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Recap last week

• Recurring security problems in C(++) code

– memory corruption, due to buffer overflows                      

& bugs with pointers esp. using dynamically allocated 

memory (aka the heap)

– integer overflows also as way to trigger buffer overflows             

– format string attacks  for calls of printf() family 

• Spotting buffer overflows in C(++) code is hard!

• Platform level defences:                                                               

canaries, non-executable stacks, ASLR, CFI, bound

checking with fat pointers, pointer encryption, ...                   

against ever more advanced attack techniques:                     

incl. return-to-libc & ROP



Common anti-patterns

Buffer overflows involve three more general anti-patterns:

1. lack of input validation                                                                

2. mixing data & code                                                                           

namely data and return address on the stack

3. believing in & relying on an abstraction that is not 100% 

guaranteed & enforced                                                               

namely types and procedure interfaces in  C

int f(float f, boolean b, char* buf);
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Recurring problem: mixing control & data

In 1950s, Joe Engressia showed the telephone network could be 

hacked by phone phreaking, ie. whistling at right frequencies   

http://www.youtube.com/watch?v=vVZm7I1CTBs 

The root cause: in-band signaling  

In 1970s, before founding Apple with Steve Jobs,  Steve Wozniak 

sold Blue Boxes for phone phreaking at university  
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More countermeasures  

We can take countermeasures against buffer overflows                                

to prevent, migitate, or detect buffer overflows                                            

at different levels & different points in time, 

incl.

– at ‘platform level’ (as discussed last week)

– invisible to the programmer

– in libraries

– testing (dynamic analysis) at runtime

– aka DAST (Dynamic Application Security Testing)

– static analysis at or before compile time

– aka SAST (Static Application Security Testing)
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Generic defence mechanisms

• Reducing attack surface

Not running or even installing certain software, or enabling 

all features by default, mitigates the threat

– A particular instance of this is OS hardening  

• Mitigating impact by reducing permissions 

Reducing OS permissions of software (or user) will restrict 

the damage that an attack can have

– following the principle of least privilege

But: there will always be some high-privileged code that is an 

interesting target

– eg login program will need access to the password file
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Prevention

• Don’t use C or C++

• you can write insecure code in any programming 

language, but some make it easier...

• Better programmer awareness & training

Read – and make other people read – books like

• CERT secure coding guidelines for C and C++

Online at  www.securecoding.cert.org

• Secure Coding in C and C++, R.C. Seacord

• 24 deadly sins of software security, M. Howard, D LeBlanc & J. Viega, 

2005

• Secure programming for Linux and UNIX HOWTO,  D. Wheeler

• Building Secure Software, J. Viega & G. McGraw, 2002

• Writing Secure Code, M. Howard & D. LeBlanc, 2002

• ... 
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Dangerous C system calls

Extreme risk

• gets

High risk

• strcpy

• strcat

• sprintf

• scanf

• sscanf

• fscanf

• vfscanf

• vsscanf

• streadd
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• strecpy

• strtrns

• realpath

• syslog

• getenv

• getopt

• getopt_long

• getpass

Low risk

• fgets

• memcpy

• snprintf

• strccpy

• strcadd

• strncpy

• strncat

• vsnprintf

Moderate risk

• getchar

• fgetc

• getc

• read

• bcopy

[source: Building secure software, J. Viega & G. McGraw, 2002]



Better implementations of string libraries 

• libsafe.h provides safer, modified versions of eg. strcpy

– Prevent buffer overruns beyond current stack frame: 
Functions in this library check that they will not exceed stack 
frame

• libverify enhancement of libsafe

– Functions in this library keep a copy of the stack return 
address on the heap,  and checks if these match on returning

Like the platfom-level defences discussed last week, these are 
transparant to the programmer

– Program code hardly has to change (apart from importing a 
different library)
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Better string libraries 

• strlcpy(dst,src,size) and strlcat(dst,src,size) 

where size is the size of destination array dst,                                              
not the maximum length copied.

– Less error-prone; consistently used in OpenBSD

• glib.h provides Gstring type for dynamically growing null-

terminated strings in C

• Strsafe.h by Microsoft guarantees null-termination and 

always takes destination size as argument

• C++ string class   

C++ string objects are less error-prone than C strings

– but data() and c-str()return a C string, ie. a char*, and 

result of data()is not always null-terminated on all platforms.
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Safer dialects of C

Some approaches go further and propose safer dialects of C

which include

• bounds checks

• type checks

• automated memory management  with eg

– garbage collection, or 

– region-based memory management

Examples: Cyclone, CCured, Vault, Control-C, Fail-Safe C, D, Rust

– Rust uses interesting combination of ownership and 

(im)mutability to avoid garbage collection
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Runtime detection on instrumented binaries

There are many memory error detection tools that instrument  

binaries to allow runtime detection of memory errors, esp.

• out-of-bounds access 

• use-after-free bugs on heap

with some overhead (time, memory space)  but no false 

positives.

For example Valgrind (Memcheck), Dr. Memory, Purify, Insure++, 

BoundsChecker, Cachegrind, Intel Parallel Inspector, 

Discoverer, AddressSanitizer,…

Detecting out-of-bounds access requires additional administration 

in pointers, using so-called fat pointers
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Fuzzing aka fuzz testing

A classic technique to find buffer weaknesses is fuzz testing 

• send random, very long inputs, to an application

• if there are buffer overflow weaknesses,  this is likely to 

crash the application with a segmentation fault

This is easy to automate!

More on fuzz testing in the security testing lecture.
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Code review & static analysis

• Code reviews

ie. someone reviewing the code manually

Expensive & labour intensive

• Code scanning tools aka static analysis
Automated tools that look for suspicious patterns in code;
ranges for CTRL-F or grep, to advanced analyses

Incl. free tools
– RATS – also for PHP, Python, Perl
– Flawfinder , ITS4, Deputy, Splint 
– PREfix, PREfast by Microsoft

plus other commercial tools 
Coverity, PolySpace, Klocwork, Checkmarx...
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Program verification

The most extreme form of static analysis:

program verification

proving by mathematical means (eg Hoare logic) that 

memory management of a program is safe

– extremely labour-intensive 

– eg hypervisor verification project by Microsoft & Verisoft:

• http://www.microsoft.com/emic/verisoft.mspx

Beware: in industry “verification” means testing,                                        

in academia it means formal program verification
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Conclusions



Moral of the story

• Don’t use C(++),  if you can avoid it

but use a safer language that provides memory safety

• If you do have to use C(++), become or hire an expert

Required reading for this course

• Runtime countermeasures for code injection attacks against 
C and C++ programs by Yves Younan et al. 

• Not Section 3, 4.6 and all tables 

• Sections 3.1 & 3.2 of lecture notes on language-based 
security
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Exam questions: you should be able to

• Explain how simple buffer overflows work & what root 

causes are

• Spot a simple buffer overflow. format string attack, or 

integer overflow

• Explain how countermeasures - such as stack canaries, 

non-executable memory, ASLR, CFI, bounds checkers, 

pointer encryption, … - work

• Explain why they might not always work


