
Software Security

Buffer Overflows
more countermeasures

Erik Poll
Digital Security

Radboud University Nijmegen

Recap last week

• Recurring security problems in C(++) code

– memory corruption, due to buffer overflows

& bugs with pointers esp. using dynamically allocated

memory (aka the heap)

– integer overflows also as way to trigger buffer overflows

– format string attacks for calls of printf() family

• Spotting buffer overflows in C(++) code is hard!

• Platform level defences:

canaries, non-executable stacks, ASLR, CFI, bound

checking with fat pointers, pointer encryption, ...

against ever more advanced attack techniques:

incl. return-to-libc & ROP

Common anti-patterns

Buffer overflows involve three more general anti-patterns:

1. lack of input validation

2. mixing data & code

namely data and return address on the stack

3. believing in & relying on an abstraction that is not 100%

guaranteed & enforced

namely types and procedure interfaces in C

int f(float f, boolean b, char* buf);

3

Recurring problem: mixing control & data

In 1950s, Joe Engressia showed the telephone network could be

hacked by phone phreaking, ie. whistling at right frequencies

http://www.youtube.com/watch?v=vVZm7I1CTBs

The root cause: in-band signaling

In 1970s, before founding Apple with Steve Jobs, Steve Wozniak

sold Blue Boxes for phone phreaking at university

4

More countermeasures

We can take countermeasures against buffer overflows

to prevent, migitate, or detect buffer overflows

at different levels & different points in time,

incl.

– at ‘platform level’ (as discussed last week)

– invisible to the programmer

– in libraries

– testing (dynamic analysis) at runtime

– aka DAST (Dynamic Application Security Testing)

– static analysis at or before compile time

– aka SAST (Static Application Security Testing)

5

Generic defence mechanisms

• Reducing attack surface

Not running or even installing certain software, or enabling

all features by default, mitigates the threat

– A particular instance of this is OS hardening

• Mitigating impact by reducing permissions

Reducing OS permissions of software (or user) will restrict

the damage that an attack can have

– following the principle of least privilege

But: there will always be some high-privileged code that is an

interesting target

– eg login program will need access to the password file

6

Prevention

• Don’t use C or C++

• you can write insecure code in any programming

language, but some make it easier...

• Better programmer awareness & training

Read – and make other people read – books like

• CERT secure coding guidelines for C and C++

Online at www.securecoding.cert.org

• Secure Coding in C and C++, R.C. Seacord

• 24 deadly sins of software security, M. Howard, D LeBlanc & J. Viega,

2005

• Secure programming for Linux and UNIX HOWTO, D. Wheeler

• Building Secure Software, J. Viega & G. McGraw, 2002

• Writing Secure Code, M. Howard & D. LeBlanc, 2002

• ...

7

Dangerous C system calls

Extreme risk

• gets

High risk

• strcpy

• strcat

• sprintf

• scanf

• sscanf

• fscanf

• vfscanf

• vsscanf

• streadd

8

• strecpy

• strtrns

• realpath

• syslog

• getenv

• getopt

• getopt_long

• getpass

Low risk

• fgets

• memcpy

• snprintf

• strccpy

• strcadd

• strncpy

• strncat

• vsnprintf

Moderate risk

• getchar

• fgetc

• getc

• read

• bcopy

[source: Building secure software, J. Viega & G. McGraw, 2002]

Better implementations of string libraries

• libsafe.h provides safer, modified versions of eg. strcpy

– Prevent buffer overruns beyond current stack frame:
Functions in this library check that they will not exceed stack
frame

• libverify enhancement of libsafe

– Functions in this library keep a copy of the stack return
address on the heap, and checks if these match on returning

Like the platfom-level defences discussed last week, these are
transparant to the programmer

– Program code hardly has to change (apart from importing a
different library)

9

Better string libraries

• strlcpy(dst,src,size) and strlcat(dst,src,size)

where size is the size of destination array dst,
not the maximum length copied.

– Less error-prone; consistently used in OpenBSD

• glib.h provides Gstring type for dynamically growing null-

terminated strings in C

• Strsafe.h by Microsoft guarantees null-termination and

always takes destination size as argument

• C++ string class

C++ string objects are less error-prone than C strings

– but data() and c-str()return a C string, ie. a char*, and

result of data()is not always null-terminated on all platforms.

10

Safer dialects of C

Some approaches go further and propose safer dialects of C

which include

• bounds checks

• type checks

• automated memory management with eg

– garbage collection, or

– region-based memory management

Examples: Cyclone, CCured, Vault, Control-C, Fail-Safe C, D, Rust

– Rust uses interesting combination of ownership and

(im)mutability to avoid garbage collection

11

Runtime detection on instrumented binaries

There are many memory error detection tools that instrument

binaries to allow runtime detection of memory errors, esp.

• out-of-bounds access

• use-after-free bugs on heap

with some overhead (time, memory space) but no false

positives.

For example Valgrind (Memcheck), Dr. Memory, Purify, Insure++,

BoundsChecker, Cachegrind, Intel Parallel Inspector,

Discoverer, AddressSanitizer,…

Detecting out-of-bounds access requires additional administration

in pointers, using so-called fat pointers

12

Fuzzing aka fuzz testing

A classic technique to find buffer weaknesses is fuzz testing

• send random, very long inputs, to an application

• if there are buffer overflow weaknesses, this is likely to

crash the application with a segmentation fault

This is easy to automate!

More on fuzz testing in the security testing lecture.

13

Code review & static analysis

• Code reviews

ie. someone reviewing the code manually

Expensive & labour intensive

• Code scanning tools aka static analysis
Automated tools that look for suspicious patterns in code;
ranges for CTRL-F or grep, to advanced analyses

Incl. free tools
– RATS – also for PHP, Python, Perl
– Flawfinder , ITS4, Deputy, Splint
– PREfix, PREfast by Microsoft

plus other commercial tools
Coverity, PolySpace, Klocwork, Checkmarx...

14

Program verification

The most extreme form of static analysis:

program verification

proving by mathematical means (eg Hoare logic) that

memory management of a program is safe

– extremely labour-intensive 

– eg hypervisor verification project by Microsoft & Verisoft:

• http://www.microsoft.com/emic/verisoft.mspx

Beware: in industry “verification” means testing,

in academia it means formal program verification

15

Conclusions

Moral of the story

• Don’t use C(++), if you can avoid it

but use a safer language that provides memory safety

• If you do have to use C(++), become or hire an expert

Required reading for this course

• Runtime countermeasures for code injection attacks against
C and C++ programs by Yves Younan et al.

• Not Section 3, 4.6 and all tables

• Sections 3.1 & 3.2 of lecture notes on language-based
security

17

Exam questions: you should be able to

• Explain how simple buffer overflows work & what root

causes are

• Spot a simple buffer overflow. format string attack, or

integer overflow

• Explain how countermeasures - such as stack canaries,

non-executable memory, ASLR, CFI, bounds checkers,

pointer encryption, … - work

• Explain why they might not always work

