
Software Security

Introduction

Erik Poll
Digital Security

Radboud University Nijmegen

Admin

• NB IMC051 (5EC, for TRU/e) vs ISOFSE (6EC)

• All course material will be on

http://www.cs.ru.nl/~erikpoll/ss

• Register in Osiris (and hence Brightspace)

– If you cannot, send me an email to get on
my back-up mailing list !!!!!

• For TRU/e students: get on the TRU/e mailing list !!!!!

https://true-security.nl/admission/

Upcoming events

• Thursday Sept 27: OWASP evening here in Nijmegen

Registration opens shortly at

https://www.owasp.org/index.php/Netherlands

• Friday Oct 5 : TRU/e borrel & BBQ after the lecture

As will also be announced on true mailing list

Goals of this course

• Understanding the role that software plays

– in providing security

– as source of insecurity

• Principles, methods & technologies to make software

more secure

– incl. practical experience with some of these

• Typical threats & vulnerabilities that make software less

secure

• and how to avoid them

4

Practicalities: prerequisites

• Introductory security course

• TCB (Trusted Computing Base), CIA (Confidentiality,

Integrity, Availability) , non-repudiation, ...

• Basic programming skills, in particular

– C(++) or assembly/machine code

– eg. malloc(), free(), *(p++), &x

strings in C using char*

– Java or some other typed OO language

– eg. public, final, private, protected,

Exceptions

– bits of PHP and JavaScript

5

Sample C(++) code you will see next week

char* copying_a_string(char* string) {

char* b = malloc(strlen(string));

strcpy(b,a);

return(b);

}

int using_pointer_arithmetic(int pin[]) {

int sum = 0;

int *pointer = pin;

for (int i=0; i<4; i++){

sum = sum + *pointer;

pointer++;

}

return sum;

}

6

Sample Java code you will see next month

public int summingAnArray(int[] pin)

throws NullPointerException,

ArrayIndexOutOfBoundsException {

int sum = 0;

for (int i=0; i<4; i++){

sum = sum + a[i];

}

return sum;

}

7

Sample Java OO code you will see next month

final class A implements Serializable {

public final static SOME_CONSTANT 2;

private B b1, b2;

protected A ShallowClone(Object o)

throws ClassCastException {

x = new(A);

x.b1 = ((A) o).b1;

x.b2 = ((A) o).b2;

return x;

}

}

8

implements java.io.Serializable

Literature & other resources

• Slides + reading material available at

http:///www.cs.ru.nl/~erikpoll/ss

• Mandatory reading: articles and lecture notes

– see links on webpage

– I’ll be updating this as we go along

• Some additional optional suggestions for background reading,

incl. books and web-sites

• Recommended: follow the Risky.Biz podcast

for weekly security news

9

Practicalities: form & examination

• 2-hrs lecture every week

– read associated papers & ask questions!

• project work

– PREfast for C++ (individual)

– JML program verification for Java (individual, 6EC

version only)

– group projects (with 4 people) on web-application

and/or testing

• written exam

• 50% of grade, but you must do the projects,

and you must pass the exam

10

Today

• Organisational stuff

• What is "software security"?

• The problem of software insecurity

• The causes of the problem

• Security concepts

• The solution to the problem?

11

Motivation

Quiz

Why can websites, servers, browsers, laptops,
smartphones, wifi access points, network
routers, mobile phones, cars, pacemakers,
uranium enrichment facilities, ... be hacked?

Because they contain

When it comes to cyber security

software is not our Achilles heel

but our Achilles body

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen
13

Why a course on software security?

• Software plays a major role in providing security, and is

the major source of security problems.

– Software is the weakest link in the security chain, with

the possible exception of “the human factor”

• Software security does not get much attention

– in other security courses, or

– in programming courses,

or indeed, in much of the security literature!

14

18

We focus on software security, but don’t forget

that security is about, in no particular order,

people (users, employees, sys-admins, programmers,...),

access control, passwords, biometrics, protocols,

policies & their enforcement, monitoring, auditing,

legislation, cryptogaphy, persecution, liability, risk

management, incompetence, confusion, lethargy,

stupidity, mistakes, complexity, software, bugs,

verification, hackers, viruses, hardware, operating

systems, networks, databases, public relations, public

perception, conventions, standards, physical protection,

data protection, ...

The problem

Slammer Worm (Jan 2002)

20

From The Spread of the Sapphire/Slammer Worm, by David Moore et al.

Slammer Worm (Jan 2002)

21

From The Spread of the Sapphire/Slammer Worm, by David Moore et al.

Security problems nowadays

To get an impression of the problem, have a look at

http://www.us-cert.gov/ncas

bulletins & alerts

http://www.securitytracker.com/

http://www.securityfocus.com/vulnerabilities

Or subscribe to CVE twitter feed

https://twitter.com/cvenew

22

Superficial analysis of the problem

1. All these problems are due to flawed software

– Because of software flaws, constant patching is

needed to keep systems secure

2. Most problems arise when software takes

input over the network

With ever more software, and more network connectivity,

things will only get worse...

23

Changing target of attacks

Traditionally, focus on operating system and network

“Solutions”

– regular patching of OS, firewalls, virus scanners

Then focus shifted to

• web applications

• web browser

• mobile devices

• smartphones, tablets, that bypass firewalls

• embedded software

• in cars, IoT devices, factories, critical
infrastructures...

24

Changing nature of attackers

25

hackers, 1983]

Estonia DoS attack, stuxnet, Sony hack,

NSA hacks revealed by Snowden,

Ukraine electricity grid, hacks of political parties

in US & elsewhere, ...

36 M€ internet banking fraud in NL in 2012

325 M$ in bitcoins collected by CryptoWall

950 M$ stolen by attack on SWIFT

hackers,

2010s

Changing nature of attackers

Traditionally, hackers are amateurs motivated by fun

• publishing attacks for the prestige

Increasingly, hackers are professional

• attackers go underground

• zero-day exploits are worth money

• attackers include

• organized crime
with lots of money and (hired) expertise

Ransomware is an important game changer,
as it allows attackers to monetise nearly anything.

• government agencies:
with even more money & in-house expertise

26

Current prices for 0days

Current prices for 0days

Software (in)security: crucial facts

• There are no silver bullets!

Crypto or special security features do not magically solve

all problems

– software security ≠ security software

– “if you think your problem can be solved by cryptography,

you do not understand cryptography and you do not

understand your problem” [Bruce Schneier]

• Security is emergent property of entire system

– just like quality

• (Non-functional) security aspects should be integral part

of the design, right from the start

The causes of the problem

Quick audience poll

• How many of you learned to program in C or C++?

• ~ as a first programming language?

• How many of these courses

• warned you about buffer overflows?

• explained how to avoid them?

Major causes of problems are

• lack of awareness

• lack of knowledge

• irresponsible teaching of dangerous programming

languages

31

Quick audience poll

• How many of you have built a web-application?

– in which programming languages?

• What is the secure way of doing a SQL query in this
language? (to avoid SQL injection)

Major causes of problems are

• lack of awareness

• lack of knowledge

32

1. Security is always a secondary concern

• Security is always a secondary concern

– primary goal of software is to provide some

functionality or services; managing associated risks is

a derived/secondary concern

• There is often a trade-off/conflict between

– security

– functionality & convenience

where security typically looses out

• more examples of this later...

33

Functionality vs security

• Functionality is about what software should do,

security is (also) about what it should not do

Unless you think like an attacker,
you will be unaware of any potential threats

34

Functionality vs security: Lost battles?

• operating systems (OSs)

– with huge OS, with huge attack surface

• programming languages

– with easy to use, efficient, but very insecure and error-

prone mechanisms

• web browsers

– with plug-ins for various formats, JavaScript, ActiveX,

Flash, ...

• email clients

– which automatically cope with all sorts of formats &

attachments..

35

Functionality vs security : PHP

"After writing PHP forum software for three years now,

I've come to the conclusion that it is basically impossible

for normal programmers to write secure PHP code.

It takes far too much effort. PHP's raison d'etre is that it

is simple to pick up and make it do something useful.

There needs to be a major push ... to make it safe for the

likely level of programmers - newbies.

Newbies have zero chance of writing secure software

unless their language is safe. ... "

[Source http://www.greebo.cnet/?p=320]

36

2. Weakness in depth

input languages, for

interpretable or executable input, eg

pathnames, XML, JSON, jpeg, mpeg, xls, pdf...

programming languages

37

hardware (incl network card & peripherals)

application

operating system

webbrowser
with plugins platform

eg Java or .NET

system APIs

middleware

libraries SQL

data

base

MALICIOUS

INPUT

INPUT

INPUT

INPUT
INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

2. Weakness in depth

Software

• runs on a huge, complicated infrastructure

– HW, OS, platforms, web browser, lots of libraries & APIs, ...

• is built using complicated languages

– programming languages

and input languages (SQL, HTML, XML, mp4, …)

• using various tools

– compilers, IDEs, pre-processors, dynamic code downloads

All of these may have security holes, or may make the

introduction of security holes very easy & likely

38

Recap

Problems are due to

• lack of awareness

– of threats, but also of what should be protected

• lack of knowledge

– of potential security problems, but also of solutions

• people choosing functionality over security

• compounded by complexity

– software written in complicated languages, using large APIs ,

and running on huge infrastructure

39

Types of software security problems

Flaws vs vulnerabilities

Terminology can be very confused & confusing:

security weakness, flaw, vulnerability, bug, error, coding defect...

Important distinction:

1. security weaknesses / flaws:

things that are wrong or could be better

2. security vulnerabilities

flaws that can actually be exploited by an attacker

This requires flaw to be

- accessible: attacker has to be able to get at it

- exploitable: attacker has to be able to do some damage with it

Eg by turning off Wifi and BlueTooth network connection,

many security vulnerabilities become flaws

41

Typical software security flaws

42

Security bugs found in Microsoft's first bug fix month (2002)

37%

20%

26%

17%

0%

buffer overflow

input validation

code defect

design defect

crypto

Software flaws

Software flaws can be introduced at two “levels”

1. design flaws

vulnerability in the design

2. bugs aka implementation flaws aka code-level defects

vulnerability in the software introduced during coding

Overall consensus:

coding bugs and design flaws roughly equally common

Vulnerabilities also arise on other levels (out of scope for now)

• configuration flaws when installing software on a machine

• the user

• unforeseen consequence of the intended functionality (eg spam)

43

Coding flaws

For the flaws introduced during coding,

we make a rough distinction in

2a. flaws that can be understood looking at the program itself

eg. simple typos, confusing two program variables, off-by-one

error in array access, errors in the program logic,...

2b. (common) problems in the interaction with the

underlying platform or other systems and services, eg

– buffer overflows in C(++) code

– integer overflows in most programming languages

– SQL injection, XSS, CSRF,.... in web-applications

–

44

The dismal state of software security

The bad news

people keep making the same mistakes

The good news

people keep making the same mistakes

…… so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

45

Spot the (security) flaws in

electronic_purse.c

int balance;

void decrease(int amount)

{ if (balance <= amount)

{ balance = balance – amount; }

else { printf(“Insufficient funds\n”); }

}

void increase(int amount)

{ balance = balance + amount;

}

<= should be >=

what if this sum is
too large for an int?

what if amount

is negative?

46

Different kinds of implementation flaws

1. lack of input validation of (untrusted)

user input

– could be a design flaw rather than an

implementation flaw?

– more “fundamental” than flaws below

2. logic error

3. problem in interaction with

underlying platform

– “lower level” than the flaws above

47

<= should be >=

what if amount

is negative?

what if sum is too
large for a 64 bit int?

Security in the

software development life cycle (SDLC)

Tackling software insecurity

• Knowledge about standard mistakes is crucial in

preventing them

– These depends on the programming language, the

“platform” (OS, database systems, web-application

framework,…), and the type of application

– There is lots of info available on this now

• But this is not enough: security to be taken into account

from the start, throughout the software development life

cycle

– several ideas & methodologies to do this

49

Security in Software Development Lifecycle

50

Requirements

and use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests

Static

Analysis

Pen

testing

Security
incidents

Deployment

Training

Software Development Life Cycle

Evolution of Security Measures

Security-by-Design

Privacy-by -Design

Patch

Management

Coding

guidelines

Evolution in tackling software security

Organisations always begin tackling security at the end of

the SDLC, and then slowly evolve to tackle it earlier

For example

1. first, do nothing

– some problems may happen & then you patch

2. then, implement support for regular patching

3. then, pre-emptively have products pen-tested

– eg. hire pen-testers, set up bug bounty program, ...

4. then, use static analysis tools when coding

5. then, train your programmers to know about common problems

6. then, think of abuse cases, and develop security tests for them

7. then, start thinking about security before you even start

development

Security in Software Development Life Cycle

52

[Source: Gary McGraw, Software security, Security & Privacy Magazine,

IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

McGraw’s Touchpoints

Security in Software Development Life Cycle

53

McGraw’s Touchpoints

[book: Software Security: building security in, Gary McGraw, 2006]

Methodologies for security in SDLC

Common/best practices, with methods for assessments, and

roadmaps for improvement

• McGraw’s Touchpoints

BSIMM Building Security In – Maturity Model

http://bsimm.com

• Microsoft SDL

• OpenSAMM Software Assurance Maturity Model

http://opensamm.org

54

OpenSAMM’s 4 business functions

and 12 security practices

55

Microsoft’s SDL Optimisation Model

BSIMM (Building Security In Maturity Model)

Based on data collected from large enterprises

See https://www.bsimm.com/framework/

57

To read coming week

• Gary McGraw,

Software security,

Security & Privacy Magazine, Vol 2(2), pp. 80-83, 2004, IEEE

• Brian Chess & Brad Arkin

Software Security in Practice

Security & Privacy Magazine, Vol 9(2), pp. 89 - 92, 2011, IEEE

• Check out

https://www.us-cert.gov/ncas/bulletins

http://www.securitytracker.com/

http://www.securityfocus.com/vulnerabilities

for security alerts in the past week

58

Security concepts & goals

NB I assume you know all

this stuff; if you don’t, read up on it!

• “is this system secure?”

• “this system is secure”

Why are this question and this claim meaningless?

You have to say

• what it means for the system to be secure:

the security requirements

• against which attackers it has to be secure:

the attacker model

Starting point for ensuring security

Any discussion of security should start with inventory of

• the stakeholders

• their assets, esp. the crown jewels

• the threats to these assets

• attacker model
What are the capabilities & motives of potential attackers?

incl. employees, clients, script kiddies, criminals, NSA, or

other ATPs (Advance Persistent Threats)

Any discussion of security without understanding these

issues is meaningless

61

Trusted Computing Base (TCB)

TCB is the collection of software and hardware

that we have to trust for our security

• So if any part of the TCB is compromised, we’re

screwed...

• So the attacker model and the TCB are complementary

NB1 We want the TCB to be as small as possible

NB2 Trust is bad; we want to minize trust

For a typical application, the TCB is huge, as it will

usually include the operating system, the compiler, lots of

third-party libraries we downloaded over the internet, ...

Software and security

• Security is about regulating access to assets

– incl. information and functionality

• Software provides functionality

– eg on-line exam results

• This functionality comes with certain risks

– eg what are risks of on-line exam results?

• (Software) security is about managing these risks

63

Security concepts

64

owners

attackers

countermeasures

risks

availability/

usefulness

assets

vulnerabilities

threats

want to maximise

of

to

want to minimise

impose

increase

want to abuse

give

rise to

may have

require

exploit

increase

lead to

reduce

Security Objectives: CIA

• Confidentiality unauthorised users cannot read information

• Integrity unauthorised users cannot alter information

• Availability authorised users can access information

In Dutch: BIV = Beschikbaarheid, Integriteit, Vertrouwelijkheid

• Nonrepudiation for accountability users cannot deny actions

• Authentication – knowing who/what you are interacting with

There are more kinds of security objectives:

• being able to do monitoring

• having logs for auditing and forensics

• privacy

• anonymity

• ...

65

Integrity vs Confidentiality

• Integrity nearly always more important than confidentiality

Eg think of

– your bank account information

– your medical records

– all the software you use, incl. the entire OS

66

Threats vs security requirements

Sometimes it is easier to think in terms of threats than in
terms of security requirements, eg

• information disclosure

– confidentiality

• tampering with information

– integrity

• denial-of-service (DoS)

– availability

• spoofing

– authentication

• unauthorised access

– access control

67

How to realise security objectives? AAAA

• Authentication

– who are you?

• Access control/Authorisation

– control who is allowed to do what

– this requires a specification of who is allowed to do

what, in an access control policy

• Auditing

– check if anything went wrong

• Action

– if so, take action

68

How to realise security objectives?

Other names for the last three A's

• Prevention

– measures to stop breaches of security goals

• Detection

– measures to detect breaches of security goals

• Reaction

– measures to recover assets, repair damage, and

persecute (and deter) offenders

NB don't ever be tempted into thinking that good prevention

makes detection & reaction superfluous.

Eg. breaking into any house with windows is trivial; despite this

absence of prevention, detection & reaction still deter burglars.

69

Countermeasures

• Countermeasures can be non-IT related

– physical security of building

– screening of personnel

– legal framework to deter criminals

– police to catch criminals

– ...

but we won’t consider these

70

Assurance

The crucial meta-property:

assurance that the system is secure,

ie. meets its security objectives

For software, level of assurance depends on

• size of the TCB (Trusted Computing Base)

• quality of the TCB

71

