
Software Security

1. LangSec

2. State machine learning

Erik Poll

1

Examples:

SQL injection, XSS, OS command injection

path traversal, format strings, Word Macros, …

Detection:

• negative tests (& fuzzing?)

• information flow analysis (dynamically, aka tainting)

Prevention:

• input validation

• context-sensitive output escaping

• information flow analysis (statically, eg. with typing)

To read: [LangSec revisited: input security flaws of the second kind, LangSec 2018]

External service:

SQL database,

OS & file system,

some library,

MS Office, …

problems: forwarding flaws

2

malicious

input
(Abuse of) a feature?application

problems: processing flaws

Examples:

bugs (esp buffer overflows) processing JPEG, PDF, SMS, ….

logical flaws, e.g. by-passing authentication checks

Detection:

• fuzzing (& negative tests?)

• …

Prevention:

• input validation?

• …. LangSec! topic of 1st half of today’s lecture

3

applicationmalicious

input A bug!

LangSec (Language-Theoretic Security)

LangSec takes a systematic look at how to deal with input languages

or formats to avoid typical input security problems

Root causes highlighted by LangSec community

1. Applications have to handle data in many languages & formats

2. These languages are often complex & unclearly defined and
combined

3. The code handles all these languages & formats in sloppy way,

– as the succes of fuzzing demonstrates

– the prevalence of input attacks (path traversals, SQL injection,

XSS, ...) shows

4

Tower of Babel

A typical interaction on the web involves many languages & formats

HTTP(S), HTML5, CSS3, javascript, Flash, cookies & FSOs,

Ajax & XML, ActiveX, jpeg, mpeg, mp4, png, gif, SilverLight,

user names, email addresses, phone numbers,

URLs, X509 certificates, TCP/IP (IPv4 or IPv6), DNS,

file names, directories, OS commands, SQL,

database commands, LDAP, JSP, PHP,

ASCII, Unicode, UTF-8, ...

Some handled by web application & browser,

some others by lower protocol layers or

by external programs & services

5

Input attacks on software

The common pattern in many attacks on software

buffer overflows, format string attacks, integer overflow, OS

command injection, path traversal attacks, SQL injection, HTML

injection, XSS, CSRF, database command injection, database

function injection, PHP file name injection, LDAP injection, ...,

ShellShock, HeartBleed,...

is

1. attacker crafts some malicious input

2. software goes off the rails processing this:

– Sometimes it simply crashes, and attacker can do DoS attack.

– Sometimes, this exposes all sort of unintended functionality to attackers.

Like social engineering or hypnosis as attack vector on humans?

6

Processing input

Processing involves

1) parsing/lexing

2) interpreting/executing

Eg interpreting a string as filename, URL, or email address,

or executing a piece of OS command, javascript, SQL statement

This relies on some language or format

Step 1) above relies on syntax of this language

Step 2) above relies also on semantics of this language

7

Processing input is dangerous!

Different ways for an attacker to abuse input

• wasting resources (eg, a zip-bomb)

• crashing things (and causing DoS)

• abusing strange functionality that is accidentily exposed

– existing functionality of say SQL database or the OS, or more

bizarre functionality exposed by say a buffer overflow attack,

– Insecure processing of inputs provides a weird machine that

the attacker can “program” to abuse the system

Garbage In, Garbage Out (GIGO)

becomes

Malicious Garbage In, Security Incident Out

8

Fallacy of classical input validation?

Classical input validation:

filter or encode harmful characters

or, slightly better:

only let through harmless characters

But:

• Which characters are harmful (or required!) depends on the

language or format. You need context to decide which characters

are dangerous.

• Not only presence of funny characters can cause problems,

but als the absence of other characters,

or input fields that are too long or too short, ...

9

Sample problems (already mentioned earlier)

• Code Red worm exploiting difference in size (in bytes) between

between char’s and Unicode chararacters

• Exploits with zero-width fields in JPEG images

• Malformed Flash files exploiting flaws in Abode’s flashplayer

• All the GSM problems revealed with fuzzing (1 week ago)

• Correctly formatted NFC traffic crashing contactless payment

terminals [MSc thesis Jordi van den Breekel, 2014]

10

Sample problems: Combining languages & formats

X509 certificates involve various languages & formats.

Differences in interpretation caused various security flaws:

• ANS.1 attacks in X509 certificates

A null terminator in ANS.1 BER-encoded string in an CommonName

can cause a CA to emit a certificate for an unauthorized Common

Name.

• Multiple Common Names

allowed in X509, but handled diferently in different browsers

• PKCS#10-tunneled SQL injection

SQL command inside a BMPString, UTF8String or

UniversalString used as PKCS#10 Subject Name

[Dan Kaminsky, Meredith L. Patterson, and Len Sassaman,

PKI Layer Cake: New Collision Attacks Against the Global X.509 Infrastructure]

11

Anti-pattern 1: shotgun parsers

handwritten code that incrementally parses & interprets input, in a

piecemeal fashion

12

An example shotgun parser

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid URL and fits in buf1 and buf2:

if (!isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buf1

out = buf1;

do { // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buf2, buf1);

...

13

[Code sample from presentation by Jon Pincus]

loop termination

flaw (for URL

without /)

caused Blaster

worm

Anti-pattern 2: Strings considered harmful

• Strings can be used to represent all sorts of data:
email addresses, URLs, fragments of SQL statements, fragments of HTML,

HTML-escaped text,

which may or may not be validated

which may come from a trusted or untrusted source

• Some interfaces that take strings as input are very powerful
eg system(), executeUpdate(), …

• Therefore: Strings are suspicious because they may hide many

languages and associated processing power for an attacker to abuse

• Better to use more informative types

– Recall the ideas behind Wyvern to make the different formats and

languages more explicit in the programming language

– To root out XSS flaws, modern web frameworks introduce more

informative types to distinguish data that is (un)trusted and/or escaped

for a particular context

• eg SafeURL, SafeHTML, TrustedResourceURL

[Christoph Kern, Securing the Tangled Web, ACM Queue 2014]
14

Root causes/Anti-patterns

Obstacles in producing code without input vulnerabilities

1. ad-hoc and imprecise notion of input validity

2. parser differentials

eg web-browsers parsing X509 certificates in different ways

3. mixing input recognition & processing

aka shotgun parsers

4. unchecked development of input languages

ie always adding new features & continuously evolving standards

All this results in weird machines, ie. systems that an attacker can

“program” with malicious input

15

LangSec principles

No more hand-coded shotgun parsers, but

1. precisely defined input languages

eg with EBNF grammar

2. generated parser

3. complete parsing before processing

So don’t substitute strings & then parse,

but parse & then substitute in parse tree

(eg parameterised query instead of dynamic SQL)

4. keep the input language simple & clear

So that equivalence of parsers is ideally decidable

So that you give minimal processing power to attackers

16

17

18

Weird machine = the strange functionality

accidentality exposed by code that (incorrectly)

processing input

Attackers can program this weird machine with their

malicious input!

Minimise the resources & computing power that input handling gives

to attackers .

19

20

Turing completeness

Two ways in which Turing completeness may cause problems

1. An input language may be Turing complete in the sense that an

attacker can perform arbitrary computations

2. Deciding if two acceptors accept the same language can be an

undecidable problem – ie Turing complete

If input languages are context-free or regular, then equivalence of

acceptors is decidable.

21

No more length fields?

Proponents of LangSec argue against using length fields in data

formats

• Length fields are a common source of trouble

– incorrect length fields often cause buffer overflows

• They also make acceptor equivalence undecidable

– because the resulting language is no longer regular or

context-free

22

23

NB possible confusion in terminology

• Language-based security

Providing safety/security features at programming language level

Eg memory-safety, type-safety, thread-safety, sandboxing,...

Making programming less error-prone

Here language = programming language

• Language-theoretic security (LangSec)

Making handling input less error-prone

Here language = input language

24

State Machine Learning

(yet another from of fuzzing)

25

Many procotols involve two levels of languages

1) a language of input messages

or packets

2) a notion of session,

or sequence of messages

How can we test or fuzz these two levels?

For level 1 we can use fuzzing techniques discussed last week

For level 2 we can do something different, as we discuss now.

Protocols

26

Message Sequence Charts (MSCs)

Typical spec given as Message Sequence Chart or in Alice-Bob style.

NB this oversimplifies because it only specifies one correct run,
the so-called happy flow

27

protocol state machines

A protocol is typically more complicated than

a simple sequential flow.

A better spec can be given using a

Finite State Machine (FSM)

aka Deterministic Finite Automaton (DFA)

This still oversimplifies: it only describes

happy flows, albeit several ones.

The implementation will have to be

input-enabled

28
SSH transport layer

input enabled state machines

A state machine is input enabled iff

in every state

it is able to receive every message

Often, many messages go to 1) some error state, 2) back to the initial

state, or 3) are ignored

29

2)
3)

input enabling

State machine that is not input-enabled

Input enabled version

Alternative input enabled version

Yet another alternative, with an error state

30

BA C

BA C

A,B,C
A,B

A,C

B,C

BA C

A,B,CA,BA,C

B,C

BA C

A,B,C
A,B

A,CB,C

A,B,C

Typical prose specifications: SSH 

“Once a party has sent a SSH_MSG_KEXINIT message for key exchange or
re-exchange, until it has sent a SSH_MSG_NEWKEYS message, it MUST NOT
send any messages other than:

• Transport layer generic messages (1 to 19) (but SSH_MSG_ SERVICE
REQUEST and SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);

• Algorithm negotiation messages (20 to 29) (but further SSH_MSG KEXINIT
messages MUST NOT be sent);

• Specific key exchange method messages (30 to 49).

The provisions of Section 11 apply to unrecognised messages”

In Section 11:

“An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED. Such messages MUST be otherwise
ignored. Later protocol versions may define other meanings for these
message types.”

Understanding protocol state machine from prose is hard!

31

Typical prose specifications: EMV 

Excerpt of the EMV contactless specs

“If the card responds to GPO with SW1 SW2 = x9000 and AIP byte 2 bit 8 set

to b0, and if the reader supports qVSDC and contactless VSDC, then if the

Application Cryptogram (Tag '9F26') is present in the GPO response, then the

reader shall process the transaction as qVSDC, and if Tag '9F26' is not

present, then the reader shall process the transaction as VSDC.”

32

Example security flaws due to broken state machines

CVE-2018-10933 libssh

• libssh versions 0.6 and above have an authentication bypass

vulnerability in the server code. By presenting the server an

SSH2_MSG_USERAUTH_SUCCESS message in place of the

SSH2_MSG_USERAUTH_REQUEST message which the server

would expect to initiate authentication, the attacker could

successfully authentciate without any credentials.

https://www.libssh.org/security/advisories/CVE-2018-10933.txt

33

Example security flaws due to broken state machines

• MIDPSSH

no state machine implemented at all

[Verifying an implementation of SSH, WIST 2007]

• e.dentifier2

strange sequence of USB commands by-passes OK

[Designed to fail: a USB-connected reader for online banking , NordSec 2012

There can also be fingerprinting possibilities due to differences in

implemented protocol state machines, eg in e-passports from

different countries or in TCP implementations on Windows/Linux

34

Extracting protocol state machines from code

We can infer a finite state machine from implementation by black box

testing using state machine inference

• using L* algorithm, as implemented in eg. LearnLib

This is effectively a form of ‘stateful’ fuzzing using a test harness that

sends typical protocol messages.

It can also be regarded as a form of automated reverse engineering

This is a great way to obtain protocol state machine

• without reading specs!

• without reading code!

35

State machine inference with L*

Basic idea: compare the response of a deterministic system to

different input sequences, eg.

1. b

2. a ; b

If response is different, then

otherwise

The state machine inferred is only an approximation of the system,

and only as good as your set of test messages.

36

b

a

…

b b
a

……

Case study 1: EMV

• Most banking smartcards implement a variant of EMV

• EMV (Europay-Mastercard-Visa) defines set of protocols

with lots of variants

• Specification in 4 books totalling > 700 pages

• EMV contactless specs: 10 more books, > 1500 pages

37

State machine inference of card

38

State machine inference of card

39

merging arrows

with identical

response

State machine inference of card

40

merging arrows with

same start & end state

We found no bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

41

SecureCode application on Rabobank card

used for internet banking, hence

entering PIN with VERIFY obligatory

Understanding & comparing EMV implementations

Are both implementations correct & secure? And compatible?

Presumably they both pass a Maestro compliance test-suite...

So some paths (and maybe some states) are superfluous?

42

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Using such protocol state diagrams

• Analysing the models by hand, or with model checker, for flaws

• to see if all paths are correct & secure

• Fuzzing or model-based testing

• using the diagram as basis for “deeper” fuzz testing

• eg fuzzing also parameters of commands

• Program verification

• proving that there is no functionality beyond that in the diagram,

which using just testing you can never be sure of

• Using it when doing a manual code review

43

Case study 2: the USB-connected e.dentifier

Can we fuzz

• USB commands

• user actions via keyboard

to automatically reverse engineer

the ABN-AMRO e.dentifier2?

[Arjan Blom et al,

Designed to Fail: a USB-connected reader

for online banking, NORDSEC 2012]

44

Operating the keyboard using

45

46

47

State machines of old vs new e.dentifier2

48

Would you trust this to be secure?

49

More detailed inferred state machine,

using richer input alphabet.

Do you think whoever designed or

implemented this is confident that

this is secure?

Or that all this behaviour is necessary?

Results with learning state machines for e.dentifier2

• Coarse models, with a limited alphabet, can be learnt in a few

hours

– these models are detailed enough to show presence of the known

security flaw in the old e.dentifier, and absence of this flaw in the new

one

• The most detailed models required 8 hours or more

• The complexity of the more detailed models suggest there was

no clear protocol design that was used as the basis for the

implementation

50

[Georg Chalupar et al., Automated Reverse Engineering using Lego, WOOT 2014]

Case study 3: TLS

State machine inferred from NSS implementation

Comforting to see this is so simple!

51

TLS... according to GnuTLS

52

TLS... according to OpenSSL

53

TLS... according to Java Secure Socket Exension

54

Which TLS implementations are correct? or secure?

55

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Results with learning state machines for TLS

• Three new security flaws found, in

– OpenSSL

– GnuTLS

– Java Secure Socket Extension (JSSE)

• One (not security-critical) flaw found in newly proposed reference

implementation nqbs-TLS

• For most TLS implementations, models can be learned within 1

hour

56

Conclusions

Rigorous & clear specs using protocol state machines can improve
security:

• by avoiding ambiguities

• useful for programmer

• useful for model-based testing

Open question: How common is this category of security flaws due to
sloppy implementation of state machines?

In the absence of state machines in specs, extracting state machines
from code using state machine inference is great for

• security testing & analysis of implementations

• obtaining reference state machines for legacy systems

– without having to read nasty RFCs or other specs

57

To read

• LangSec revisited: input security flaws of the second kind,

LangSec18

• Protocol state machines and session languages: specification,

implementation, and security flaws

LangSec'15

58

model

specs code

implementing

model-based

testing

state machine

inference

The people who write specs, make implementations, or do security

analyses probably all draw state machines on their whiteboards...

But will it they all draw an identical ones?

60

