
Software Security

problems

Erik Poll

Digital Security group

Radboud University Nijmegen

Problems with

Insecure input handling is the most common security

problem

• aka lack of input validation, but that terminology is misleading (as

we’ll see later)

All input is dangerous & evil

• All input should be treated as highly poisonous & contagious

• Beware of the terms untrusted input or untrusted user input :

by default, any input & all users should be untrusted

2

The I/O attacker model (‘hacking’)

• Aka end point attacker, as opposed to MitM attacker

• Attacker goals?

– DoS, information leakage, remote code execution (RCE), or

anything in between

– ie. compromising integrity & availability of the application’s

behaviour in any way

• Input flaws we already saw?

buffer overflows, integer overflows & format string attacks.

TOCTOU is also an input problem, but an odd one out.

Erik Poll

3

applicationmalicious input

I/O

Dangers of

Faced with an I/O attacker

Garbage In, Garbage Out

becomes

Malicious Garbage In, Security Incident Out

or

Malicious Garbage In, Evil Out

Input is dangerous:

• Any line of code that handles user input is at risk

• Any resources (CPU cycles, memory, …) used

in processing are a risk

So ideally, these are kept to a minimum

4

Abusing bugs or features?

Two types of input security flaws:

1. Some input attacks exploit bugs

– Bugs in code can provide weird behaviour that is

accidentally introduced in the code by programmer;

Attackers try to trigger & exploit such weird behaviour

– Classic example: buffer overflows

2. Other input attacks abuse features

– Some flaws accidently expose functionality that was

deliberately introduced in the code, but which was not meant

to be accessible by attackers.

– Classic example: command or SQL injection

The line between 1 & 2 can be blurry, and a matter of opinion

5

Root causes of input problems

The input formats and languages involved play a central role:

1. Complexity of input formats & languages

• making bugs in input processing likely

2. Sloppily & unclear specifications of input formats

• making bugs even more likely

3. Expressivity of input languages

• giving lots of power to the attackers (for flaws exploiting

features)

• worst thing to do: including a programming language in your

input format

4. (Too?) many input formats & languages

• often combined, stacked or nested,

aggrevating all the problems above

6

Exploiting bugs
(caused by complexity)

7

Security update of the week

https://www.foxitsoftware.com/support/security-bulletins.php

Mainly memory corruption bugs, many allowing Remote Code

Execution (RCE), so high impact, and easy to exploit with email

attachments.

Why are there so many vulnerabilities in a PDF reader?

PDF is a very complex data format, and Foxìt is a “feature-rich” PDF

viewer, and also support JavaScript in PDF.

Other PDF viewers also suffer from this

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

8

Root cause of many exploitable memory errors:

parsing

• Input need to be parsed before it can be processed

– as IP packet, PDF document, HTML, JPG, mp3 …

• Complex languages make for many parser bugs

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=parsing

Notorious example: Flash, the union of all audio/graphics/video

formats you ever heard of & more
JPG+GIF+PNG+H.264/MPEG4+VP6+MP3+AAC+Speex+PCM+ADPCM

+Nellymoser+G7.11+..

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Flash

• If these parsers are memory-unsafe C(++) code, then such bugs

cause security vulnerabilities with high impact, incl. RCE

• Bugs in input parsers are easy to trigger by attacker,

with malicious input in an email attachment, on a webpage, ..

9

Example problem with complex format

Microsoft Security Bulletin MS04-028

• Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution

• Impact of Vulnerability: Remote Code Execution

• Maximum Severity Rating: Critical

Problem occurs with a zero length comment field, without content.

Buffer overflow in image processing is an ideal attack vector!

The victim only has to view an image (in email or on webpage) to get

infected, and impact is high (namely remote code execution)

10

Even in ‘safe’ programming languages

OpenJDK: JPEG decoder input stream handling [CVE-2014-2421]

“A vulnerability in Oracle Java allows an unauthenticated, remote attacker to execute arbitrary code

on a targeted system.

The vulnerability is due to improper bounds checks when the affected software parses certain JPEG

images. An attacker could exploit this vulnerability by persuading a user to open a malicious web page

or crafted malicious file that contains a crafted JPEG image. An exploit could allow the attacker to

conduct a buffer overflow attack and execute arbitrary code on the system.

The following Oracle products are vulnerable: Java SE 8, SE 7u51, SE 6u71, SE 5.0u61, Java JavaFX

2.2.51, Java SE Embedded 7u51”

How is this possible in a library of a safe programming language like Java?

Native code in graphics library

Why do people use native code here?

Efficiency…

11

Countermeasure

12

Complex input formats

13

Example dangerous

SMS text message

Different characters sets or characters encoding,

are a constant source of problems.

Many input formats rely on underlying notion of characters.

Even processing simple input languages can go wrong

Sending an extended length APDU can crash a contactless

payment terminal.

[Jordi van den Breekel, A security evaluation and proof-of-concept relay attack

on Dutch EMV contactless transactions, MSc thesis, 2014]

Erik Poll

14

Exploiting features
(caused by expressivity)

15

Word & Excel & …

Favourite attack vector for attackers:

• Powershell macros in Word & Excel document!

• Why? No need to craft complex shell code to exploit bugs,

simply write a macro to exploit features!

• Also without macros using Windows DDE (Dynamic Data Exchange)

• Also possible using emails in Outlook Rich Text Format (RTF)

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/

16

DDE warnings

Microsoft considers DDE a feature, and not a bug, but did file a security

advisory data autumn 2017

17

XML & zip bombs

Some input formats enable Denial-of-Service attacks

• a zip bomb (aka zip-of-death) is a small zip file of 40 KB that

explodes to 4 GB when unzipped

• an XML bomb is a small XML file of 1 KB that explodes to 3 GB

when XML parser expands recursive definitions (as part of

canonicalisation)

– aka billions laughs attack, as the original attack used the

string LOL

Moral: any CPU cycles spent or any memory used in processing

input (before the input has been validated) pose a security risk!

18

Injection attacks

Exploiting functionality of some back-end services

• OS command injection

• Path traversal

• SQL injection

• HTML injection (incl. XSS)

• Format string attacks

• LDAP injection

• Xpath injection

• …

Tell-tale signs

• special characters or keywords that have a special meaning for

the input language for this back-end service

– This is a sign that data will be parsed & processed

19

Injection attacks

These attacks abuse expressive power of some input

language, eg the language of

• OS commands erik@ru.nl; rm –fr /

• Path expressions ../../../etc/passwd

• SQL statements 'OR '1'='1'; ;DROP TABLES

• HTML <script>…document.cookie…</script>

– HTML5 includes JavaScript, DOM, CSS

• Format strings %x%x%x%x%n

• XML (//student[username/text..

• LDAP admin)(&)

• ….

20

Injection Attacks : no. 1 in Top Ten
https://www.owasp.org/index.php/Top_10-2017_A1-Injection

21

OWASP Top 10 - Risk Rating

websec22

SQL injection

Exploiting the language of SQL queries

Or the language of SQL commands

There are more interesting commands than DROP TABLE

for example exec master.dbo.xp_cmdshell

23

Processing vs injection/forwarding attacks

24

(abuse of) a feature !
Injection aka Forwarding Flaws

back-end

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !Processing Flaws

Erik Poll

eg buffer overflow

in PDF viewer

LDAP injection

An LDAP query sent to the LDAP server to authenticate a user

(&(USER=jan)(PASSWD=abcd1234))

can be corrupted by giving as username

admin)(&)

which results in

(&(USER=name)(&))(PASSWD=pwd)

where only first part is used, and (&) is LDAP notation for TRUE

There are also blind LDAP injection attacks.

26

XPath injection in XML

XML data, eg

<student_database>

<student><username>jan</username><passwd>abcd1234</passwd>

</student>

<student><username>kees</nameuser><passwd>geheim</passwd>

<student>

</student_database>

can be accessed by XPath queries, eg

(//student[username/text()='jan' and

passwd/text()='abcd123']/account/text()) _database>

which can be corrupted by malicious input such as

' or '1'='1'

27

Path traversal aka directory traversal

File names constructed from user input – by string
concatenation – can cause problems.

Eg suppose a program uses the paths

1. "/usr/local/client-info/" ++ username

2. "/usr/local/profilepictures/" ++ username ++ ".jpg“

Malicious usernames for attacker to inject:

1. ../../../etc/passwd

2. ../../../etc/passwd%00

null terminator %00 means suffix .jpg will be ignored

28

Impact of path traversal

• Information leakage

../../../etc/passwd

• Denial-of-Service (DoS)

../../dev/random (is very long to read)

../../var/spool/lpr (is impossible to read)

• Abitrary code execution?

– If attacker can trick systems in executing the wrong file,

ideally a file that the attacker can upload

– Eg put javascript code in your Brightspace profile picture,

and try to link to it somewhere in Brightspace

29

Beyond simple path traversal

Windows supports many notations for path names

– classic MS-DOS notation C:\MyData\file.txt

– file URLs file:///C|/MyData/file.txt

– UNC (Uniform Naming Convention) \\192.1.1.1\MyData\file.txt

which can be combined in fun ways, eg file://///192.1.1.1/MyData/file.txt

Some notations trigger unexpected behaviour , eg

• UNC paths to remote servers handled by SMB protocol aka Samba

– SMB sends password hash to authenticate aka pass the hash

– This can be exploited by SMB relay attacks on applications

handling file names

• CVE-2000-0834 in Windows telnet,

• CVE-2008-4037 in Windows XP/Server/Vista, …

• CVE-2016-5166 in Chromium

• CVE-2017-3085 & CVE-2016-4271 in Adobe Flash,

• ZDI-16-395 in Foxit PDF viewer

[Example thanks to Björn Ruytenberg, https://blog.bjornweb.nl]

Erik Poll

30

More injection problems: OWASP list

31

• Blind SQL Injection

• Blind XPath Injection

• Code Injection

• Command Injection

• Comment Injection Attack

• Content Spoofing

• CORS RequestPreflightScrutiny

• Cross-site Scripting (XSS)

• Custom Special Character Injection

• Direct Dynamic Code Evaluation

('Eval Injection')

• Format string attack

• Full Path Disclosure

[https://www.owasp.org/index.php/Category:Injection]

• Function Injection

• LDAP injection

• Parameter Delimiter

• PHP Object Injection

• Regular expression Denial of Service -

ReDoS

• Resource Injection

• Server-Side Includes (SSI) Injection

• Special Element Injection

• SQL Injection

• SQL Injection Bypassing WAF

• Web Parameter Tampering

• XPATH Injection

More obscure example: SSI Injection

Server-Side Includes (SSI) are instructions for a web server written

inside HTML. Eg to include some file

<!--#include file="header.html" -->

If attacker can inject HTML into a webpage, then he can try to inject

a SSI directive that will be executed on the server

Of course, there is a directive to execute programs & scripts

<!--#exec cmd="rm –fr /" -->

NB: with SSI injected code is executed server-side, with XSS

injected code (javascript) is executed client-side in browser

32

Deserialisation attacks

Serialisation aka marshalling aka flattening aka pickling

• The process of turning some data structure into a binary

representation

• Why?

To transfer it over network

or store it on disk (ie for persistence)

• Inverse operation of deserialisation, unmarshalling, … used later

to reconstruct the object from the raw data

Deserialisation of malicious input can trigger strange

behaviour…

• affects Java, PHP, python, Ruby, …

33

Deserialisation attacks [for Java]

Sample code to read in Student objects from a file

FileInputStream fileIn = new FileInputStream("/tmp/students.ser");

ObjectInputStream objectIn = new ObjectInputStream(fileIn);

s = (Student) objectIn.readObject(); // deserialise and cast

• If file contains serialised Student objects, readObject will execute the

deserialization code from Student.java

• If file contains other objects, readObject will execute the deserialisation

code for that class

– So: attacker can execute deserialisation code for any class on the

CLASSPATH

– Subtle issue: the cast is only performed after the deserialization

• If this object is later discarded as garbage, eg because the cast fails, the

garbage collector will invoke its finalize methods

– So: attacker can execute finalize method for any class on CLASSPATH

• Countermeasure: Look-Ahead Java Deserialisation to white-list which

classes are allowed to be deserialised

34

How to exploit deserialisation ?

• DoS

– Attacker serialises a recursive object structure, and

deserialization unwinds the recursion and never terminates

– Attacker edits a serialised object to set an array length to

MAX_INT

35

How to exploit deserialisation ?

• Arbitrary code execution

– Possible by abusing rich functionality offered by commonly

used libraries (eg. WebLogic, IBM WebSphere, JBoss,

Jenkins, OpenNMS,Adobe Coldfusion…)

– May even be possible from scratch, eg in python

DEFAULT_COMMAND = "netcat -c '/bin/bash -i' -l -p 4444"

COMMAND = sys.argv[1] if len(sys.argv) > 1 else DEFAULT_COMMAND

class PickleRCE(object):

def __reduce__(self):

import os

return (os.system,(COMMAND,))

36

More input problems: CWE classification

Some clusters in the CWE classification, esp.

CWE-990 Tainted Input

collect dozens of variants of input attacks

See http://cwe.mitre.org/data/definitions/896.html

37

CWE/SANS Top 25 (out of 732!) [Version 3.0]

• Improper Neutralization of Special

Elements used in an SQL Command

• ... ('OS Command Injection')

• Buffer Overflow

• .. ('Cross-site Scripting')

• Missing Authentication for Critical Function

• Missing Authorization

• Use of Hard-coded Credentials

• Missing Encryption of Sensitive Data

• Unrestricted Upload of File with Dangerous

Type

• Reliance on Untrusted Inputs in a Security

Decision

• Execution with Unnecessary Privileges

• Cross-Site Request Forgery (CSRF)

• …('Path Traversal')

• Download of Code Without Integrity Check

• Incorrect Authorization

• Inclusion of Functionality from

Untrusted Control Sphere

• Incorrect Permission Assignment

• Use of Potentially Dangerous

Function

• Use of a Broken or Risky

Cryptographic Algorithm

• Incorrect Calculation of Buffer Size

• Improper Restriction of Excessive

Authentication Attempts

• URL Redirection to Untrusted Site

('Open Redirect')

• Uncontrolled Format String

• Integer Overflow or Wraparound

• Use of a One-Way Hash without a Salt

38

Still to come

• Countermeasures, incl.

– input validation

– output encoding

– sandboxing

but also LangSec approach to address these root causes

• (Optional) lecture on SQL injection, XSS?

39

