Software Security

Project 2

Dion van de Vooren - s4256468
Natanael Adityasatria - s4417992
Sesaria Kikitamara - s4561414
Sudhakarreddy Gottam - s4657454
Sven Arissen - 4206363

Organisation

We managed to work on this project while sitting together every week. This made it easy to
organize who did what. We split the work by the ASVS security requirements. We had an
online spreadsheet, in which all requirements were listed, such that we had a nice overview
of our progress and were not doing double work. All vulnerabilities were stored in an extra
spreadsheet, including a severity column. Because we all worked together in one room, it
was very easy to communicate severe vulnerabilities.

At the beginning, each of ASVS security requirements is done by one person as the first
assigned. Then, another person as the second assigned will check what the first person did.
In this way, we did a double-check on every ASVS security requirements.

The tools we used are Fortify and RIPS, but RIPS was not that useful, because it gave many

false positives.

We did run the application, which was very useful for understanding how the code works, but
also for finding vulnerabilities. In some cases, running the application was more helpful than

reviewing the code.

Verdict

V2. Authentication

Description

Verdict

2.1 | Verify all pages and resources by default
require authentication except those
specifically intended to be public

(Principle of complete mediation)

FAIL, all files except for the files in the system
folder are publicly availible

encourage, the use of passphrases, and
do not prevent long passphrases/highly
complex passwords being entered

2.2 | Verify that all password fields do not FAIL, the generated admin password is echoed
echo the user’s password when it is to the user at the end of the installation of the
entered cms

2.4 | Verify all authentication controls are PASS
enforced on the server side

2.6 | Verify all authentication controls fail FAIL, login.php sends unvalidated data to a web
securely to ensure attackers cannot log | browser, which can result in the browser
in executing malicious code

2.7 | Verify password entry fields allow, or PASS

2.8

Verify all account identity authentication
functions (such as update profile, forgot
password, disabled / lost token, help
desk or IVR) that might regain access to
the account are at least as resistant to
attack as the primary authentication
mechanism

FAIL, any user can change the password of any
other user. Apart from that, the “forgot
password” function is as secure as the primary
identity authentication, as long as the email
address belongs to owner of the account. This
however only holds if no user can change the
email address of an other user, but that does
not hold at the moment.

2.9

Verify that the changing password
functionality includes the old password,
the new password, and a password
confirmation

FAIL, The user only needs to type the new
password

Verify that all suspicious authentication

FAIL, only errors can be logged, but is

2 decisions are logged. This should include | deactivated by default
requests with relevant metadata needed
for security investigations.
2.1 FAIL, they use MD5 for password encryption
3 | Verify that account passwords make use | which is not FIPS approved and they use the
of a sufficient strength encryption routine | password as a salt, which makes the salt
and that it withstands brute force attack completely useless as a defense against
against the encryption routine. brute-force attacks
2.1 | Verify that credentials are transported NOT RELEVANT, a ssl certificate should be
6 using a suitable encrypted link and that mostly configured in the webserver
all pages/functions that require a user to
enter credentials are done so using an
encrypted link
2.1 | Verify that the forgotten password PASS
7 function and other recovery paths do not
reveal the current password and that the
new password is not sent in clear text to
the user
2.1 | Verify that information enumeration is PASS
8 not possible via login, password reset, or
forgot account functionality
2.1 | Verify there are no default passwords in | PASS
9 use for the application framework or any
components used by the application
(such as “admin/password”)
2.2 | Verify that request throttling is in place to | FAIL, there is no throttling, however this could
0 also be done on a webserver level

prevent automated attacks against
common authentication attacks such as

brute force attacks or denial of service
attacks

2.2 | Verify that all authentication credentials | FAIL, there is no location to stored the
1 for accessing services external to the authentication for external services
application are encrypted and stored in a
protected location.
2.2 | Verify that forgotten password and other | FAIL, there is no reset password token
2 recovery paths use a soft token, mobile
push, or an offline recovery mechanism
2.2 | Verify that account lock out is divided FAIL, there is currently no way to lock a user
3 into soft and hard lock status, and these | account
are not mutually exclusive. If an account
is temporarily soft locked out due to a
brute force attack, this should not reset
the hard lock status.
2.2 | Verify that if knowledge based questions | NOT RELEVANT, there is no “secret question”
4 (also known as "secret questions") are feature provided by testcms even if the users
required, the questions should be strong | forgot their password
enough to protect the application
2.2 | Verify that the system can be configured | FAIL, using previous passwords is always
5 to disallow the use of a configurable allowed
number of previous passwords.
2.2 |Verify re-authentication, step up or FAIL, a user only needs to be logged in in order
6 adaptive authentication, two factor to do sensitive operations
authentication, or transaction signing is
required before any application-specific
sensitive operations are permitted as per
the risk profile of the application.
2.2 | Verify that measures are in place to FAIL, no such measures
7 block the use of commonly chosen
passwords and weak passphrases
2.3 | Verify that if an application allows users | FAIL, It is used salt technique on password
0 to authenticate, they use a proven field. So the attacker can simply use the known
2.3 | Verify that if an application allows FAIL, strong authentication is not supported

usersto authenticate,they can
authenticate using two-factor
authentication or other strong
authentication, or any similarscheme

that provides protection against
username + password disclosure.

Verify that administrative interfaces are
not accessible to untrusted parties

FAIL, every user has access to the admin pages

that edit a user or the website

V3. Session management

Description Verdict
3.1 | Verify that there is no custom session PASS, a pass for now, however there is a
manager, or that the custom session comment in the code about using a custom
manager session manager in the future
is resistant against all common session
management attacks.
3.2 | Verify that sessions are invalidated FAIL, only the user property of the session is
when the user logs out. removed from the session, but the session is not
invalidated
3.3 | Verify that sessions timeout after a DEPENDS ON CONFIG, there is no explicit
specified period of inactivity. timeout, but since the php session manager is
used, the timeout in php.ini will be used this is
normally set to about 20 minutes but can be
changed
3.5 | Verify that all pages that require PASS
authentication have easy and visible
access to logout functionality.
3.6 | Verify that the session id is never PASS
disclosed in URLs, error messages, or
logs. This includes verifying that the
application does not support URL
rewriting of session cookies.
3.7 | Verify that all successful authentication | FAIL, no new session is created, the existing
and re-authentication generates a new | session is used
session and session id.
3.10 | Verify that only session ids generated CONFIG, this depends on whether
by the application framework are use_strict_mode is on or off in the php.ini
recognized as active by the application.
3.11 | Verify that session ids are sufficiently PASS
long, random and unique across the
correct active session base.
3.12 | Verify that session ids stored in cookies | FAIL, no httponly cookies, the domain is set

have their path set to an appropriately
restrictive value for the application, and
authentication session tokens
additionally set the “HttpOnly” and
“secure” attributes

(should be empty), and the path is very
unrestrictive

3.16 | Verify that the application limits the

number of active concurrent sessions.

FAIL, no such limit set by the application

3.17 | Verify that an active session list is
displayed in the account profile or
similar of each user. The user should be

able to terminate any active session.

FAIL, no active session list

3.18 | Verify the user is prompted with the
option to terminate all other active
sessions after a successful change

password process.

FAIL, no such prompt

V4. Access control

Description

Verdict

4.1 | Verify that the principle of least privilege
exists - users should only be able to
access functions, data files, URLs,
controllers, services, and other
resources, for which they possess
specific authorization. This implies
protection againstspoofing and elevation

of privilege

FAIL, when a user is logged in he can access all
files. Not logged in users can also access files
(see 2.1). A normal user can also start the
upgrade function by going to /upgrade

4.4 | Verify that access to sensitive records is
protected, such that only authorized
objects or data is accessible to each
user (for example, protect against users
tampering with a parameter to see or

alter another user's account).

NOT RELEVANT, every user has as much rights
as an administrator. If they would fix that it
wouldbe a PASS, because every request
contains a session id

4.5 | Verify that directory browsing is disabled
unless deliberately desired. Additionally,
applications should not allow discovery
or disclosure of file or directory
metadata, such as Thumbs.db,

.DS_Store, .git or .svn folders.

FAIL, everyone can browse through directories

4.8 | Verify that access controls fail securely.

PASS, If you want to access the admin controllers
without Login, its redirected to Login page to
enter admin userid and password

4.9

Verify that the same access control rules
implied by the presentation layer are
enforced on the server side.

NOT RELEVANT, there are no access control
rules on the presentation layer

4.10

Verify that all user and data attributes and
policy information used by access
controls cannot be manipulated by end
users unless specifically authorized.

FAIL, the only two things that can give access to
an account are e-mail address and password.
Both can be changed by any other user, given
that he has an account

412

Verify that all access control decisions
can be logged and all failed decisions are
logged.

PASS, it creates error.log

4.13

Verify that the application orframework
usesstrong randomanti-CSRF tokens or
has another transaction protection
mechanism.

FAIL, no transaction protection mechanisms used

414

Verify the system can protect against
aggregate or continuous access of
secured functions, resources, or data. For
example, consider the use of a resource
governor to limit the number of edits per
hour or to prevent the entire database
from being scraped by an individual user.

FAIL, there is for example no limit for how many
times a user can change his password

4.15

Verify the application has additional
authorization (such as step up or
adaptive authentication) for lower value
systems, and / or segregation of duties
for high value applications to enforce
anti-fraud controls as per the risk of
application and past fraud.

FAIL, the application has no implemented
adaptive authentication

4.16

Verify that the application correctly
enforces context-sensitive authorisation
so asto not allow unauthorised
manipulation by means of parameter
tampering.

PASS, every request contains a session id

V5. Malicious input handling

Description

Verdict

5.1

Verify that the runtime environment is
not susceptible to buffer overflows, or
that security controls prevent buffer
overflows

PASS, php is not susceptible to buffer overflow,
there is still a risk with the underlying code of php,
but aside from regular patching there is nothing
the creator of the testcms can do about that

5.3 | Verify that server side input validation PASS, there is a code log.php which create error
failures result in request rejection and log automatically but when trying to test it, for
are logged example create new post with incorrect input, it

just shows the alert box and not logged,disabled
by default

5.5 | Verify that input validation routines are PASS
enforced on the server side

5.1 | Verify that all SQL queries, HQL, OSQL, | FAIL, there is a line of code which executes SQL

0 NOSQL and stored procedures, calling | from untrusted source
of stored procedures are protected by
the use of prepared statements or query
parameterization, and thus not
susceptible to SQL injection

5.1 | Verify that the application is not PASS, LDAP is not used

1 susceptible to LDAP Injection, or that
security controls prevent LDAP Injection

5.1 | Verify that the application is not PASS, there is no OS command statement in the

2 susceptible to OS Command Injection, source code (Exec, system, passthru, shell_exec,
or that security controls prevent OS proc_open, pcntl_exec)

Command Injection

5.1 | Verify that the application is not NOT RELEVANT, There is no including files

3 susceptible to Remote File Inclusion mechanism in this application
(RFI) or Local File Inclusion (LFI) when
content is used that is a path to a file

5.1 | Verify that the application is not NOT RELEVANT, there is no XML parser

4 susceptible to common XML mechanism in this application. Its used sql query
attacks,such as XPath query tampering, | directly.

XML External Entity attacks, and XML
injection attacks

5.1 | Ensure that all string variables placed FAIL, string variable placed into HTML is not

5 into HTML or other web client code is encoded contextually
either
properly contextually encoded manually,
or utilize templates that automatically
encode contextually to ensure the
application is not susceptible to
reflected, stored and DOM Cross-Site
Scripting (XSS) attacks.

5.1 |If the application framework allows PASS, the application only uses mass assignment

6 automatic mass parameter assignment for the default user when the website is created. If

(also called automatic variable binding)
from the inbound request to a model,
verify that security sensitive fields such as
“accountBalance”, “role” or “password”
are protected from malicious automatic

binding.

an attacker manages to alter the data, the admin
would notice right away

Verify that the application has defenses
against HTTP parameter pollution
attacks, particularly if the application
framework makes no distinction about the
source of request parameters (GET,
POST, cookies, headers, environment,
etc.)

PASS

Verify that client side validation is used as
a second line of defense, in addition to
server side validation

FAIL, there is no client side validation

Verify that all input data is validated, not
only HTML form fields but all sources of
input such as REST calls, query
parameters, HTTP headers, cookies,
batch files, RSS feeds, etc; using positive
validation (whitelisting),then lesserforms
of validation such as greylisting
(eliminating known bad strings), or
rejecting bad inputs (blacklisting).

FAIL, many HTML form fields are not validated,
like the login form

Verify that structured data is strongly
typed and validated against a defined
schema including allowed characters,
length and pattern (e.g. credit card
numbers or telephone, or validating that
two related fields are reasonable, such as
validating suburbs and zip or post codes
match).

FAIL, you can enter numbers as your real name.
The e-mail address however is being checked for
having a correct pattern

Verify that unstructured data is sanitized
to enforce generic safetymeasuressuch
as allowed characters and length, and
characters potentially harmful in given
context should be escaped (e.g. natural
names withUnicode or apostrophes,such
asta Zor O'Hara)

FAIL, characters as 12or — are not escaped. The
character ‘ however gives an internal error

Make sure untrusted HTML from
WYSIWYG editors or similar are
properly sanitized with an HTML

FAIL, HTML input is not filtered in the posts
section, one can enter
<script>alert(document.cookie);</script> and see

sanitizer and handle it appropriately
according to the input validation task
and encoding task

the session id. The search bar is not affected,
because certain characters are escaped

For auto-escaping template technology, if
3 Ul escaping is disabled, ensure thatHTML
sanitization is enabled instead.

NOT RELEVANT, there is no auto-escaping
template technology is implemented

Verify that data transferred from one
4 DOM context to another, uses safe
JavaScript methods, such as using
.innerText and .val.

NOT RELEVANT, there is no data transferred
from one DOM context to another

Verify when parsing JSON in browsers,
5 that JSON.parse is used to parse
JSONon the client. Do not use eval() to
parse JSON on the client.

PASS, there is no eval() used nor JSON.parse

Verify that authenticated data is cleared
6 from client storage, such as the browser
DOM, after the session is terminated.

PASS, no authentication data is saved

V7. Cryptography at rest

Description

Verdict

7.2 | Verify that all cryptographic modules falil
securely, and errors are handled in a

way that does not enable oracle

PASS

how cryptographic keys are managed
(e.g., generated, distributed,revoked, and
expired). Verify that this key lifecycle is
properly enforced.

padding.

7.6 Verify that all random numbers, random | FAIL, the program makes used of PHP’s
file names, random GUIDs, and random | mt_rand, which is used for genarating the site’s
strings are generated using the password and is not save enough (given the state
cryptographic module’s approved of the generator, the password can be guessed).
random number generator when these Furthermore it uses math.random, which also is
random values are intended to be not not a cryptographically-secure random number
guessable by an attacker. generator

7.7 | Verify that cryptographic algorithms FAIL, The algorithm used for hashing passwords
used by the application have been is MD5 which is not FIPS 140-2 approved
validated against FIPS 140-2 or an
equivalent standard.

7.9 |Verify that there is an explicit policy for FAIL, only session management uses keys, and

has no properly enforced key lifecycle

712

Personally Identifiable Information should
be stored encrypted at rest and ensure
that communication goes via protected
channels.

FAIL, only the password is stored hashed (not
securely, see 2.30)

7.13

Verify that where possible, keys and
secrets are zeroed when destroyed.

FAIL, for reauthentication the old session key is
not destroyed.

7.14

Verify that all keys and passwords are
replaceable, and are generated
orreplaced at installation time

PASS, there is no default password and all
passwords can be changed later

V8. Error handling and logging

Description Verdict

8.1 | Verify that the application does not FAIL, contains sensitive information, for
output errormessages orstack traces example: PHP version, server information, OS
containing sensitive data that could version, file path, and request URI.
assist an attacker, including session
id,software/framework versions and
personal information

8.2 DON'T KNOW, there is curl.php which called in
Verify that error handling logic in security functions.php, but not sure if it is also used for
controls denies access by default. error handling or not.

8.3 |Verify security logging controls provide the | FAIL, only errors can be logged, but is
ability to log success and particularly deactivated by default. Furthermore exeptions
failure events that are identified as that deal with security are not logged, it are
security-relevant. mainly navigation errors

8.4 |Verify that each log event includes PASS, only errors logged events infomation (
a detailed investigation of the timeline
when an event happens.
unauthorized access and modification. acces by autorized only

8.7 |Verify that the application does not log PASS, only errors can be logged, but is
sensitive data as defined underlocal deactivated by default
privacy laws or regulations, organizational
sensitive data as defined by a risk
assessment, or sensitive authentication
data that could assist an attacker,
including user’s session identifiers,
passwords, hashes, or API tokens.

8.10 |Verify that an audit log or similar allows for| NOT RELEVANT, there are no such
non-repudiation of key transactions.

transactions

V9. Data protection

Description Verdict

9.1 | Verify that all forms containing sensitive PASS, contains no-store, no-cache,
information have disabled client side must-revalidate, post-check=0, pre-check=0.
caching, including autocomplete features | Autocomplete is off for sensitive information

9.3 | Verify that all sensitive data is sent to the | PASS, for sensitive data POST is used
server in the HTTP message body or
headers (i.e., URL parameters are never
used to send sensitive data)

9.4 | Verify that the application sets PASS, contains no-store, no-cache,
appropriate anti-caching headers as per must-revalidate, post-check=0, pre-check=0
the risk of the application, such as the and expires after browser session
following: Expires: Tue, 03 Jul 2001
06:00:00 GMT Last-Modified: {now} GMT
Cache-Control: no-store, no-cache,
must-revalidate, max-age=0
Cache-Control: post-check=0,
pre-check=0 Pragma: no-cache

9.5 CONFIG/FAIL, the main sensitive data is the

) database data, the access of this database is
Verify that on the server, all cached mostly determined by the configuration of the
ortemporary copies ofsensitive data stored | server and mysql. The only glaring mistake is
are protected from unauthorized access or | that the install folder should probably be
purged/invalidated after the authorized automatically purged after installation, this has
user accesses the sensitive data. to be done manually now

9.7 |Verify the application minimizes the PASS
number of parameters in a request, such
as hidden fields, Ajax variables, cookies
and header values.

9.9 | Verify that data stored in client side PASS, regular cookies only contain sessid,
storage - such as HTMLS5 local storage, there is no other data stored locally.
session storage, IndexedDB, regular
cookies or Flash cookies - does not
contain sensitive or PII)

9.1 |Verify accessing sensitive data is logged, if | FAIL, accessing sensitive data is not logged

0 the data is collected under relevant data

protection directives or where logging of
accesses is required.

1 sanitized from memory as soon as itis no | variables are unset, but not cleared from
longer needed and handled in accordance | physical memory

to functions and techniques supported by
the framework/library/operating system.

9.1 |Verify that sensitive data is rapidly FAIL, after login the username and password

Reflection

The ASVS

The ASVS is a useful standart to test the application security requirements.

Some verification requirements easier to check than the others. It is because some of them
are already given some explanation about the standart in OWASP documentation and the
others are not. Therefore, the ASVS document can be improved by giving some relevant
explanations in the documentation about the standart item and put the reference
documentation in ASVS document. In that way, the developers / testers can easily see the
more detail information on standart item if they are not understand.

The Tools

We did most of the checking manually through looking directly in the code after running the
application. However, doing the manual checks requires not only advance knowledge in php
programming but also in finding security vulnerabilities. Therefore, in order to support the
manual code review, we used the tools (Fortify and RISP) and found some more
vulnerabilities. Fortify is very useful, but on the other hand, RISP gave many false negatives.
We think RISP has to be improved a lot especially in reducing false negatives and create
better software security intelligence report.

The process

In our experience, the difficulties in doing the security review are checking a whole codes
againts one verification requirement item.

We think the best approach to do the security review is by dividing the verification
requirements over the team members and working in pairs where one person confirms the
findings of the other. In that way, all team members are working with a focus on their own
work instead of all team members working on the same thing. In addition, by working in
pairs, we make sure that every verification requirements are at least completed by two
person.

If we will develop an application that will need to be subjected to a security review, we will
make sure that every developers are understand the application security standart. So, the
developers can produce the code that conforms to the security standart. It means we were
implementing the security standart from the beginning of the application development.

Furthermore, we will conduct a security review in every development phases, so every
vulnerabilities found in the beginning of the development can be fixed earlier.

The TestCMS code

There are two things that should be changed in order to make TestCMS usable. First of all,
not all users should be able to see or edit data from other users. The second thing is, that
more input should be validated. TestCMS as it is now accepts scripts in the forum, which
executes when a user goes to that page. This makes it very easy for an attacker to retrieve a
session cookie.

Appendix: vulnerabilities

We have a list of vulnerabilities found during the security review. Please see the attached
spreadsheet file.

