	 processed	 except	 credentials	 of	 admin	 users.	
There	is	no	policy	available	on	how	these	credentials	are	accessed,	controlled	or	stored	
(encrypted).	 We	 don't	 believe	 further	 information	 is	 processed	 that	 falls	 under	
relevance	of	data	protection	directives	and	therefore	we	have	to	judge	this	verification	
with	N/A.	
	
9.3	Verify	that	all	sensitive	data	is	sent	to	the	server	in	the	HTTP	message	body	or	
headers	(i.e.,	URL	parameters	are	never	used	to	send	sensitive	data).		
The	hash	for	resetting	a	password	is	embedded	in	the	URL	where	someone	can	reset	his	
password.	Namely;	 ‘/admin/users/reset/<hash>’.	In	our	opinion	this	is	even	worse	than	
using	 parameters	 since	 full	 URI’s	 are	 usually	 visible	 in	 access	 logs	 and	 analytics.	
Therefore	this	verification	is	judged	as	FAIL.	
	
9.4	 Verify	 that	 the	 application	 sets	 appropriate	 anti-caching	 headers	 as	 per	 the	
risk	of	the	application	

Cache-Control:	no-store, no-cache, must-revalidate, post-check=0, pre-check=0	
Connection:	Keep-Alive	
Content-Length:	2362	
Content-Type:	text/html; charset=UTF-8	
Date:	Wed, 30 Dec 2015 10:40:03 GMT	
Expires:	Thu, 19 Nov 1981 08:52:00 GMT	
Keep-Alive:	timeout=5, max=100	
Pragma:	no-cache	
Server:	Apache	
X-Powered-By:	PHP/5.6.10	

		
The	response	headers	looks	like	anti-caching	headers	are	in	place,	although	it	is	unclear	
if	 the	CMS	or	web	server	produces	 these.	Therefore	we	have	 to	 judge	 this	verification	
with	N/A.	
	

Jan	8,	2016	

	
21	

9.5	 Verify	 that	 on	 the	 server,	 all	 cached	 or	 temporary	 copies	 of	 sensitive	 data	
stored	 are	 protected	 from	 unauthorized	 access	 or	 purged/invalidated	 after	 the	
authorized	user	accesses	the	sensitive	data.	
There	is	no	caching	in	place	in	the	CMS.	The	only	type	of	temporary	copies	is	data	stored	
in	the	(server)	session.	The	session	may	contain	information	about	notifications	and	the	
current	logged-in	user.	Notifications	are	removed	after	they	are	displayed,	thereby	this	
verification	is	judged	as	PASS.			
	
9.6	Verify	 that	 there	 is	a	method	 to	remove	each	 type	of	sensitive	data	 from	the	
application	at	the	end	of	the	required	retention	policy.		
There	 is	 no	 sensitive	 information	 stored	 by	 the	 CMS,	 which	 should	 be	 removed	 after	
some	kind	of	timespan;	therefore	we	have	to	judge	this	verification	with	N/A.	
	
9.7	Verify	the	application	minimizes	the	number	of	parameters	in	a	request,	such	
as	hidden	fields,	Ajax	variables,	cookies	and	header	values.		
There	 is	 no	 unnecessary	 usage	 of	 parameters,	 hidden	 fields,	 cookies	 or	 headers.	
Therefore	this	verification	is	judged	with	PASS.	
	
9.8	Verify	the	application	has	the	ability	to	detect	and	alert	on	abnormal	numbers	
of	requests	for	data	harvesting	for	an	example	screen	scraping.		
The	application	is	not	capable	of	detecting	abnormal	numbers	of	requests.	This	could	be	
implemented	 in	 the	 application	 or	 on	 the	 web	 server	 using	 some	 kind	 of	 request	
throttling.	Thereby	we	give	this	requirement	a	N/A	-	check	is	beyond	scope	of	code.	
	
9.9	 Verify	 that	 data	 stored	 in	 client	 side	 storage	 -	 such	 as	HTML5	 local	 storage,	
session	 storage,	 IndexedDB,	 regular	 cookies	 or	 Flash	 cookies	 -	 does	 not	 contain	
sensitive	or	PII).		
The	only	local	storage,	which	is	used	by	the	CMS,	is	the	default	SESSIONID	cookie.	This	
cookie	only	contains	a	reference	to	the	session	stored	on	the	server	and	does	not	contain	
any	sensitive	information.	Therefore	this	verification	is	judged	with	PASS.	
	
9.10	 Verify	 accessing	 sensitive	 data	 is	 logged,	 if	 the	 data	 is	 collected	 under	
relevant	data	protection	directives	or	where	logging	of	accesses	is	required.		
No	access	to	data	is	not	logged	by	the	CMS,	although	the	information	is	not	considered	to	
be	sensitive.	Thereby	we	give	this	requirement	a	N/A	-	check	is	beyond	scope	of	system.	
	
9.11	Verify	that	sensitive	data	is	rapidly	sanitized	from	memory	as	soon	as	it	is	no	
longer	needed	and	handled	in	accordance	to	functions	and	techniques	supported	
by	the	framework/library/operating	system.	
The	 PHP	 function	 unset()	 can	 be	 used	 to	 destroy	 certain	 variables	 and	 their	 content.	
Although	this	function	is	called	several	times,	it's	not	used	to	sanitize	information	after	it	
is	not	needed	anymore.	Therefore	this	verification	is	 judged	with	FAIL.	Since	variables	
only	hold	their	content	for	the	current	request	there	it	does	not	expose	a	large	risk.		
	
	
	
	
	
	 	

Jan	8,	2016	

	
22	

V10:	Communications	security	verification	requirements	
We	 are	 performing	 a	 code	 analysis	 of	 a	 content	management	 system	written	 in	 PHP.	
Usually	 the	 incoming	 connection	 (and	 whether	 or	 not	 SSL	 is	 used)	 is	 handled	 by	 a	
webserver	like	Apache	or	Nginx,	or	by	a	reverse	proxy.	
	
10.1	 Verify	 that	 a	 path	 can	 be	 built	 from	 a	 trusted	 CA	 to	 each	 Transport	 Layer	
Security	(TLS)	server	certificate,	and	that	each	server	certificate	is	valid.	
We	are	not	provided	with	a	web	server	that	handles	the	SSL	part	and	are	not	provided	
with	certificates	to	check.	N/A	-	check	is	beyond	scope	of	system.	
	
V10.3	 Verify	 that	 TLS	 is	 used	 for	 all	 connections	 (including	 both	 external	 and	
backend	 connections)	 that	 are	 authenticated	 or	 that	 involve	 sensitive	 data	 or	
functions,	and	does	not	fall	back	to	insecure	or	unencrypted	protocols.	Ensure	the	
strongest	alternative	is	the	preferred	algorithm.	
The	 CMS	 does	 require	 a	 connection	 with	 a	 MySQL	 database	 in	 order	 to	 store	 and	
retrieve	 information.	 It	 is	most	 likely	 that	a	 local	database	will	be	used	but	 this	 is	not	
required	 or	 enforced.	 It	 is	 possible	 to	 configure	 the	 CMS	 to	 open	 a	 connection	with	 a	
database	over	 a	 local	network	or	over	 the	 Internet.	This	 connection	 is	not	 secured	by	
SSL	on	the	application	level,	it	wouldn't	even	be	possible	to	configure	without	modifying	
the	 code	 yourself.	 An	 alternative	 would	 be	 to	 make	 a	 secure	 tunnel	 between	 the	
webserver	and	database	server.	N/A	-	check	is	beyond	scope	of	code.	
	
V10.4	Verify	that	backend	TLS	connection	failures	are	logged.		
N/A	-	check	is	beyond	scope	of	system.	
	
V10.5	Verify	 that	certificate	paths	are	built	and	verified	 for	all	client	certificates	
using	configured	trust	anchors	and	revocation	information.		
N/A	-	check	is	beyond	scope	of	system.	
	
V10.6	 Verify	 that	 all	 connections	 to	 external	 systems	 that	 involve	 sensitive	
information	or	functions	are	authenticated.	
In	order	to	make	a	connection	with	the	database	you	will	have	to	configure	the	database	
host,	name,	username	and	password.	Therefore	this	verification	is	judged	with	PASS.	
	
V10.8	Verify	that	there	is	a	single	standard	TLS	implementation	that	is	used	by	the	
application	that	is	configured	to	operate	in	an	approved	mode	of	operation.	
The	application	itself	does	not	use	TLS	in	any	form,	therefore	this	verification	is	judged	
with	FAIL.	
		
V10.10	 Verify	 that	 TLS	 certificate	 public	 key	 pinning	 is	 implemented	 with	
production	 and	 backup	 public	 keys.	 For	 more	 information,	 please	 see	 the	
references	below.		
Pinning	 of	 certificates	 has	 to	 be	 configured	 on	 the	 web	 server	 and	 therefore	 this	
verification	is	judged	with	N/A	-	check	is	beyond	scope	of	system.	
	
V10.11	 Verify	 that	 HTTP	 Strict	 Transport	 Security	 headers	 are	 included	 on	 all	
requests	 and	 for	 all	 subdomains,	 such	 as	 Strict-Transport-Security:	 max-
age=15724800;	includeSubdomains	
The	response	headers	do	not	include	HSTS-headers	in	order	to	protect	against	protocol	
downgrade	attacks	and	cookie	hijacking.	Therefore	this	verification	is	judged	as	FAIL.	
		

Jan	8,	2016	

	
23	

V10.12	Verify	that	production	website	URL	has	been	submitted	to	preloaded	list	of	
Strict	 Transport	 Security	 domains	 maintained	 by	 web	 browser	 vendors.	 Please	
see	the	references	below.		
N/A	-	check	is	beyond	scope	of	system.	
	
V10.13	 Ensure	 forward	 secrecy	 ciphers	 are	 in	 use	 to	mitigate	 passive	 attackers	
recording	traffic.	
N/A	-	check	is	beyond	scope	of	system.	
	
V10.14	 Verify	 that	 proper	 certification	 revocation,	 such	 as	 Online	 Certificate	
Status	Protocol	(OSCP)	Stapling,	is	enabled	and	configured.	
N/A	-	check	is	beyond	scope	of	system.	
	
V10.15	 Verify	 that	 only	 strong	 algorithms,	 ciphers,	 and	 protocols	 are	 used,	
through	all	the	certificate	hierarchy,	including	root	and	intermediary	certificates	
of	your	selected	certifying	authority.	
N/A	-	check	is	beyond	scope	of	system.	
	
V10.16	 Verify	 that	 the	 TLS	 settings	 are	 in	 line	 with	 current	 leading	 practice,	
particularly	as	common	configurations,	ciphers,	and	algorithms	become	insecure.		
N/A	-	check	is	beyond	scope	of	system.	
	
	 	

Jan	8,	2016	

	
24	

3.	Refection	
Reflect	on	the	whole	process,	including;	the	ASVS,	the	use	of	static	code	analysis	tools,	the	
way	you	organised	the	process	and	possibly	also	the	TestCMS	code.	
	
How	good	(useful,	clear,	...)	is	the	ASVS?	How	could	it	be	improved?	
Only	a	part	of	the	ASVS	has	been	used	for	this	project,	so	any	conclusions	and	opinions	
are	based	on	the	part	that	was	used	only.		
	
The	general	opinion	is	that	the	ASVS	provides	a	more	than	decent	process	for	checking	
the	 security	 of	 an	 application.	 This	 project	 has	 shown	 that	 following	 this	 process	will	
lead	 to	 the	 checking	 of	 both	 obvious	 and	 not-so-obvious	 verifications.	 The	 end	 result	
seems	to	be	a	reasonably	thorough	check.	
	
But	the	ASVS	is	not	without	its	own	issues.	Some	of	the	verifications	are	not	applicable	
in	the	context	of	the	application	that	you’re	reviewing.	This	can	make	it	hard	to	pass	or	
fail	 a	 verification	 and	 can	 get	 in	 the	 way	 of	 your	 final	 judgment.	 	 Some	 of	 the	 other	
verifications	are	applicable	but	very	difficult	 to	 check	 for	 the	entire	application	or	 too	
vaguely	defined	to	make	a	meaningful	verification.		
	
And	 finally	 the	 ASVS	 document	 has	 undergone	 so	 many	 revisions	 that	 it’s	 become	 a	
mess.	The	verification	numbering	does	not	make	much	sense	anymore	and	chapter	six	
has	 been	 completely	 removed.	 It	 would	 be	 better	 if	 a	 new	 version	 of	 the	 document	
would	be	released	to	address	this	problem.	
	
How	useful	were	code	analysis	tools?	How	could	they	be	improved?	How	did	you	experience	
the	rates	and	amounts	of	false	and	true	positives?	How	might	that	be	improved?	
This	project	has	a	reasonably	small	codebase	to	review	and	yet	it	was	clear	how	much	
trouble	it	can	be	to	check	the	entire	source.	Code	analysis	tools	address	this	problem	to	
a	certain	extent.		
	
Quite	 a	 few	 verifications	 have	 quickly	 received	 a	 ‘fail’	 judgment	 after	 looking	 at	 the	
results	 of	 the	 used	 tools,	 so	 it	 has	 been	 conceived	 that	 the	 tools	 do	 indeed	 provide	 a	
useful	overview	of	vulnerabilities.	However,	not	all	verifications	could	be	verified	using	
just	the	results	of	the	used	tools	and	the	results	should	not	be	trusted	without	a	certain	
degree	of	human	verification.		
	
In	a	small	project	like	this	it	was	already	possible	to	find	some	(possible)	false	positives.	
While	 the	 tools	do	provide	a	good	 list	of	vulnerabilities	 its’	 findings	can	sometimes	be	
hard	to	understand,	which	makes	it	hard	to	identify	false	positives.	The	Fortify	tool	tries	
to	 alleviate	 this	 problem	 by	 giving	 useful	 descriptions	 of	 the	 found	 vulnerability	 and	
allowing	you	to	follow	the	flow	of	the	vulnerable	code.	This	has	proven	to	be	an	effective	
solution	for	a	lot	of	the	found	vulnerabilities.	
	
In	general	 the	analysis	 tools	have	proven	to	be	useful	and	will	probably	be	even	more	
useful	 for	 larger	 project.	 But	 the	 analysis	 tools	 should	 not	 be	 used	 without	 human	
verification,	as	this	will	not	provide	completely	accurate	conclusions	about	security.	
	
What	were	the	bottlenecks	in	doing	the	security	review	in	your	experience?	
The	greatest	bottleneck	has	been	 to	 identify	all	 the	relevant	parts	of	 the	source	 for	all	
verifications.	 It	cannot	be	said	with	one	hundred	percent	certainty	 that	every	relevant	
part	 of	 the	 source	 has	 been	 found	 for	 all	 verifications,	 as	 this	 might	 prove	 to	 be	 an	
impossible	task.	The	way	to	deal	with	this	has	been	to	look	at	a	running	instance	of	the	
application,	 identify	 the	 relevant	and	most	 important	parts	 that	 seem	to	deal	with	 the	

Jan	8,	2016	

	
25	

verification	 and	 look	 at	 the	 source	 for	 these	 parts.	 Of	 course	 this	 still	 leaves	 the	
possibility	of	missing	vulnerabilities.	
		
A	 smaller	 but	 still	 present	 bottleneck	 has	 been	 the	 description	 of	 verifications.	While	
most	 have	 a	 clear	 definition	 there	 are	 some	 that	 are	 too	 loosely	 defined	 or	 do	 not	
provide	a	concrete	method	 to	check.	 In	some	cases	 the	OWASP	website/wiki	provides	
useful	 information	 regarding	 the	 subject	 of	 the	 requirement.	 But	 often	 a	 certain	
guideline	to	check	the	requirement	was	either	missing	or	to	abstract.	
	
Are	some	(categories	of)	verification	requirements	easier	to	check	than	others?	
Short	answer:	Most	definitely.	There	can	be	various	reasons	for	this,	like:	

• Analysis	tools	can	check	some	requirements.	
• Some	 requirements	 can	 be	 checked/exploited	 in	 a	 running	 instance	 of	 the	

application.	
• Some	requirements	are	better	defined	than	the	other.	

For	example:	It	is	very	easy	to	find	XSS	vulnerabilities	with	a	static	tool	and	test	these	in	
a	 running	 instance	 of	 the	 application.	 It	 is	 much	 harder	 to	 make	 sure	 there	 are	 no	
cryptographic	modules	for	which	the	error	handling	enables	oracle	padding,	since	this	is	
harder	 to	 detect	 for	 an	 analysis	 tool	 and	 not	 visible	 on	 a	 running	 instance	 of	 the	
application.	
	
If	you	would	have	to	do	something	like	this	again,	what	would	you	do	differently?		
For	another	(possibly	larger)	project	it	would	make	a	great	difference	to	involve	one	or	
more	 of	 the	 responsible	 software	 engineers	 in	 the	 process.	 	 Their	 role	 would	 be	 to	
answer	questions	about	the	source	so	it	would	be	easier	to	identify	relevant	parts	of	the	
source	code.		
	
It	would	 also	be	meaningful	 to	have	 experts	 on	 certain	 subjects	 in	 the	 team	and	have	
them	 verify	 the	 requirements	 that	 they’re	 most	 suited	 for.	 For	 example:	 Having	 an	
expert	on	cryptography	verify	the	cryptography	requirements.	
	
The	 review	 has	 also	 showed	 that	 having	 results	 double-checked	 by	 different	 team	
members	yields	good	results,	so	this	should	also	be	included	in	approach.	
	
Are	 there	 important	 aspects	 that	 could	 (or	 should)	 be	 changed	 to	 improve	 security?	 Or	
aspects	that	could	be	changed	to	facilitate	doing	a	security	reviews?	
Developers	using	PHP	should	use	a	 code	analysis	 tool	during	development.	While	 this	
does	not	guarantee	security	it	should	at	least	help	to	prevent	very	obvious	and	serious	
vulnerabilities	like	XSS.		
	
Was	it	useful	for	the	review	to	run	the	application?	
Most	 definitely.	 Being	 presented	with	 just	 the	 source	 code	 is	 not	 a	 very	 easy	 way	 to	
review.	 Running	 the	 application	 can	 help	 to	 show	 the	 relevant	 parts	 that	 should	 be	
tested.	For	example:	When	verifying	input	validation	requirements	it	is	easier	to	run	the	
application	and	 look	at	 the	places	 that	deal	with	 input	and	 then	 look	up	 the	matching	
source	files.		
	
For	some	requirements	it	has	also	been	useful	to	run	the	application	and	exploit	it.	For	
example:	 If	 the	 source	 code	 makes	 it	 hard	 to	 judge	 to	 what	 extent	 XSS	 attacks	 are	
possible,	it	is	easy	to	run	the	application	and	try	to	inject	some	JavaScript.	

