
Software Security

Language-based Security:

'Safe' programming languages

Erik Poll

1

Language-based security

Security features & guarantees provided by programming language

• safety guarantees,

incl. memory-safety, type-safety, thread-safety

There are many flavours & levels of 'safety' here.
Eg. different type systems give different notions of type-safety.

• forms of access control

– visibility/access restrictions with eg. public, private

– sandboxing mechanism inside programming language

• forms of information flow control

Some features dependent on each other, eg

– type safety & just about anything else relies on memory safety,

– sandboxing relying on memory & type safety, ...

This week: safety. See course lecture notes, chapters 2 & 3

2

Other ways the programming language can help

A programming language can also help security by

• offering good APIs/libraries, eg.

– APIs with parametrised queries/prepared statements for SQL

– more secure string libraries for C

• incorporating support for 'external' languages,

– eg support for SQL and HTML in Wyvern

• offering convenient language features,

– esp. exceptions, to simplify handling error conditions

• making assurance of the security easier, by

– being able to understand code in a modular way

– only having to review the public interface, in a code review

These properties require some form of safety

3

(Aside: safety vs security)

Common source of confusion!

• safety: protecting a system from accidental failures

. (esp. protecting humans from harm)

• security: protecting a system from active attackers

Precise border hard to pin down, but what is good for safety is also

good for security, so often the distinction is not so relevant.

In Dutch, the confusion is even worse: veiligheid vs beveiliging.

4

'Safe' programming languages?

You can write insecure programs in ANY programming language.

Eg

• You can forget or screw up forget input validation in any language

• Flaws in the program logic can never be ruled out

Still...some safety features can be nice

5

General idea behind safety

Under which conditions does

a[i] = (byte)b

make sense?

Two approaches

 the programmer is responsible for ensuring these conditions

“unsafe” approach

 the language is responsible for checking this

“safe” approach

(Heated) debates about the pros & cons highlight tension between

flexibility, speed and control vs safety & security

But note:

execution speed ≠ speed of development of secure code

and maybe programmers are more expensive the cores
6

a must be a non-null byte array;

i should be a non-negative integer

less then array length;

b should be (castable to?) a byte

Safe programming languages

Safe programming languages

• impose some discipline or restrictions on the programmer

• offer and enforce some abstractions to the programmer,

with associated guarantees

This takes away some freedom & flexibility from the programmer,

but hopefully extra safety and clearer understanding makes it worth

this.

7

Attempts at a general definition of safety

A programming language can be considered safe if

1. You can trust the abstractions provided by the programming
language

The programming language enforces these abstractions

and guarantees that they cannot be broken

• Eg a boolean is either true or false, and never 23 or null

• Programmer doesn't have to care if true is represented as

0x00 and false as 0xFF or vice versa

2. Programs have a precise & well defined semantics
(ie. meaning)

– More generally, leaving things in any
specification is asking for security trouble

3. You can understand the behaviour of programs in a modular
way

8

'safer' & 'unsafer' languages

more 'unsafe' 'safe' even more 'safe'

Warning: this is overly simplistic, as there are many dimensions of

safety

Spoiler alert: functional languages such as Haskell are safe because

data is immutable (no side-effects)

9

C

C++

machine code Java

C#

Rust

Haskell

Clean

ML

OCaml

Prolog

MISRA-C

Scala

Dimensions & levels of safety

There are many dimensions of safety

memory-safety, type-safety, thread-safety, arithmetic safety,

guarantees about (non)nullness, about immutability, about the

absence of aliasing,...

For some dimensions, there can be many levels of safety

Eg, in increasing level of safety, going outside array bounds may:

1. let an attacker inject arbitrary code

2. possibly crash the program (or else corrupt some data)

3. definitely crash the program

4. throw an exception, which the program can catch

to handle the issue gracefully

5. be ruled out at compile-time

10

'unsafe';

some undefined

semactics

'safe'

Safety: how?

Mechanisms to provide safety include

• compile time checks, eg type checking

• runtime checks, eg array bounds checks, checks for nullness,

runtime type checks, ...

• automated memory management using a garbage collector

– so programmer does not have to free() heap-allocated data

• using an execution engine, to do the things above

– Eg the Java Virtual Machine (VM), which

• runs the bytecode verifier (bcv) to type-check code,

• performs some runtime checks

• periodically invokes the garbage collector

11

Compiled binaries vs execution engines

Compiled binary runs on bare

hardware

Any defensive measures have to be

compiled into the code.

Execution engine (aka ‘runtime') isolates

code from hardware

The programming language still ‘exists’

at runtime, and the execution engine

can provide checks at runtime

12

hardware

compiled

binary

high level

code

hardware

execution engine

(eg Java VM)

lower level code

(eg Java bytecode)

high level

code

Memory-safety

13

Memory-safety – two different flavours

A programming language is memory-safe if it guarantees that

1. programs can never access unallocated or de-allocated

memory

 hence also: no segmentation faults at runtime

2. maybe also: program can never access uninitialised memory

Here

1. means we could switch off OS access control to memory.

Assuming there are no bugs in our execution engine...

2. means we don't have to zero out memory before de-allocating

it to avoid information leaks (within the same program).

Again, assuming there are no bugs in our execution engine...

14

Memory safety

Unsafe language features that break memory safety

• no array bounds checks

• pointer arithmetic

• null pointers, but only if these cause undefined behaviour

15

Null pointers in C

Common (and incorrect!) folklore:

dereferencing a NULL pointer will crash the program.

But, the C standard only guarantees

the result of dereferencing a null pointer is undefined.

So it may crash the program, but might happen

See the CERT Secure Coding guidelines for C

https://www.securecoding.cert.org/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointer

for discussion of a security vulnerability in a PNG library caused by a null

dereference that didn't crash (on ARM processors).

16

Excerpts of C11 standard

“If an invalid value has been assigned to the pointer, the behavior of the

unary * operator is undefined.102

102: Among the invalid values for dereferencing a pointer by the unary *

operator are a null pointer, [...]”

More mystifying prose from the standard

“A null-pointer constant is either an integral constant expression that

evaluates to zero (such as 0 or 0L) , or a value of type nullptr_t (such as

nullptr).”

17

Memory safety

Unsafe language features that break memory safety

• no array bounds checks

• pointer arithmetic

• null pointers, but only if these cause undefined behaviour

• manual memory management

– esp. manual de-allocation, eg with free() in C;

this causes dangling pointers, use-after-free and double-free
bugs

Manual memory management can be avoided by

• not using the heap at all (eg in MISRA C), or

• automating it with a garbage collector

– Garbage collection first used in LISP in 1959,

and went mainstream with Java in 1995

18

Type-safety

19

Types

• Types assert invariant properties of program elements. Eg

– This variable will always hold an integer

– This function will always return an object of class X (or one of its

subclasses)

• This array will never store more than 10 items

NB there is a wide range of expressivity in type systems!

• Type checking verifies these assertions. This can be done

• at compile time (static typing) or

• at runtime (dynamic typing)

or a combination.

• Type soundness (aka type safety or strong typing)

A language is type sound if the assertions are guaranteed to

hold at run-time

20

Type information

public class Demo{

static private string greeting = "Hello";

final static int CONST = 43;

static void Main (string[] args){

foreach (string name in args){

Console.Writeline(sayHello(name));

}

}

public static string sayHello(string name){

return greeting + name;

}

}

21

greeting only accessible

in class Demo

sayHello will always

return a string

sayHello will always be

called with 1 parameter

of type string

CONST will always be 43

Type-safety

Type-safety programming language guarantees that programs that

pass the type-checker can only manipulate data in ways allowed by

their types

 So you cannot multiply booleans, dereference an integer, take

the square root of reference, etc.

NB: this removes lots of room for undefined behaviour

 For OO languages: no “Method not found” errors at runtime

22

Combinations of memory & type safety

Programming languages can be

• memory-safe, typed, and type sound:

– Java, C#, Rust, Go

– though some of these have loopholes to allow unsafety

– Functional languages such as Haskell, ML, Clean, F#

• memory-safe and untyped

– LISP, Prolog, many interpreted languages

• memory-unsafe, typed, and type-unsafe

– C, C++

Not type sound: using pointer arithmetic in C, you can break

any guarantees the type system could possibly make

More generally: without any memory safety, ensuring type

safety is impossible.

23

Example – breaking type soundness in C++

24

class DiskQuota {

private:

int MinBytes;

int MaxBytes;

};

void EvilCode(DiskQuota* quota) {

// use pointer arithmetic to access

// the quota object in any way we like!

((int*)quota)[1] = MAX_INT;

}

NB For a C(++) program we can make no guarantees whatsoever in

the presence of untrusted code.

So

• a buffer overflow in some library can be fatal

• in a code review we have to look at all code to make guarantees

Ruling out buffer overflows in Java or C#

Ruled out at language-level, by combination of

• compile-time typechecking (static checks)

– or at load-time, by bytecode verifier (bcv)

– runtime checks (dynamic checks)

What runtime checks are performed when executing the code below?

public class A extends Super{

protected int[] d;

private A next;

public A() { d = new int[3]; }

public void m(int j) { d[0] = j; }

public setNext(Object s)

next = (A)s;

}

}

25

runtime checks for

1) non-nullness of d,

and 2) array bound

runtime check for

type (down)cast

Remaining buffer overflow issues in Java or C#

Buffer overflows can still exist, namely:

1. in native code

2. for C#, in code blocks declared as unsafe

3. through bugs in the Virtual Machine (VM) implementation, which

is typically written in C++....

4. through bugs in the implementation of the type checker, or

worse, bugs in the type system (unsoundness)

The VM (incl. the type checker aka byte code verifier) is part of the

Trusted Computing Base (TCB) for memory and type-safety,

Hence 3 & 4: bugs in this TCB can break these properties.

26

Breaking type safety?

Type safety is an extremely fragile property:

one tiny flaw brings the whole type system crashing down

Data values and objects are just blobs of memory. If we can create type

confusion, by having two references with different types pointing the

same blob of memory, then all type guarantees are gone.

• Example: type confusion attack on Java in Netscape 3.0:

public class A[]{ ... }

Netscape's Java execution engine confused this type A[]

with the type array of A

Root cause: [and] should not be allowed in class names

So this is an input validation problem!

27

int x

char* y

Type confusion attacks

public class A{

public Object x;

...

}

What if we could compile B against A

but we run it against A?

We can do pointer arithmetic again!

If Java Virtual Machine would allow

such so-called binary incompatible

classes to be loaded, the whole

type system would break.

public class A{

public int x;

...

}

public class B{

void setX(A a) {

a.x = 12;

}

}

28

How do we know a type system is sound? (1)

 Representation independence (for booleans)

it does not matter if we represent true as 0 and false as 1 (or FF),

or vice versa

 ie. if we execute a given program with either representation,

the result is guaranteed to be the same

 We could test this, or try to prove it.

Given a formal mathematical definition of the programming
language, we could prove that it does not matter how true and
false are represented for all programs

 Similar properties should hold for all datatypes.

29

How do we know type system is sound? (2)

Give two formal definitions of the programming language

• a typed operational semantics, which records and checks type

information at runtime

• an untyped operational semantics, which does not

and prove their equivalence for all well-typed programs.

Or, in other words, prove the equivalence of

• a defensive execution engine (which records and checks all type

information at runtime) and

• a normal execution engine which does not

for any program that passes the type checker.

People have formalised the semantics and type system of eg Java, using

theorem provers (Coq, Isabelle/HOL), to prove such results.

30

Ongoing evolution to richer type systems

Many ways to enrich type systems further, eg

• distinguishing non-null and possibly-null types

public @nonNull String hello = "hello";

to

- improve efficiency

- prevent null pointer bugs or catch them earlier, at compile time

• alias control

restrict possible interferences between modules due to aliasing

• information flow

controlling on the way tainted information flows through an

implementation.

More on type systems for information flow in later lectures.

31

Other language-based guarantees

• visibility: public, private, etc

– eg private fields not accessible from outside a class

• immutability

– of primitive values (ie constants)

• in Java : final int i = 5;

• in C(++) : const int BUF_SIZE = 128;

Beware: meaning of const get confusing for C(++) pointers and

objects!

– of objects

• In Java, for example String objects are constants

Scala and Rust provides a more systematic distinction between

mutable and immutable data.

32

Safe arithmetic

What happens if i=i+1; overflows?

What would be unsafe or safe(r) approaches?

1. Unsafest approach: leaving this as undefined behavior

– eg C and C++

2. Safer approach: specifying how over/underflow behaves

– eg based on 32 or 64 bit two-complements behaviour

– eg Java and C#

3. Safer still: integer overflow results in an exception

– eg checked mode in C#

4. Safest: have infinite precision integers & reals, so overflow never

happens

– Some experiments in functional programming languages

33

Thread-safety

34

Problems with threads (ie. lack of thread safety)

• Two concurrent execution threads both execute the statement

x = x+1;

where x initially has the value 0.

What is the value of x in the end?

– Answer: x can have value 2 or 1

• The root cause of the problem is a data race:
x = x+1 is not an atomic operation, but happens in two steps -

reading x and assigning it the new value - which may be

interleaved in unexpected ways

• Why can this lead to security problems?

Think of internet banking, and running two simultaneous sessions

with the same bank account… Do try this at home!

35

Weird multi-threading behaviour in Java
class A {

private int i ;

A() { i = 5 ;}

int geti() { return i; }

}

Execution of thread 1 takes in 3 steps

1. allocate new object m

2. m.i = 5;

3. x = m;

36

the compiler or VM is allowed to swap the order of these

statements, because they don't affect each other

Hence: x.geti() in thread 2

can return 0 instead of 5

Can geti() ever return

something else than 5?

Yes!

Thread 1, initialising x

static A x = new A();

Thread 2, accessing x

j = x.geti();

You'd think that here x.geti() returns 5 or

throws an exception, depending on

whether thread 1 has initialised x

Weird multi-threading behaviour in Java

class A {

private final int i ;

A() { i = 5 ;}

int geti() { return i;}

}

37

Now geti() always return 5.

Declaring a private field as final fixes this particular problem

• due to ad-hoc restrictions on the initialisation of final fields

• A revision of the Java Memory Model specifies how compilers & VM (incl.

underlying hardware) can deal with concurrency, in 2004.

• The API implementation of String was only fixed in Java 2 (aka 1.5)

Data races and thread-safety

• A program contains a data race if two threads simultaneously

access the same variable, where at least one of these accesses is

a write

NB data races are highly non-deterministic, and a pain to debug!

• thread-safety = the behaviour of a program consisting of several

threads can be understood as an interleaving of those threads

• In Java, the semantics of a program with data races is effectively

undefined, ie. only programs without data races are thread safe

Moral of the story:

Even purportedly “safe” programming languages can have very
weird behaviour in presence of concurrency

• The programming language Rust aims to guarantee the absence

of data races, ad thread-safety, at the language level

38

Why things often break in C(++), Java, C#, ...

Dangerous combination: aliasing & mutation

Eg threads or objects A and B

both have a reference to a

mutable object shared

This is the root cause of many problems, not just with concurrency

1. in concurrent (multi-threaded) context: data races

– Locking objects (eg synchronized methods in Java) can help,

but: expensive & risk of deadlock

2. in single-threaded context: dangling pointers

– Who is responsible for free-ing shared ? A or B ?

3. in single-threaded context: broken assumptions

– If A changes the shared object, this may break B's code,

because B's assumptions about shared are broken

39

SomeObject

shared
A

B

References to mutable data are dangerous

In multi-threaded programs, references to mutable data structures

can be problematic, as the referenced data can change,

even in safe programming languages such as Java or C# !

public void f(char[] x){

if (x[0] != 'a') { throw new Exception(); }

// We can NOT assume that the first element

// of x is the letter 'a' at this program point

...

}

Another thread with a reference to the same array can change the

content of the array at any moment, also just after the if-statement

has been executed

40

References to immutable data are less dangerous

In a multi-threaded programs, references to immutable data

structures are safer

public void f(String x){

if (x.charAt(0) != 'a') { throw new Exception(); }

// We CAN assume that the first character of x

// is the letter 'a' at this program point.

...

}

Another thread with a reference to the same string cannot change

the value (or ‘content’) of the string, as Java strings are immutable.

41

