
Software Security

Tackling problems

1

Erik Poll

Digital Security group

Radboud University Nijmegen

Recall: input attacks

2

(abuse of) a feature ?

back-end

service

malicious

input application

application
malicious

input

a bug !

Erik Poll

Overview

Countermeasures to input attacks:

• Input validation & sanitisation

• Reducing expressive power

• Sandboxing

3

Input Validation,

Sanitisation,

Escaping,

Encoding,

...

4

Input validation aka sanitisation

• The standard defence against malicious input

• ‘Lack of input validation’ is common term for all input attacks,

but this is a bit of a misnomer, in the LangSec view, as we will

see later.

• Different ingredients:

1. How to validate or sanitise?

a) How to spot illegal inputs ?

b) What to do with them?

2. Where to validate or sanitise?

5

1. Validation techniques

• Indirect selection

– Let user choose from a set of legitimate inputs

– User input never used directly by the application, and input

does contaminate and taint other data

– Most secure, but cannot be used in all situations

– Also, attacker may be able to by-pass the user interface, eg

by messing with HTTP traffic

• White-listing

– List valid patterns; input rejected unless it matches

– Secure, and can be used in all situations

• Black-listing

– List invalid patterns; input accepted unless it matches

– Least secure, given the big risk that some dangerous

patterns are overlooked

6

Black-listing vs white-listing

• Black-listing

Eg reject inputs that contain

– ' or ; to prevent SQL injection

– < or > to prevent HTML injection

– <script> and </script> to prevent XSS

– ; | < > & to prevent OS command injection

Warning: these blacklists are very incomplete

• White-listing:

Eg only accept inputs with a..zA..Z0..9 to prevent SQL or

HTML injection

7

Validation patterns

• For numbers:

– positive, negative, max. value, possible range?

– Or eg. Luhn mod 10 check for credit card numbers

• For strings:

– (dis)allowed characters or words

– More precise checks, eg using regular expressions or

context-free grammars

• Eg for RU student number (s followed by 6 digits),

valid email address, URL, …

• For more complex input formats (eg Flash, JPG, PDF,...)

regular expressions or grammars are not expressive enough 

– Typical source of problem: length fields

8

Typical packet format spec

9

Great fun for triggering buffer overflows!

IP packet format

Validation patterns can get

A regular expression to validate email adressess

This regular expression is more precise than just a whitelist of

allowed characters.

See http://emailregex.com for code samples in various languages

Or read RFCs 821, 822, 1035, 1123, 2821, 2822, 3696, 4291,

5321, 5322, and 5952 and try yourself!

10

What to do with illegal inputs?

1. Reject the entire input

with a understandable error message

2. Try to sanitise the input

Rejecting the input is safer than trying to sanitise.

a) Remove offending bits of the input

b) Escape aka encode offending bits in the input

Eg

• replace ″ by \″ to prevent SQL injection

• replace < > by < > to prevent HTML/ XML injection

• replace script by xxxx to prevent XSS

• put quotes around some input

NB after sanitising, changed input may need to be re-validated

11

What more to do?

Additional actions

• Log the incident

• Alert the sys-admin?

12

Beware of confusion

The terms

• validating

– checking validity & rejecting - filtering out - invalid ones

• sanitising

– somehow ‘fixing’ illegal input

• escaping

– replacing some characters or words to sanatise input

• encoding

– replacing all characters, eg. base64 encoding

can have slightly different but overlapping meanings,

but are sometimes used interchangeably.

• Eg URL-encoding is actually a form of escaping

13

Canonicalisation

• Canonicalisation

is the transformation of data to a unique, canonical form

For example

– changing to lowercase

– removing dots from the username in email address

• Always convert data to canonical forms

– before input validation

– before using it in any security decision

14

Canonicalisation

There may be many ways to write the same thing, eg.

• upper or lowercase letters

s123456 S123456

• ignored characters or sub-strings

name+redundantstring@bla.com

na.me@gmail.com Google chooses to ignore dots in usernames

”Anything” name@bla.com

name(some silly comment)@bla.com

• .. . ~ in path names

• file URLs file://127.0.0.1/c|WINDOWS/clock.avi

• using either / or \ in a URL on Windows

• URL encoding eg / encoded as %2f

• Unicode encoding eg / encoded as \u002f

• (ignored) trailing . in a domain name, eg www.ru.nl.

• . . .

15

Example: Complications in input validation for XSS

Many places to include javascript, and many ways to encode it,

make input validation hard!

Eg

<script language="javascript"> alert('Hi');</script>

can also be written as

• <body onload=alert('Hi')>

• <b onmouseover=alert('Hi')>Click here!

• <img src="http://some.url.that/does/not/exist"

onerror=alert('Hi');>

•

• <META HTTP-EQUIV="refresh"

CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVy

dCgndGVzdDMnKTwvc2NyaXB0Pg">

For a longer lists of tricks, see

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

16

Double encoding problems

Double encoding may let attackers to by-pass input validation

• namely if the input validation only decodes once, but an interface

deeper in the application performs a second decoding

• For example, Google Chrome crashed on URL http://%%30%30

– %30 is the URL-encoding of the character 0

– So %%30%30 is the URL-encoding of %00

– %00 is the URL-encoding of null character

So %%30%30 is a double-encoded null character

Apparently some code deep inside Chrome does a second

decoding (as a well-intended ‘service’ to its client code?) and

then some other code chokes on the null character

17

Input validation nightmares

18

Here the user is expected to supply HTML…

Validating & sanitising such a rich input language is tricky!

Where to validate or sanitise?

19

Client- vs Server-side validation

Validation can be done client-side or server-side

• Eg, for web, in the web-browser or the web-server

Which is best? Do both of them even make sense?

Think about your attacker model!

• Typically, security-critical checks must be done server-side

• Client-side checks assume the client is victim, not attacker

• Some input validation can or must be done client-side, eg

– spotting Javascript inside a URL that a user clicks

http://bank.com/pay.html?name=<script>.....</script>

– in some DOM-based XSS attacks, with URLs of the form

http://bank.com/pay.html#name=<script>.....</script>

the malicious payload stays on the client-side,

so this can only be prevented client side

20

Doing validation right: at choke points

21

input input

choke point
for
validation

data flows

validation
all over
the place

p
r
o
g
r
a
m

Where to validate or sanitise input?

22

application
malicious

input

v
a

lid
a

te

Where to validate or sanitise?

• Rejecting illegal input upon entry makes sense

• eg date of birth in the future

• Escaping dangerous input (say because it contains ' or ;) less so

• Different back-ends want different forms of escaping

• SQL database does not like ; DROP TABLE

file system does not like ../../etc/passwd

OS does not like & rm –fr /

23

back-end

service,

eg SQL

database

malicious

input

application

?

?

Where will this
input end up?

?

?

Which bits
are input?

Input vs output escaping

• Output escaping make more sense than input escaping

• because then escaping can be context-sensitive

• Downside: keeping track of which bits were input

24

SQL

database
malicious

input

web

application

OS

web

browser
XSS

command

injection

SQLi

file

systempath

traversal

format

string attack C library

Where & how to sanitise?

Typical combination

1. input validation: validate input when it enters the application &

reject illegal input

2. output sanitisation: escape output when it exits the application,

eg to SQL database or OS

• Input sanitisation is generally a bad idea

• There remains a fundamental dilemma with forwarding flaws

– What to validate is clearest at the point of entry,

as there it is clear what is user input

– How to escape is clearest at the point of exit, as there you

know how the data will be used

25

History of input sanitisation in PHP

• Function addslashes to escape single and double quote and null

• Magic quotes introduced in PHP2, and default in PHP3 and 4:

all user parameters automatically escaped by calling
addslashes

Why was this not a good idea?

1. different escaping needed for different SQL dialects

eg my_sql_real_escape_string for MySQL

pg_escape_string for PostgreSQL

2. different escaping for different languages

eg maybe an input needs to be escaped to prevent HTML

injection, and not SQL injection?

3. giving programmer a false sense of security

• Magic quotes were removed in PHP5

26

chokepoints, again

27

small interface
where input validation is done
close to where it enters

additional chokepoints
for output sanitisation

input

outputoutput

Trust-boundaries & chokepoints

Identifying trust boundary useful to decide where to validate

• in a network, on a computer, or within an application

But beware of data coming from

trusted places, as eg. 2nd order

injection attacks show

28

Example: 2nd order SQL injection

Suppose I want to access tanja's account

1. I register an account myself with the name tanja' --

2. I log in as tanja' -- and change my password

3. If the password change is done with the SQL statement

UPDATE users

SET password='abcd1234'

WHERE username='tanja' --' and password='abc'

then I have reset tanja's password

– Here abcd1234 is user input, but the dangerous input to the

statement comes from the server's own database, where it

was injected earlier

The moral of the story: don't trust any input, not even data coming

from sources you think can trust

29

Web Application Firewall (WAF)

• A separate firewall in front of a web-application to stop malicious

inputs

• Fundamental problem: WAF has no clue what the web application
is doing, and what it expects as valid inputs

• Therefore

– WAF can only stop very generic problems

– To improve this, some WAFs can be trained to learn what

normal inputs looks like

• So proper input validation still has to done in the web application
itself!

• Is it a useful extra line of defence? Or does it lull programmers
into a false sense of security?

30

Reducing expressive power

31

Recall forwarding flaws

The service provides a very powerful interface to the application, and

hence to the attacker

• Usually, the interface takes a and the service executes

any OS command, access any file, execute any SQL command, …

• Even though the application may only requires a fraction of this

power

Maybe the service should simply not offer all this power?

32

“Service”, eg

• OS

• file system

• database

• library

malicious

input
application

Prepared statements: the basic idea

Instead of a raw string as single input (aka dynamic SQL)

"SELECT * FROM Account WHERE Username = " + $username

+ "AND Password = " + $password;

give a string with placeholders and parameters as separate inputs

"SELECT * FROM Account WHERE Username = ? AND Password = ?"

$username

$password

33

Prepared statements (aka parameterised queries)

Code vulnerable to SQL injection, using so-called dynamic SQL

String updateString =

"SELECT * FROM Account WHERE Username"

+ username + "AND Password =" + password;

stmt.executeUpdate(updateString);

Code not vulnerable to SQL injection using prepared statements

PreparedStatement login = con.preparedStatement("SELECT

* FROM Account

WHERE Username = ? AND Password = ?");

login.setString(1, username);

login.setString(2, password);

login.executeUpdate();

34

bind variable

The idea behind parameterised queries

• With dynamic SQL, parameters are substituted in the query

string and then the result is parsed & processed

• With parameterised queries, the query is parsed first and and

then parameters are substituted afterwards

– The substitution then becomes less dangerous, as the impact

on the meaning is reduced

35

SELECT ... FROM ... WHERE ...

Accounts AND*

= =

Username Passwd$1 $2

Similar mechanisms

• For SQL injection: some database systems provide stored

procedures.

These may be safe from SQL injection, but details depend on

the programming language & database system!

• For XPath injection, some APIs now offer parameterised aka pre-

compiled XPath evaluation

– eg XPathVariableResolver in Java

You always have to look into specific details for the combination of

the programming language APIs & back-end system you use!

36

Example stored procedures

Stored procedure in Oracle's PL/SQL
CREATE PROCEDURE login

(name VARCHAR(100), pwd VARCHAR(100)) AS

DECLARE @sql nvarchar(4000)

SELECT @sql =' SELECT * FROM Account WHERE

username=' + @name + 'AND password=' + @pwd

EXEC (@sql)

is safe when called from Java with

CallableStatement proc =

connection.prepareCall("{call login(?, ?)}");

proc.setString(1, username);

proc.setString(2, password);

37

Going one step further: Wyvern

Maybe the programming language should support the various

formats used (HTML, SQL, ..) as different types?

Wyvern allows such domain-specific extensions, eg

where HTML and SQL are different types in the language.

38

Tackling input language confusion

• Wyvern addresses the confusion too many input

languages and formats in the programming language

• Using types or classes, similar classifications of data can

be made in any (typed) programming language

– eg using types URL, EmailAdress, HTMLfragment, …

instead of one type Strings or byte[] for everything

• To read about Wyvern:

Darya Kurilova, Alex Potanin, and Jonathan Aldrich, Wyvern:

Impacting Software Security via Programming Language Design,

PLATEAU 2014, ACM.

39

Sandboxing

40

OS sandboxing

Most basic form of sandboxing is provided by Operating

System (OS) access control:

• By reducing the rights of process (or user associated with

that process), we mitigate the potential damage

Counterexample:

• running your web application as root/admin

41

chroot jail

chroot (change root) restricts access of a process to a

subset of file system, ie. changes the root of file system for

that process

Eg run an application you just downloaded with

chroot /home/sos/erik/trial ; /tmp

to restrict access to just these two directories

Using the traditional OS access control permission for this,

instead chroot, would be very tricky!

• This would require having to permissions right all over the file

system

42

Sandboxing in browser

• JavaScript in a webpage is sand-boxed using the

Same-Origin-Policy (SOP)

– Scripts include in a webpage from A.com can only interact

with content coming from A.com

– So sub-pages (iframes) from different sources can not

interact.

• Some browsers go further, and start a new OS process for

every browser tab or web-domain

43

CSP (Content Security Policy)

CSP is a form of sandboxing implemented in browser

• A webpage from bank.com could contain HTTP CSP header

Content-Security-Policy:

default-src 'self';

img-src 'self' disney.com

child-src https://youtube.com

script-src apis.google.com

to only allow

– images from bank.com itself or from disney.com

– embedded frames from youtube, included via https

– scripts from apis.google.com

Warning: CSP turns out to be hard to get right!

[Weichselbaum et al., CSP is dead, long live CSP! On the insecurity of whitelists

and the future of content security policy, SIGSAC 2016]
44

Sandboxing for iframes

• HTML5 introduced a sandbox option to restrict what an iframe

can do

• Just turning on the sandbox with no further options

<iframe sandbox src="..."> </iframe>

imposes many restrictions, incl.

– no JavaScript can be executed

– pop-up windows are blocked

– sending of forms is blocked

– ...

• These restrictions can be lifted one-by-one, eg

<iframe sandbox allow-scripts allow-forms allow-pop-ups

allow-same-origin src="..."> </ >

• For full list of options see

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe#attr-sandbox

45

