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Language-based security

Security features & guarantees provided by programming language 

• safety guarantees,                                                                                                          

incl. memory-safety, type-safety, thread-safety 

There are many flavours & levels of 'safety' here.                                              
Eg. different type systems give different notions of type-safety.  

• forms of access control                                       

– visibility/access restrictions with eg.  public, private

– sandboxing mechanism inside programming language 

• forms of information flow control

Some features dependent on each other, eg

– type safety & just about anything else relies on memory safety, 

– sandboxing relying on memory & type safety, ...

This week: safety. See course lecture notes, chapters 2 & 3
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Other ways the programming language can help

A programming language can also help security by

• offering good APIs/libraries, eg.

– APIs with parametrised queries/prepared statements  for SQL

– more secure string libraries for C 

• incorporating support for 'external' languages,                                      

– eg support for SQL and HTML in Wyvern

• offering convenient language features, 

– esp. exceptions, to simplify handling error conditions

• making assurance of the security easier,  by  

– being able to understand code in a modular way

– only having to review the public interface, in a code review  

These properties require some form of safety
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(Aside: safety vs security)

Common source of confusion!  

• safety: protecting a system from accidental failures                                        

.  (esp. protecting humans from harm)

• security: protecting a system from active attackers

Precise border hard to pin down, but what is good for safety is also 

good for security, so often the distinction is not so relevant.

In Dutch, the confusion is even worse: veiligheid vs beveiliging.                                      
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'Safe' programming languages?

You can write insecure programs in ANY programming language.

Eg

• You can forget or screw up forget input validation in any language

• Flaws in the program logic can never be ruled out 

Still...some safety features can be nice
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General idea behind safety

Under which conditions does  

a[i] = (byte)b

make sense?

Two approaches

 the programmer is responsible for ensuring these conditions

“unsafe” approach

 the language is responsible for checking this

“safe” approach

(Heated) debates about the pros & cons highlight tension between 

flexibility, speed and control   vs   safety & security

But note: 

execution speed   ≠ speed of development of secure code

and maybe programmers are more expensive the cores
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a must  be a non-null byte array;                               

i should be a non-negative integer 

less then array length;

b should be (castable to?)  a byte



Safe programming languages

Safe programming languages

• impose some discipline or restrictions on the programmer  

• offer and enforce some abstractions to the programmer,                                     

with associated guarantees

This takes away some freedom & flexibility from the programmer,              

but hopefully extra safety and clearer understanding makes it worth 

this.
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Attempts at a general definition of safety

A programming language can be considered safe if

1. You can trust the abstractions provided by the programming 
language                                                                                                        

The programming language enforces these abstractions 

and guarantees that they cannot be broken

• Eg a boolean is either true or false, and never 23 or null

• Programmer doesn't have to care if true is represented as 

0x00 and false as 0xFF or vice versa

2. Programs have a precise & well defined semantics                    
(ie. meaning)

– More generally, leaving things in any 
specification is asking for security trouble

3. You can understand the behaviour of programs in a modular
way
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'safer' & 'unsafer' languages

more 'unsafe'                          'safe'                            even more 'safe'

Warning: this is overly simplistic, as there are many dimensions of 

safety

Spoiler alert: functional languages such as Haskell are safe because 

data is immutable (no side-effects)
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Dimensions & levels of safety  

There are many dimensions of safety

memory-safety, type-safety, thread-safety, arithmetic safety, 

guarantees about (non)nullness, about immutability, about the

absence of aliasing,...

For some dimensions, there can be many levels of safety

Eg, in increasing level of safety, going outside array bounds may:                                 

1. let an attacker inject arbitrary code 

2. possibly crash the program (or else corrupt some data)

3. definitely crash the program

4. throw an exception, which the program can catch                                          

to handle the issue gracefully

5. be ruled out at compile-time
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Safety: how?

Mechanisms to provide safety include

• compile time checks, eg type checking

• runtime checks, eg array bounds checks, checks for nullness, 

runtime type checks, ...

• automated memory management using a garbage collector

– so programmer does not have to free() heap-allocated data

• using an execution engine, to do the things above

– Eg the Java Virtual Machine (VM), which

• runs the bytecode verifier (bcv) to type-check code,  

• performs some runtime checks

• periodically invokes the garbage collector
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Compiled binaries vs execution engines

Compiled binary runs on bare 

hardware

Any defensive measures have to be 

compiled into the code.

Execution engine (aka ‘runtime') isolates 

code from hardware

The programming language still ‘exists’ 

at runtime, and the execution engine 

can provide checks at runtime
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Memory-safety
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Memory-safety – two different flavours

A programming language is memory-safe if it guarantees that

1. programs can never access unallocated or de-allocated 

memory

 hence also: no segmentation faults at runtime

2. maybe also: program can never access uninitialised memory

Here

1. means we could switch off OS access control to memory.                        

Assuming there are no bugs in our execution engine...

2. means we don't have to zero out memory before de-allocating 

it to avoid information leaks (within the same program).                                                                                        

Again, assuming there are no bugs in our execution engine...
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Memory safety

Unsafe language features that break memory safety

• no array bounds checks

• pointer arithmetic

• null pointers, but only if these cause undefined behaviour
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Null pointers in C

Common (and incorrect!) folklore:                                                       

dereferencing a NULL pointer will crash the program.

But, the C standard only guarantees                                                                    

the result of dereferencing a null pointer is undefined.

So it may crash the program, but might happen

See the CERT Secure Coding guidelines for C

https://www.securecoding.cert.org/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointer

for discussion of a security vulnerability in a PNG library caused by a null 

dereference that didn't crash (on ARM processors).
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Excerpts of C11 standard

“If an invalid value has been assigned to the pointer, the behavior of the 

unary * operator is undefined.102

102:  Among the invalid values for dereferencing a pointer by the unary * 

operator are a null pointer, [...]”

More mystifying prose from the standard

“A null-pointer constant is either an integral constant expression that 

evaluates to zero (such as 0 or 0L) , or a value of type nullptr_t (such as 

nullptr).”
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Memory safety

Unsafe language features that break memory safety

• no array bounds checks

• pointer arithmetic

• null pointers, but only if these cause undefined behaviour

• manual memory management

– esp. manual de-allocation, eg with free() in C;                             

this causes dangling pointers, use-after-free and double-free 
bugs

Manual memory management can be avoided by 

• not using the heap at all (eg in MISRA C), or 

• automating it with a garbage collector 

– Garbage collection first used in LISP in 1959,                                             

and went mainstream with Java in 1995
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Type-safety
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Types

• Types assert invariant properties of program elements. Eg

– This variable will always hold an integer

– This function will always return an object of class X (or one of its 

subclasses)

• This array will never store more than 10 items

NB there is a wide range of expressivity in type systems!

• Type checking verifies these assertions. This can be done 

• at compile time (static typing) or 

• at runtime (dynamic typing)

or a combination.

• Type soundness (aka type safety or strong typing) 

A language is type sound if the assertions are guaranteed to 

hold at run-time
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Type information

public class Demo{

static private string greeting = "Hello";

final static int CONST = 43;

static void  Main (string[]  args){

foreach (string name in args){

Console.Writeline(sayHello(name));

}

}

public static string sayHello(string name){  

return greeting + name;

}

}
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greeting only accessible 

in class Demo

sayHello will always 

return a string

sayHello will always be 

called with 1 parameter

of  type string

CONST will always be 43



Type-safety  

Type-safety programming language guarantees that programs that 

pass the type-checker can only manipulate data in ways allowed by 

their types

 So you cannot multiply booleans, dereference an integer, take 

the square root of reference, etc.

NB: this removes lots of room for undefined behaviour

 For OO languages: no “Method not found” errors at runtime
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Combinations of memory & type safety

Programming languages can be

• memory-safe, typed, and type sound: 

– Java, C#, Rust, Go 

– though some of these have loopholes to allow unsafety 

– Functional languages such as Haskell, ML, Clean, F#

• memory-safe and untyped

– LISP, Prolog, many interpreted languages

• memory-unsafe, typed, and type-unsafe

– C, C++  

Not type sound: using pointer arithmetic in C, you can break 

any guarantees the type system could possibly make  

More generally: without any memory safety, ensuring type 

safety is impossible.
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Example – breaking type soundness in C++
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class DiskQuota {

private:

int MinBytes;

int MaxBytes;

};

void EvilCode(DiskQuota* quota) {

// use pointer arithmetic to access

// the quota object in any way we like!

((int*)quota)[1] = MAX_INT;

}

NB For a C(++) program we can make no guarantees whatsoever in

the presence of  untrusted code.

So

• a buffer overflow in some library can be fatal 

• in a code review we have to look at all code to make guarantees



Ruling out buffer overflows in Java or C#

Ruled out at language-level, by combination of 

• compile-time typechecking (static checks)

– or at load-time, by bytecode verifier (bcv) 

– runtime checks (dynamic checks)

What runtime checks are performed when  executing the code below?

public class A extends Super{ 

protected int[] d; 

private A next;

public A() { d = new int[3]; }

public void  m(int j) { d[0] = j; }

public setNext(Object s)

next = (A)s;

}

}
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runtime checks for

1) non-nullness of  d, 

and 2) array bound    

runtime check for

type (down)cast  



Remaining buffer overflow issues in Java or C#

Buffer overflows can still exist, namely:

1. in native code

2. for C#, in code blocks declared as unsafe

3. through bugs in the Virtual Machine (VM) implementation, which 

is typically written in C++....

4. through bugs in the implementation of the type checker, or 

worse, bugs in the type system (unsoundness)

The VM (incl. the type checker aka byte code verifier) is part of the 

Trusted Computing Base (TCB) for memory and type-safety, 

Hence 3 & 4: bugs in this TCB can break these properties.
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Breaking type safety?

Type safety is an extremely fragile property:                                                                

one tiny flaw brings the whole type system crashing down 

Data values and objects are just blobs of memory. If we can create type 

confusion, by having two references with different types pointing the 

same blob of memory, then all type guarantees are gone.

• Example:  type confusion attack on Java in Netscape 3.0:  

public class A[]{ ... }

Netscape's Java execution engine confused this type  A[]                         

with the type  array of A

Root cause:  [  and ] should not be allowed in class names

So this is an input validation problem!
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char* y



Type confusion attacks

public class A{

public Object x;

...

}

What if  we could compile B against A             

but we run it against A?

We can do pointer arithmetic again!

If Java Virtual Machine would allow 

such so-called binary incompatible 

classes to be loaded, the whole 

type system would break. 

public class A{

public int x;

...

}

public class B{

void setX(A a) {

a.x = 12;

}

}
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How do we know a type system is sound? (1)

 Representation independence (for booleans)

it does not matter if we represent true as 0 and false as 1 (or FF), 

or vice versa

 ie. if we execute a given program with either representation,                 

the result is guaranteed to be the same

 We could test this, or try to prove it. 

Given a formal mathematical definition of the programming 
language, we could prove that it does not matter how true and 
false are represented for all programs

 Similar properties should hold for all datatypes.
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How do we know type system is sound? (2)

Give two formal definitions of the programming language

• a typed operational semantics, which records and checks type 

information at runtime

• an untyped operational semantics, which does not 

and prove their equivalence for all well-typed programs.

Or, in other words, prove the equivalence of 

• a defensive execution engine (which records and checks all type 

information at runtime) and

• a normal execution engine which does not

for any program that passes the type checker.

People have formalised the semantics and type system of eg Java, using 

theorem provers (Coq, Isabelle/HOL), to prove such results.  
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Ongoing evolution to richer type systems

Many ways to enrich type systems further, eg

• distinguishing non-null and possibly-null types                                    

public @nonNull String hello = "hello";             

to

- improve efficiency

- prevent null pointer bugs or catch them earlier, at compile time

• alias control                                                                                                          

restrict possible interferences between modules due to aliasing

• information flow                                                                                         

controlling on the way tainted information flows through an 

implementation.                                                                                                  

More on type systems for information flow in later lectures.
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Other language-based guarantees

• visibility:  public, private, etc

– eg private fields not accessible from outside a class

• immutability

– of primitive values (ie constants)

• in Java :  final int i = 5;

• in C(++) :  const int BUF_SIZE = 128;

Beware: meaning of const get confusing for C(++) pointers and 

objects!

– of objects 

• In Java, for example String objects are constants

Scala and Rust provides a more systematic distinction between 

mutable and immutable data.
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Safe arithmetic

What happens if i=i+1; overflows?

What would be unsafe or safe(r) approaches?    

1. Unsafest approach: leaving this as undefined behavior 

– eg C and C++

2. Safer approach: specifying how over/underflow behaves

– eg based on 32 or 64 bit two-complements behaviour

– eg Java and C#

3. Safer still: integer overflow results in an exception

– eg checked mode in C#

4. Safest: have infinite precision integers & reals, so overflow never 

happens

– Some experiments in functional programming languages
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Thread-safety
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Problems with threads (ie. lack of thread safety)

• Two concurrent execution threads both execute the statement

x = x+1;

where x initially has the value 0.

What is the value of x in the end?

– Answer:  x can have value 2 or 1

• The root cause of the problem is a data race:                                        
x = x+1 is not an atomic operation, but happens in two steps -

reading x and assigning it the new value - which may be 

interleaved in unexpected ways

• Why can this lead to security problems? 

Think of internet banking, and running two simultaneous sessions 

with the same bank account… Do try this at home! 
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Weird multi-threading behaviour in Java
class A {

private int i ;

A() { i = 5 ;}

int geti() { return i; }

}

Execution of thread 1 takes in 3 steps               

1.  allocate new object m                               

2.  m.i = 5;                                                          

3.  x = m;
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the compiler or VM is allowed to swap the order of  these

statements, because they don't affect each other

Hence: x.geti() in thread 2 

can return 0 instead of  5

Can geti() ever return 

something else than 5?

Yes!

Thread 1, initialising x

static A x = new A();

Thread 2, accessing x

j = x.geti();

You'd think that here x.geti() returns 5 or 

throws an exception, depending on 

whether thread 1 has initialised x



Weird multi-threading behaviour in Java

class A {

private final int i ;

A() { i = 5 ;}

int geti() { return i;}

}
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Now geti() always return 5.

Declaring a private field as final fixes this particular problem

• due to ad-hoc restrictions on the initialisation of  final fields 

• A revision of  the Java Memory Model specifies how compilers & VM (incl. 

underlying hardware) can deal with concurrency, in 2004.

• The API implementation of  String was only fixed in Java 2 (aka 1.5)



Data races and thread-safety

• A program contains a data race if two threads simultaneously 

access the same variable, where at least one of these accesses is 

a write

NB data races are highly non-deterministic, and a pain to debug!

• thread-safety = the behaviour of a program consisting of several 

threads can be understood as an interleaving of those threads

• In Java, the semantics of a program with data races is effectively 

undefined, ie. only programs without data races are thread safe

Moral of the story: 

Even purportedly “safe” programming languages can have very 
weird behaviour in presence of concurrency

• The programming language Rust aims to guarantee the absence 

of data races, ad thread-safety, at the language level
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Why things often break in C(++), Java, C#, ...

Dangerous combination: aliasing & mutation

Eg threads or objects A and B

both have a reference to a                                                             

mutable object shared

This is the root cause of many problems, not just with concurrency

1. in concurrent (multi-threaded) context: data races

– Locking objects (eg synchronized methods in Java) can help,      

but: expensive & risk of deadlock

2. in single-threaded context: dangling pointers 

– Who is responsible for free-ing shared ?  A or B ?

3. in single-threaded context: broken assumptions 

– If A changes the shared object, this may break B's code,                               

because B's assumptions about shared are broken
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References to mutable data are dangerous

In multi-threaded programs, references to mutable data structures 

can be problematic, as the referenced data can change,                              

even in safe programming languages such as Java or C# !

public void f(char[] x){

if (x[0] != 'a') { throw new Exception(); }

// We can NOT assume that the first element 

// of x is the letter 'a' at this program point

...

}

Another thread with a reference  to the same array can change the 

content of the array at any moment, also just after the if-statement 

has been executed
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References to immutable data are less dangerous

In a multi-threaded programs, references to immutable data 

structures are safer

public void f(String x){

if (x.charAt(0) != 'a') { throw new Exception(); }

// We CAN assume that the first character of x        

// is the letter 'a' at this program point.

...

}

Another thread with a reference to the same string cannot change 

the value  (or ‘content’) of the string, as Java strings are immutable.
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